First-order interpolation from propositional interpolation: a proof theoretic approach on a semantic basis

Matthias Baaz
joint work with Anela Lolic

TU Wien

connect propositional and first-order interpolation

general methodology

This methodology is realized for lattice-based finitely-valued logics and can be extended to (fragments of) infinitely-valued logics.

the procedure

1. Develop a validity equivalent skolemization replacing all strong quantifiers in the valid formula $A \supset B$ to obtain the valid formula $A_{1} \supset B_{1}$.
2. Construct a valid Herbrand expansion $A_{2} \supset B_{2}$ for $A_{1} \supset B_{1}$. Occurrences of $\exists x B(x)$ and $\forall x A(x)$ are replaced by suitable finite disjunctions $\bigvee B\left(t_{i}\right)$ and conjunctions $\bigwedge B\left(t_{i}\right)$.
3. Interpolate the propositionally valid formula $A_{2} \supset B_{2}$ with the propositional interpolant I^{*} :

$$
A_{2} \supset I^{*} \quad \text { and } \quad I^{*} \supset B_{2}
$$

are propositionally valid.

the procedure

4 Reintroduce weak quantifiers in $A_{2} \supset I^{*}$ and $I^{*} \supset B_{2}$ to obtain valid formulas

$$
A_{1} \supset I^{*} \quad \text { and } \quad I^{*} \supset B_{1} .
$$

5 Eliminate all function symbols and constants not in the common language of A_{1} and B_{1} by introducing suitable quantifiers in I^{*}. Let I be the result.
$6 I$ is an interpolant for $A_{1} \supset B_{1} . A_{1} \supset I$ and $I \supset B_{1}$ are skolemizations of $A \supset I$ and $I \supset B$. Therefore I is an interpolant of $A \supset B$.

lattice-based finitely-valued logics

finite lattices $L=\langle W, \leq, \cup \cap, 0,1\rangle$ where $\cup, \cap, 0,1$ are supremum, infimum, minimal element and maximal element, $0 \neq 1$
A propositional language for $L, \mathcal{L}^{0}(L, V), V \subseteq W$ is based on propositional variables, truth constants C_{v} for $v \in V, \vee, \wedge, \supset$.
A first-order language for $L, \mathcal{L}^{1}(L, V), V \subseteq W$ is based on the usual first-order variables, predicates, truth constants C_{V} for $v \in V, \vee, \wedge, \supset, \exists, \forall$.
$\rightarrow: W \times W \Rightarrow W$ for $L=\langle W, \leq, \cup, \cap, 0,1\rangle$ is an admissible implication iff

$$
\begin{gathered}
u \rightarrow v=1 \quad \Leftrightarrow \quad u \leq v, \\
u \leq v, f \leq g \quad \Rightarrow \quad v \rightarrow f \leq u \rightarrow g
\end{gathered}
$$

skolemization

$$
\left.\begin{array}{c}
\text { existence of suitable skolemizations }+ \\
\text { existence of Herbrand expansions }+ \\
\text { propositional interpolance }
\end{array}\right\} \rightarrow \begin{gathered}
\text { first-order } \\
\text { interpolation. }
\end{gathered}
$$

task: develop a validity equivalent skolemization replacing all strong quantifiers in the valid formula $A \supset B$ to obtain a valid formula $s k(A) \supset s k(B)$, s.t. the original formula can be reconstructed

skolemization

$A(s k(B))$ is defined as follows: replace strong quantifiers in B

$$
\exists x C(x) \longrightarrow \bigvee_{i=1}^{|W|} C\left(f_{i}(\bar{x})\right), \quad \forall x C(x) \longrightarrow \bigwedge_{i=1}^{|W|} C\left(f_{i}(\bar{x})\right)
$$

where f_{i} are new function symbols and \bar{x} are the weakly quantified variables of the scope
Skolem axioms are closed sentences
$\forall \bar{x}\left(\exists y A(y, \bar{x}) \supset \bigvee_{i=1}^{|W|} A\left(f_{i}(\bar{x}), \bar{x}\right), \quad \forall \bar{x}\left(\bigwedge_{i=1}^{|W|} A\left(f_{i}(\bar{x}), \bar{x}\right) \supset \forall y A(y, \bar{x})\right)\right.$
where f_{i} are new function symbols (Skolem functions)

skolemization

Lemma

1. $\models^{1} A(B) \Rightarrow \quad \models^{1} A(s k(B))$
2. $S_{1} \ldots S_{k} \models^{1} A(s k(B)) \Rightarrow S_{1} \ldots S_{k} \models^{1} A(B)$ for suitable Skolem axioms $S_{1} \ldots S_{k}$
3. $S_{1} \ldots S_{k} \models^{1} A \Rightarrow \quad \models^{1} A$
where $S_{1} \ldots S_{k}$ are Skolem axioms and A does not contain Skolem functions

