First-order interpolation from propositional interpolation: a proof theoretic approach on a semantic basis

Matthias Baaz joint work with Anela Lolic

TU Wien

connect propositional and first-order interpolation

general methodology

```
 \begin{array}{c} \text{existence of suitable skolemizations} \; + \\ \text{existence of Herbrand expansions} \; + \\ \text{propositional interpolance} \end{array} \right\} \rightarrow \begin{array}{c} \text{first-order} \\ \text{interpolation.} \end{array}
```

This methodology is realized for lattice-based finitely-valued logics and can be extended to (fragments of) infinitely-valued logics.

the procedure

- 1. Develop a validity equivalent skolemization replacing all strong quantifiers in the valid formula $A \supset B$ to obtain the valid formula $A_1 \supset B_1$.
- 2. Construct a valid Herbrand expansion $A_2 \supset B_2$ for $A_1 \supset B_1$. Occurrences of $\exists x B(x)$ and $\forall x A(x)$ are replaced by suitable finite disjunctions $\bigvee B(t_i)$ and conjunctions $\bigwedge B(t_i)$.
- 3. Interpolate the propositionally valid formula $A_2 \supset B_2$ with the propositional interpolant I^* :

$$A_2\supset I^*$$
 and $I^*\supset B_2$

are propositionally valid.

the procedure

4 Reintroduce weak quantifiers in $A_2 \supset I^*$ and $I^* \supset B_2$ to obtain valid formulas

$$A_1\supset I^*$$
 and $I^*\supset B_1$.

- 5 Eliminate all function symbols and constants not in the common language of A_1 and B_1 by introducing suitable quantifiers in I^* . Let I be the result.
- 6 I is an interpolant for $A_1 \supset B_1$. $A_1 \supset I$ and $I \supset B_1$ are skolemizations of $A \supset I$ and $I \supset B$. Therefore I is an interpolant of $A \supset B$.

lattice-based finitely-valued logics

finite lattices $L=\langle W,\leq,\cup,\cap,0,1\rangle$ where \cup , \cap , 0, 1 are supremum, infimum, minimal element and maximal element, $0\neq 1$

A propositional language for L, $\mathcal{L}^0(L, V)$, $V \subseteq W$ is based on propositional variables, truth constants C_v for $v \in V$, \vee , \wedge , \supset .

A first-order language for L, $\mathcal{L}^1(L, V)$, $V \subseteq W$ is based on the usual first-order variables, predicates, truth constants C_v for $v \in V$, \vee , \wedge , \supset , \exists , \forall .

 \rightarrow : $W \times W \Rightarrow W$ for $L = \langle W, \leq, \cup, \cap, 0, 1 \rangle$ is an admissible implication iff

$$\begin{aligned} u \to v &= 1 &\Leftrightarrow & u \le v, \\ u \le v, f \le g &\Rightarrow & v \to f \le u \to g \end{aligned}$$

skolemization

$$\begin{array}{c} \text{existence of suitable skolemizations} \; + \\ \text{existence of Herbrand expansions} \; + \\ \text{propositional interpolance} \end{array} \right\} \rightarrow \begin{array}{c} \text{first-order} \\ \text{interpolation.} \end{array}$$

task: develop a validity equivalent skolemization replacing all strong quantifiers in the valid formula $A \supset B$ to obtain a valid formula $sk(A) \supset sk(B)$, s.t. the original formula can be reconstructed

skolemization

A(sk(B)) is defined as follows: replace strong quantifiers in B

$$\exists x C(x) \longrightarrow \bigvee_{i=1}^{|W|} C(f_i(\overline{x})), \qquad \forall x C(x) \longrightarrow \bigwedge_{i=1}^{|W|} C(f_i(\overline{x}))$$

where f_i are new function symbols and \overline{x} are the weakly quantified variables of the scope

Skolem axioms are closed sentences

$$\forall \overline{x} (\exists y A(y, \overline{x}) \supset \bigvee_{i=1}^{|W|} A(f_i(\overline{x}), \overline{x}), \qquad \forall \overline{x} (\bigwedge_{i=1}^{|W|} A(f_i(\overline{x}), \overline{x}) \supset \forall y A(y, \overline{x}))$$

where f_i are new function symbols (Skolem functions)

skolemization

Lemma

- 1. $\models^1 A(B) \Rightarrow \models^1 A(sk(B))$
- 2. $S_1 \dots S_k \models^1 A(sk(B)) \Rightarrow S_1 \dots S_k \models^1 A(B)$ for suitable Skolem axioms $S_1 \dots S_k$
- 3. $S_1 ... S_k \models^1 A \Rightarrow \models^1 A$ where $S_1 ... S_k$ are Skolem axioms and A does not contain Skolem functions

Herbrand expansions

$$\left. \begin{array}{c} \text{existence of suitable skolemizations} \; + \\ \text{existence of Herbrand expansions} \; + \\ \text{propositional interpolance} \end{array} \right\} \rightarrow \begin{array}{c} \text{first-order} \\ \text{interpolation.} \end{array}$$

task: construct a valid Herbrand expansion $A_H \supset B_H$ for $sk(A) \supset sk(B)$

expansion

Let A contain only weak quantifiers. An expansion of A is a quantifier free closed formula where

$$\exists x B(x) \text{ in } A \longrightarrow \bigvee B(t_i), \qquad \forall x C(x) \text{ in } A \longrightarrow \bigwedge C(s_j)$$

for some t_i , s_i .

