
Antistructural completeness in propositional logics

Tomáš Lávička1 Adam Přenosil2

1Institute of Information Theory and Automation, Czech Academy of Sciences

2Institute of Computer Science, Czech Academy of Sciences

Topology, Algebra, and Categories in Logic 2017

Prague, 29 June 2017

1 / 18



Introduction

In this talk, we shall introduce the notion of an antistructural completion of
a propositional logic, dual to the notion of a structural completion.

The (anti)structural completion of a logic is the strongest logic with the
same (anti)theorems. Interestingly, unlike the structural completion, the
antistructural completion of a logic need not always exist.

Our main goal is to provide several equivalent characterizations of such
completions under some mild conditions. In particular, antistructural
completeness turns out to be closely connected to semisimplicity.
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Preliminaries: logics

A logic is a relation between sets of formulas and formulas, denoted Γ ` ϕ,
which satisfies some natural conditions:

ϕ `L ϕ (reflexivity)
Γ `L ϕ⇒ Γ,∆ `L ϕ (monotonicity)
Γ `L ϕ⇒ σ[Γ] `L σϕ for each substitution σ (structurality)
Γ `L δ for each δ ∈ ∆ and ∆,Π `L ϕ⇒ Γ,Π `L ϕ (cut)

A logic L is finitary if the following holds:

Γ `L ϕ⇒ Γ′ `L ϕ for some finite Γ′ ⊆ Γ (finitarity)

For finitary logics, cut is equivalent to the following condition:

Γ `L ϕ and ϕ,∆ `L ψ ⇒ Γ,∆ `L ψ (finitary cut)

3 / 18



Structural completions

A theorem of a logic L is a formula ϕ which is designated in every model of
L, i.e. ϕ such that ∅ `L ϕ. The set of all theorems of L is denoted ThmL.

Given a logic L, its axiomatic part AxB L is defined as:
Γ `AxB L ϕ if and only if ThmL, Γ `B ϕ.

Equivalently, AxB L is the smallest extension of B with the same theorems
as L, i.e. the extension of B by the rules ∅ ` ϕ for ϕ ∈ ThmL.

The structural completion of L, denoted σL, is the strongest extension of L
with the same theorems as L. A logic L is structurally complete if σL = L.

We have Γ `σL ϕ if and only if the rule Γ ` ϕ is admissible in L, that is:
∅ `L σϕ whenever ∅ `L σ[Γ] for each substitution σ.
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Antitheorems: definition

An antitheorem of a logic L is a set of formulas Γ which is never jointly
designated in any non-trivial model of L. We abbreviate this by Γ `L ∅.

Equivalently, an antitheorem of a logic L is a set of formulas Γ such that
σ[Γ] `L Fm for each substitution σ, i.e. σ[Γ] `L ϕ for every formula ϕ.

If L has an antitheorem or if Γ is finite, this is equivalent to Γ `L Fm. This
is sometimes taken to be the definition of an antitheorem.

Some logics have no antitheorems at all, e.g. the positive fragment of CL.

Some logics have antitheorems but no finite antitheorems, for example the
principal Gödel logic with positive rational constants.
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Antitheorems: basic properties

The following versions of monotonicity, structurality, and cut hold:

Γ `L ∅ ⇒ Γ `L ϕ (right monotonicity)
Γ `L ∅ ⇒ Γ,∆ `L ∅ (left monotonicity)
Γ `L ∅ ⇒ σ[Γ] `L ∅ for each substitution σ (structurality)
Γ `L δ for each δ ∈ ∆ and ∆,Π `L ∅ ⇒ Γ,Π `L ∅ (cut)

If L is finitary, then the following version of finitarity holds:

Γ `L ∅ ⇒ Γ′ `L ∅ for some finite Γ′ ⊆ Γ (finitarity)

Structurality and finitarity may fail if we define antitheorems by Γ ` Fm.
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Explosive parts: definition

Given a logic L, its explosive part ExpB L is defined as:
Γ `ExpB L ϕ if and only if either Γ `B ϕ or Γ `L ∅.

Equivalently, it is the smallest extension of B with the same antitheorems
as L, i.e. the extension of B by the rules Γ ` ∅ for each antitheorem Γ of L.

ExpB is an interior operator. Moreover, ExpB
⋂

i∈I Li =
⋂

i∈I ExpB Li .

An explosive extension of B is an extension L such that ExpB L = L, i.e.
an extension axiomatized by a set of rules of the form Γ ` ∅ relative to B.

The explosive extensions of B form a completely distributive sublattice of
ExtB, denoted Exp ExtB, such that

∨
i∈I Li =

⋃
i∈I Li for Li ∈ Exp ExtB.
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Explosive parts: examples

Let us look at the explosive parts of some known logics: Ł is Łukasiewicz
logic, BD is the Dunn–Belnap logic, LP is the Logic of Paradox.

ExpIL CL = IL. Thus IL has no non-trivial proper explosive extensions.

ExpBD LP = BD. That is, LP does not add any explosions to BD.

ExpBD CL is axiomatized relative to BD by the rules χn ` ∅ for n ≥ 1 with:
χn = (p1 ∧ −p1) ∨ · · · ∨ (pn ∧ −pn).

ExpŁ CL is axiomatized by the following three rules:

p → ¬p,¬p → p ` ∅
p → ¬p, (p · q)→ ¬(p · q) ` ∅

¬p → p,¬q → q, (p · q)→ ¬(p · q) ` ∅

(These hold in an MV-algebra iff it has a homomorphism into {0, 1}.)
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Explosive parts: digression

Explosive parts are useful when computing logics given by a product of
matrices if we know the logics given by the factors.