Herbrand expansions

$$
\left.\begin{array}{c}
\text { existence of suitable skolemizations }+ \\
\text { existence of Herbrand expansions }+ \\
\text { propositional interpolance }
\end{array}\right\} \rightarrow \begin{gathered}
\text { first-order } \\
\text { interpolation. }
\end{gathered}
$$

task: construct a valid Herbrand expansion $A_{H} \supset B_{H}$ for sk $(A) \supset s k(B)$
expansion
Let A contain only weak quantifiers. An expansion of A is a quantifier free closed formula where

$$
\exists x B(x) \text { in } A \longrightarrow \bigvee B\left(t_{i}\right), \quad \forall x C(x) \text { in } A \longrightarrow \bigwedge C\left(s_{j}\right)
$$

for some t_{i}, s_{j}.

Herbrand expansions can be constructed

A Herbrand expansion is a valid expansion.
Proposition
Let A contain only weak quantifiers. Then
$\models{ }^{1} A \quad \Leftrightarrow \quad$ there is a valid Herbrand disjunction A_{H}.

Theorem
Interpolation holds for $\mathbf{L}^{0}(L, V, \rightarrow)$
I
Interpolation holds for $\mathbf{L}^{1}(L, V, \rightarrow)$.

the interpolation theorem

Proof. One direction is trivial. Let's consider the the other.
$\Downarrow:$ Assume $A \supset B \in \mathcal{L}(L, V)$ and $\models A \supset B$.

$$
\text { then, } \models \operatorname{sk}(A) \supset s k(B)
$$

construct a Herbrand expansion $A_{H} \supset B_{H}$ from $s k(A) \supset s k(B)$
construct prop. interpolant to obtain $\vDash A_{H} \supset I^{*}, \quad \vDash I^{*} \supset B_{H}$

$$
\begin{aligned}
& \text { use } \models A(t) \supset \exists x A(x) \quad \text { and } \quad \models \forall x A(x) \supset A(t) \\
& \text { to obtain } \models \operatorname{sk}(A) \supset I^{*} \quad \text { and } \quad \models I^{*} \supset \operatorname{sk}(B)
\end{aligned}
$$

order all terms $f(t)$ in I^{*} by inclusion (f is not in the common language)
let $f^{*}(\bar{t})$ be the maximal such term in

$$
\models \operatorname{sk}(A) \supset I^{*} \quad \text { and } \quad \models I^{*} \supset \operatorname{sk}(B)
$$

- f^{*} is not in $s k(A)$:
replace $f^{*}(\bar{t})$ by a fresh variable $x: \quad \models \operatorname{sk}(A) \supset I^{*}\left\{f^{*}(\bar{t}) \leftarrow x\right\}$

$$
\text { but then, } \models \operatorname{sk}(A) \supset \forall x I^{*}\left\{f^{*}(\bar{t}) \leftarrow x\right\}
$$

by $\models \forall x I^{*}\left\{f^{*}(\bar{t}) \leftarrow x\right\} \supset I^{*} \quad$ also $\quad \models \forall x I^{*}\left\{f^{*}(\bar{t}) \leftarrow x\right\} \supset \operatorname{sk}(B)$ so we obtain
$\models s k(A) \supset \forall x I^{*}\left\{f^{*}(\bar{t}) \leftarrow x\right\} \quad$ and $\quad \models \forall x l^{*}\left\{f^{*}(\bar{t}) \leftarrow x\right\} \supset s k(B)$