Herbrand expansions can be constructed

A Herbrand expansion is a valid expansion.

Proposition

Let A contain only weak quantifiers. Then

 $\models^1 A \Leftrightarrow \text{there is a valid Herbrand disjunction } A_H.$

$$\begin{array}{c} \text{existence of suitable skolemizations} \; + \\ \text{existence of Herbrand expansions} \; + \\ \text{propositional interpolance} \end{array} \right\} \rightarrow \begin{array}{c} \text{first-order} \\ \text{interpolation.} \end{array}$$

Theorem

Interpolation holds for
$$\mathbf{L}^0(L,V, o)$$
 \updownarrow Interpolation holds for $\mathbf{L}^1(L,V, o)$.

the interpolation theorem

Proof. One direction is trivial. Let's consider the the other. \Downarrow : Assume $A \supset B \in \mathcal{L}(L, V)$ and $\models A \supset B$.

then,
$$\models sk(A) \supset sk(B)$$

construct a Herbrand expansion $A_H \supset B_H$ from $sk(A) \supset sk(B)$ construct prop. interpolant to obtain $\models A_H \supset I^*, \quad \models I^* \supset B_H$ use $\models A(t) \supset \exists x A(x)$ and $\models \forall x A(x) \supset A(t)$ to obtain $\models sk(A) \supset I^*$ and $\models I^* \supset sk(B)$

order all terms f(t) in I^* by inclusion (f is not in the common language)

let $f^*(\overline{t})$ be the maximal such term in

$$\models sk(A) \supset I^*$$
 and $\models I^* \supset sk(B)$

• f^* is not in sk(A):

replace
$$f^*(\overline{t})$$
 by a fresh variable $x: \models sk(A) \supset I^*\{f^*(\overline{t}) \leftarrow x\}$
but then, $\models sk(A) \supset \forall x I^*\{f^*(\overline{t}) \leftarrow x\}$
by $\models \forall x I^*\{f^*(\overline{t}) \leftarrow x\} \supset I^*$ also $\models \forall x I^*\{f^*(\overline{t}) \leftarrow x\} \supset sk(B)$
so we obtain

$$\models sk(A) \supset \forall xI^*\{f^*(\overline{t}) \leftarrow x\}$$
 and $\models \forall xI^*\{f^*(\overline{t}) \leftarrow x\} \supset sk(B)$

• $f^*(\overline{t})$ is not in sk(B)

replace
$$f^*(\overline{t})$$
 by a fresh variable $x: \models I^*\{f^*(\overline{t}) \leftarrow x\} \supset sk(B)$ but then, $\models \exists x I^*\{f^*(\overline{t}) \leftarrow x\} \supset sk(B)$ by $\models I^* \supset \exists x I^*\{f^*(\overline{t}) \leftarrow x\}$ also $\models sk(A) \supset \exists x I^*\{f^*(\overline{t}) \leftarrow x\}$ so we obtain

$$\models sk(A) \supset \exists xI^*\{f^*(\overline{t}) \leftarrow x\} \quad \text{and} \quad \models \exists xI^*\{f^*(\overline{t}) \leftarrow x\} \supset sk(B)$$

repeat until all functions and constants not in the common language are eliminated (among them the Skolem functions), let I be the result

I is an interpolant of $sk(A) \supset sk(B)$, therefore

$$A \supset I$$
 and $I \supset B$

The constant-domain intuitionistic Kripke frame ${\cal K}$

is represented by the following lattice L

construct interpolant for $\exists x (B(x) \land \forall y C(y)) \supset \exists x (A(x) \lor B(x))$

construct interpolant for
$$\exists x (B(x) \land \forall y C(y)) \supset \exists x (A(x) \lor B(x))$$

1. skolemization

$$\bigvee_{i=1}^{5} (B(c_i) \land \forall y C(y)) \supset \exists x (A(x) \lor B(x))$$

construct interpolant for $\exists x (B(x) \land \forall y C(y)) \supset \exists x (A(x) \lor B(x))$

1. skolemization

$$\bigvee_{i=1}^{5} (B(c_i) \wedge \forall y C(y)) \supset \exists x (A(x) \vee B(x))$$

2. Herbrand expansion

$$\bigvee_{i=1}^{5} (B(c_i) \wedge C(c_1)) \supset \bigvee_{i=1}^{5} (A(c_i) \vee B(c_i))$$

construct interpolant for $\exists x (B(x) \land \forall y C(y)) \supset \exists x (A(x) \lor B(x))$