Proposition
LogΠi∈IAi =

⋂
i∈I LogAi ∪

⋃
i∈I ExpB LogAi , where the matrices Ai are

non-trivial models of B.

Corollary
If B = LogA and L = LogB, then ExpB L = LogA× B.
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Antistructural completions

The antistructural completion of L, denoted αL, is the strongest extension
of L (provided that it exists) with the same antitheorems as L.

A logic L is said to be antistructurally complete if αL = L.

L′ has the same antitheorems as L ⇔ ExpB L ⊆ L′ ⊆ αL (if αL exists).

Unlike structural completions, antistructural completions need not exist.

Example: consider the principal Gödel logic with rational constants cq for
q ∈ Q ∩ [0, 1]. Adding an arbitrary cq for q > 0 as a theorem does not
yield any new antitheorems. But adding all of them yields the trivial logic.

We want a sufficient condition for existence and a useful description of αL.
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Antiadmissible rules

A rule Γ ` ϕ is called antiadmissible in L if:
∆, σ[Γ] `L ∅ whenever ∆, σϕ `L ∅ for each subst. σ and each ∆

Proposition
The antiadmissible rules of a logic satisfy reflexivity, monotonicity,
structurality, and finitary cut (but not necessarily cut).

If a rule does not add new antitheorems, then it is antiadmissible. The
converse does not necessarily hold in general.

Proposition
If L has a finite antitheorem and its antiadmissible rules are closed under
cut, then αL exists and consists precisely of the antiadmissible rules.
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The maximal consistency property (MCP)

We say that a logic enjoys the maximal consistency property (MCP) if each
consistent theory extends to a maximal consistent one. That is:

if Γ 0L ∅, then there is a max. ∆ ⊇ Γ such that ∆ 0L ∅

Observation
Each finitary logic with a (finite) antitheorem enjoys the MCP.

On the other hand, the principal Gödel logic with rational constants has a
finite antitheorem but not the MCP.

Proposition
Let L be a logic which enjoys the MCP. Then Γ ` ϕ is antiadmissible in L
if and only if it is valid in 〈Fm, Γ〉 for each max. consistent L-theory Γ.
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Simplicity

If L has the MCP, then restricting to the max. consistent L-theories does
not change the antitheorems of L. This is easy to see:

If Λ can be designated in the matrix 〈Fm, Γ〉, then it can be designated in
each matrix 〈Fm,∆〉 for ∆ ⊇ Γ. The logic defined by restricting to the
max. consistent theories of L thus has the same antitheorems as L.

If F is a maximal non-trivial L-filter on A, we call F and 〈A,F 〉 simple.

A logic L is semisimple if each theory is an intersection of simple theories.

It is τ -semisimple if each L-filter is an intersection of simple L-filters.
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Main theorem

Theorem (Existence and characterization of antistr. completions)
If L has a finite antitheorem and enjoys the MCP (in particular, if L is
finitary and has an antitheorem), then the following are equivalent:
(i) Γ `αL ϕ.
(ii) Γ ` ϕ is antiadmissible in L.
(iii) Γ ` ϕ is valid in all simple matrices over Fm.

If L is moreover protoalgebraic, then these are equivalent to:
(iv) σϕ,∆ `L ∅ implies σΓ,∆ `L ∅ for each invertible substitution σ.
If L is moreover finitary, then these are equivalent to:
(vi) ϕ,∆ `L ∅ implies Γ,∆ `L ∅.
(vii) Γ ` ϕ holds in all simple models of L.
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Connections to semisimplicity

In the well-behaved cases, αL is the “semisimple part” of L.

Theorem
Let L be a finitary protoalgebraic logic with an antitheorem. Then the
theories of αL are precisely the intersections of simple theories of L. If L
moreover has a countable language, then this holds for all filters of αL.

Corollary
If L is a finitary protoalgebraic logic with an antitheorem, then αL is
semisimple. If L also has a countable language, then αL is τ -semisimple.
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Examples

BD = the Belnap–Dunn logic ECQ = BD + p,−p ` q
LP = the Logic of Paradox ET L = BD + p,−p ∨ q ` q.

Example: αBD = LP. αECQ = ET L.

Example: αIL = CL.

Proof: the simple BL-algebras are precisely the simple MV-algebras.

Example: an axiomatic extension of FLew is antistructurally complete if
and only if it validates the axiom p ∨ ¬pn for some n.

Proof: a variety of FLew -algebras is semisimple if and only if
it satisfies x ∨ ¬xn = 1 for some n. (Kowalski)
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Teaser. . .

Actually, protoalgebraicity is an overkill here. A weaker property, which we
call protonegationality, suffices:

ΩΓ ⊆ Ω∆ if Γ is an L-theory and ∆ is a simple L-theory.

Example: the {∧,∨,∼} fragment of intuitionistic logic.

The theory of protonegational logics is (for logics with the MCP) nearly as
smooth, although not as powerful, as the theory of protoalgebraic logics.

In particular, protonegational logics form the appropriate framework for the
study of inconsistency lemmas initiated recently by Raftery.
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Conclusion

Antistructural completeness is the natural dual of structural completeness,
when we focus our attention on antitheorems rather than theorems.

Antistructural completions need not always exist, unlike structural ones.
In nice enough cases, they are described by the antiadmissible rules.

The definition of an antiadmissible rule can be simplified under some rather
mild assumptions (protoalgebraicity and finitarity).

Taking the antistructural completion of a well-behaved logic corresponds to
restricting to its semisimple models.

Thank you for your attention.
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