- $f^{*}(\bar{t})$ is not in $\operatorname{sk}(B)$
replace $f^{*}(\bar{t})$ by a fresh variable $x: \quad \models I^{*}\left\{f^{*}(\bar{t}) \leftarrow x\right\} \supset \operatorname{sk}(B)$

$$
\text { but then, } \models \exists x I^{*}\left\{f^{*}(\bar{t}) \leftarrow x\right\} \supset \operatorname{sk}(B)
$$

by $\models I^{*} \supset \exists x I^{*}\left\{f^{*}(\bar{t}) \leftarrow x\right\} \quad$ also $\quad \models \operatorname{sk}(A) \supset \exists x I^{*}\left\{f^{*}(\bar{t}) \leftarrow x\right\}$
so we obtain
$\models s k(A) \supset \exists x l^{*}\left\{f^{*}(\bar{t}) \leftarrow x\right\} \quad$ and $\quad \models \exists x l^{*}\left\{f^{*}(\bar{t}) \leftarrow x\right\} \supset \operatorname{sk}(B)$
repeat until all functions and constants not in the common language are eliminated (among them the Skolem functions), let I be the result
I is an interpolant of $s k(A) \supset s k(B)$, therefore

$$
A \supset I \text { and } I \supset B
$$

example

The constant-domain intuitionistic Kripke frame \mathcal{K}

is represented by the following lattice L

example

construct interpolant for $\exists x(B(x) \wedge \forall y C(y)) \supset \exists x(A(x) \vee B(x))$

example

construct interpolant for $\exists x(B(x) \wedge \forall y C(y)) \supset \exists x(A(x) \vee B(x))$

1. skolemization

$$
\bigvee_{i=1}^{5}\left(B\left(c_{i}\right) \wedge \forall y C(y)\right) \supset \exists x(A(x) \vee B(x))
$$

example

construct interpolant for $\exists x(B(x) \wedge \forall y C(y)) \supset \exists x(A(x) \vee B(x))$

1. skolemization

$$
\bigvee_{i=1}^{5}\left(B\left(c_{i}\right) \wedge \forall y C(y)\right) \supset \exists x(A(x) \vee B(x))
$$

2. Herbrand expansion

$$
\bigvee_{i=1}^{5}\left(B\left(c_{i}\right) \wedge C\left(c_{1}\right)\right) \supset \bigvee_{i=1}^{5}\left(A\left(c_{i}\right) \vee B\left(c_{i}\right)\right)
$$

example

construct interpolant for $\exists x(B(x) \wedge \forall y C(y)) \supset \exists x(A(x) \vee B(x))$

1. skolemization

$$
\bigvee_{i=1}^{5}\left(B\left(c_{i}\right) \wedge \forall y C(y)\right) \supset \exists x(A(x) \vee B(x))
$$

2. Herbrand expansion

$$
\bigvee_{i=1}^{5}\left(B\left(c_{i}\right) \wedge C\left(c_{1}\right)\right) \supset \bigvee_{i=1}^{5}\left(A\left(c_{i}\right) \vee B\left(c_{i}\right)\right)
$$

3. propositional interpolant

$$
\bigvee_{i=1}^{5}\left(B\left(c_{i}\right) \wedge C\left(c_{1}\right)\right) \supset \bigvee_{i=1}^{5} B\left(c_{i}\right), \quad \bigvee_{i=1}^{5} B\left(c_{i}\right) \supset \bigvee_{i=1}^{5}\left(A\left(c_{i}\right) \vee B\left(c_{i}\right)\right)
$$

example

3. propositional interpolant

$$
\bigvee_{i=1}^{5}\left(B\left(c_{i}\right) \wedge C\left(c_{1}\right)\right) \supset \bigvee_{i=1}^{5} B\left(c_{i}\right)
$$

$$
\bigvee_{i=1}^{5} B\left(c_{i}\right) \supset \bigvee_{i=1}^{5}\left(A\left(c_{i}\right) \vee B\left(c_{i}\right)\right)
$$