1. skolemization

$$\bigvee_{i=1}^{5} (B(c_i) \wedge \forall y C(y)) \supset \exists x (A(x) \vee B(x))$$

2. Herbrand expansion

$$\bigvee_{i=1}^{5} (B(c_i) \wedge C(c_1)) \supset \bigvee_{i=1}^{5} (A(c_i) \vee B(c_i))$$

3. propositional interpolant

$$\bigvee_{i=1}^{5} (B(c_i) \wedge C(c_1)) \supset \bigvee_{i=1}^{5} B(c_i), \qquad \bigvee_{i=1}^{5} B(c_i) \supset \bigvee_{i=1}^{5} (A(c_i) \vee B(c_i))$$

3. propositional interpolant

$$\bigvee_{i=1}^{5} (B(c_i) \wedge C(c_1)) \supset \bigvee_{i=1}^{5} B(c_i), \qquad \bigvee_{i=1}^{5} B(c_i) \supset \bigvee_{i=1}^{5} (A(c_i) \vee B(c_i))$$

4. back to the Skolem form

$$\bigvee_{i=1}^{5} (B(c_i) \land \forall y C(y)) \supset \bigvee_{i=1}^{5} B(c_i), \qquad \bigvee_{i=1}^{5} B(c_i) \supset \exists x (A(x) \lor B(x))$$

3. propositional interpolant

$$\bigvee_{i=1}^{5} (B(c_i) \wedge C(c_1)) \supset \bigvee_{i=1}^{5} B(c_i), \qquad \bigvee_{i=1}^{5} B(c_i) \supset \bigvee_{i=1}^{5} (A(c_i) \vee B(c_i))$$

4. back to the Skolem form

$$\bigvee_{i=1}^{5} (B(c_i) \land \forall y C(y)) \supset \bigvee_{i=1}^{5} B(c_i), \qquad \bigvee_{i=1}^{5} B(c_i) \supset \exists x (A(x) \lor B(x))$$

eliminate function symbols and constants not in the common language

$$\bigvee_{i=1}^{5} (B(c_i) \land \forall y C(y)) \supset \exists z_1 \ldots \exists z_5 \bigvee B(z_i),$$
$$\exists z_1 \ldots \exists z_5 \bigvee B(z_i) \supset \exists x (A(x) \lor B(x))$$

5.

$$\bigvee_{i=1}^{5} (B(c_i) \land \forall y C(y)) \supset \exists z_1 \dots \exists z_5 \bigvee B(z_i),$$
$$\exists z_1 \dots \exists z_5 \bigvee B(z_i) \supset \exists x (A(x) \lor B(x))$$

6. use Skolem axiom

$$\exists x (B(x) \land \forall y C(y)) \supset \bigvee_{i=1}^{5} B(c_i) \land \forall y C(y)$$

to obtain original formula, Skolem axiom can be eliminated

Corollary

Interpolation holds for
$$\mathbf{L}^0(L,V,
ightarrow),$$
 $\models A\supset B,\quad A\supset B$ contain only weak quantifiers \Downarrow

there is a quantifier-free interpolant for $A \supset B$.

Corollary

Interpolation holds for
$$\mathbf{L}^0(L,V,\to)$$
, $\models A\supset B$, $A\supset B$ contain only weak quantifiers \Downarrow

there is a quantifier-free interpolant for $A \supset B$.

Proposition

Let
$$L = \langle W, \leq, \cup, \cap, 0, 1 \rangle$$
.

- i. $\mathbf{L}^0(L,\emptyset,\to)$ (and therefore $\mathbf{L}^1(L,\emptyset,\to)$) never has the interpolation property.
- ii. $L^0(L, W, \rightarrow)$ (and therefore $L^1(L, \emptyset, \rightarrow)$) always has the interpolation property.

It is therefore reasonable to consider the function

$$\mathsf{SPEC}(L,\to) = \{V \mid \mathbf{L}^1(L,V,\to) \text{ interpolates}\}.$$

extensions to infinitely-valued logics

use described methodology to prove interpolation for (fragments of) infinitely-valued logics

▶ Gödel logic $G_{[0,1]}$, the logic of all linearly ordered Kripke frames with constant domains

its connectives can be interpreted as functions over the real interval $\left[0,1\right]$

- ▶ ⊥: logical constant for 0
- ▶ \lor , \land , \exists , \forall are defined as *maximum*, *minimum*, *supremum*, *infimum*
- $ightharpoonup
 eg A: A o \bot$, where

$$u \to v = \begin{cases} 1 & u \le v \\ v & \text{else} \end{cases}$$

fragments of $G_{[0,1]}$

weak quantifier fragment of $G_{[0,1]}$

- admits Herbrand expansions (cut-free proofs in hypersequent calculi),
- as propositional Gödel logic interpolates, the weak quantifier fragment interpolates, too

fragment $A \supset B$, A, B prenex

- skolemization as in classical logic
- construct Herbrand expansion
- ▶ interpolate
- go back to Skolem form
- use immediate analogy of the 2nd ε -theorem to obtain the original formula