4. back to the Skolem form

$$
\bigvee_{i=1}^{5}\left(B\left(c_{i}\right) \wedge \forall y C(y)\right) \supset \bigvee_{i=1}^{5} B\left(c_{i}\right), \quad \bigvee_{i=1}^{5} B\left(c_{i}\right) \supset \exists x(A(x) \vee B(x))
$$

example

3. propositional interpolant

$$
\bigvee_{i=1}^{5}\left(B\left(c_{i}\right) \wedge C\left(c_{1}\right)\right) \supset \bigvee_{i=1}^{5} B\left(c_{i}\right), \quad \bigvee_{i=1}^{5} B\left(c_{i}\right) \supset \bigvee_{i=1}^{5}\left(A\left(c_{i}\right) \vee B\left(c_{i}\right)\right)
$$

4. back to the Skolem form

$$
\bigvee_{i=1}^{5}\left(B\left(c_{i}\right) \wedge \forall y C(y)\right) \supset \bigvee_{i=1}^{5} B\left(c_{i}\right), \quad \bigvee_{i=1}^{5} B\left(c_{i}\right) \supset \exists x(A(x) \vee B(x))
$$

5. eliminate function symbols and constants not in the common language

$$
\begin{aligned}
& \bigvee_{i=1}^{5}\left(B\left(c_{i}\right) \wedge \forall y C(y)\right) \supset \exists z_{1} \ldots \exists z_{5} \bigvee B\left(z_{i}\right), \\
& \exists z_{1} \ldots \exists z_{5} \bigvee B\left(z_{i}\right) \supset \exists x(A(x) \vee B(x))
\end{aligned}
$$

example

5.

$$
\begin{gathered}
\bigvee_{i=1}^{5}\left(B\left(c_{i}\right) \wedge \forall y C(y)\right) \supset \exists z_{1} \ldots \exists z_{5} \bigvee B\left(z_{i}\right), \\
\exists z_{1} \ldots \exists z_{5} \bigvee B\left(z_{i}\right) \supset \exists x(A(x) \vee B(x))
\end{gathered}
$$

6. use Skolem axiom

$$
\exists x(B(x) \wedge \forall y C(y)) \supset \bigvee_{i=1}^{5} B\left(c_{i}\right) \wedge \forall y C(y)
$$

to obtain original formula, Skolem axiom can be eliminated

Interpolation holds for $\mathbf{L}^{0}(L, V, \rightarrow)$,
$\vDash A \supset B, \quad A \supset B$ contain only weak quantifiers
\Downarrow
there is a quantifier-free interpolant for $A \supset B$.

Corollary

Interpolation holds for $\mathbf{L}^{0}(L, V, \rightarrow)$,
$\vDash A \supset B, \quad A \supset B$ contain only weak quantifiers
\Downarrow
there is a quantifier-free interpolant for $A \supset B$.

Proposition

Let $L=\langle W, \leq, \cup, \cap, 0,1\rangle$.
i. $\mathbf{L}^{0}(L, \emptyset, \rightarrow)$ (and therefore $\mathbf{L}^{1}(L, \emptyset, \rightarrow)$) never has the interpolation property.
ii. $\mathbf{L}^{0}(L, W, \rightarrow)$ (and therefore $\mathbf{L}^{1}(L, \emptyset, \rightarrow)$) always has the interpolation property.

It is therefore reasonable to consider the function

$$
\operatorname{SPEC}(L, \rightarrow)=\left\{V \mid \mathbf{L}^{1}(L, V, \rightarrow) \text { interpolates }\right\}
$$

extensions to infinitely-valued logics

use described methodology to prove interpolation for (fragments of) infinitely-valued logics

- Gödel logic $G_{[0,1]}$, the logic of all linearly ordered Kripke frames with constant domains
its connectives can be interpreted as functions over the real interval $[0,1]$
- \perp : logical constant for 0
- $\vee, \wedge, \exists, \forall$ are defined as maximum, minimum, supremum, infimum
- $\neg A: A \rightarrow \perp$, where

$$
u \rightarrow v= \begin{cases}1 & u \leq v \\ v & \text { else }\end{cases}
$$

fragments of $G_{[0,1]}$

weak quantifier fragment of $G_{[0,1]}$

- admits Herbrand expansions (cut-free proofs in hypersequent calculi),
- as propositional Gödel logic interpolates, the weak quantifier fragment interpolates, too
fragment $A \supset B, A, B$ prenex
- skolemization as in classical logic
- construct Herbrand expansion
- interpolate
- go back to Skolem form
- use immediate analogy of the 2 nd ε-theorem to obtain the original formula

