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Canonical extensions of Boolean algebras

Canonical extensions of Boolean algebras with operators were
introduced in the seminal paper of Jónsson and Tarski (1951). They
were generalized to distributive lattices with operators by Gehrke and
Jónsson (1994), lattices with operators by Gehrke and Harding
(2001), and further to posets (Gehrke, Priestley 2008, Gehrke,
Jansana, Palmigiano 2013).

Stone duality provides motivation for the definition of canonical
extensions. The canonical extension B of a Boolean algebra A is
isomorphic to the powerset ℘(X ) of the Stone space X of A, and the
embedding e : A→ B is realized as the inclusion of the Boolean
algebra Clop(X ) of clopen subsets of X into ℘(X ).
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Definition. A canonical extension of a Boolean algebra A is a pair
Aσ = (B, e), where B is a complete Boolean algebra and e : A→ B is
a Boolean monomorphism satisfying:

1 (Density) Each x ∈ B is a join of meets (and hence a meet of joins) of
elements of e[A].

2 (Compactness) For S ,T ⊆ A, from∧
e[S ] ≤

∨
e[T ]

it follows that ∧
e[S ′] ≤

∨
e[T ′]

for some finite S ′ ⊆ S and T ′ ⊆ T .
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Vector lattices

A similar situation arises for archimedean vector lattices.

1 A group A with a partial order ≤ is an `-group if (A,≤) is a lattice
and a ≤ b implies a + c ≤ b + c for all a, b, c ∈ A.

2 An `-group A is a vector lattice if A is an R-vector space and for each
0 ≤ a ∈ A and 0 ≤ λ ∈ R, we have λa ≥ 0.

3 A is archimedean if for each a, b ∈ A, whenever na ≤ b for each
n ∈ N, then a ≤ 0.

4 A has a strong order unit if there is u ∈ A such that for each a ∈ A
there is n ∈ N with a ≤ nu. When u exists we call A bounded.
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Let bav be the category of bounded archimedean vector lattices and
unital vector lattice homomorphisms.

Objects in bav can be viewed as normed spaces in the usual way,
where the uniform norm on A is given by

||a|| = inf{λ ∈ R : |a| ≤ λu},

where |a| = a ∨ −a. Since A is bounded and archimedean, || · || is
well-defined.

Let A ∈ bav. Then A is uniformly complete if it is complete with
respect to the uniform norm.
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Let A be an archimedean vector lattice with strong order unit.

By the Yosida representation, A is represented as a uniformly dense
vector sublattice of the vector lattice C (Y ) of all continuous
real-valued functions on the Yosida space Y of A.

Moreover, if A is uniformly complete, then A is isomorphic to C (Y ).

Since Y is compact, every continuous real-valued function on Y is
bounded. Therefore, C (Y ) is a vector sublattice of the vector lattice
B(Y ) of all bounded real-valued functions on Y .

Canonical Extensions 7/26



Let A be an archimedean vector lattice with strong order unit.

By the Yosida representation, A is represented as a uniformly dense
vector sublattice of the vector lattice C (Y ) of all continuous
real-valued functions on the Yosida space Y of A.

Moreover, if A is uniformly complete, then A is isomorphic to C (Y ).

Since Y is compact, every continuous real-valued function on Y is
bounded. Therefore, C (Y ) is a vector sublattice of the vector lattice
B(Y ) of all bounded real-valued functions on Y .

Canonical Extensions 7/26



The inclusion C (Y ) ↪→ B(Y ) has many similarities with the inclusion
Clop(X ) ↪→ ℘(X ).

In particular, the inclusion C (Y ) ↪→ B(Y ) satisfies the density axiom.
However, it never satisifes the compactness axiom.

For example, if Y is a singleton, then both C (Y ) and B(Y ) are
isomorphic to R.

If S is the set of positive real numbers and T the set of negative real
numbers, then

∧
S ≤

∨
T as both are 0, but there are not finite

subsets S ′ ⊆ S and T ′ ⊆ T with
∧
S ′ ≤

∨
T ′.
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Our goal is to tweak the definition of compactness appropriately, so
that coupled with density, it captures algebraically the behavior of the
inclusion C (Y ) ↪→ B(Y ).

A vector lattice A is Dedekind complete if every subset of A
bounded above has a least upper bound, and hence every subset of A
bounded below has a greatest lower bound.

Let dbav be the full subcategory of bav consisting of Dedekind
complete objects of bav.
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Canonical extensions of vector lattices

Definition. A canonical extension of A ∈ bav is a pair Aσ = (B, e),
where B ∈ dbav and e : A→ B is a unital vector lattice
monomorphism satisfying:

1 (Density) Each x ∈ B is a join of meets of elements of e[A].

2 (Compactness) For S ,T ⊆ A and 0 < ε ∈ R, from∧
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The compactness axiom

If A = B = R, then we saw that the original compactness axiom does
not hold.

Recall the example. If S = (0,∞) and T = (−∞, 0), then∧
S ≤

∨
T but there are not finite subsets S ′ ⊆ S and T ′ ⊆ T with∧

S ′ ≤
∨
T ′.

If S ,T ⊆ A with
∧

S + ε ≤
∨
T , then as R is totally ordered, there is

s ∈ S and t ∈ T with s ≤ t.

Thus, the inclusion A ↪→ B satisfies the new compactness axiom.

Canonical Extensions 11/26



The compactness axiom

If A = B = R, then we saw that the original compactness axiom does
not hold.

Recall the example. If S = (0,∞) and T = (−∞, 0), then∧
S ≤

∨
T but there are not finite subsets S ′ ⊆ S and T ′ ⊆ T with∧

S ′ ≤
∨
T ′.

If S ,T ⊆ A with
∧

S + ε ≤
∨
T , then as R is totally ordered, there is

s ∈ S and t ∈ T with s ≤ t.

Thus, the inclusion A ↪→ B satisfies the new compactness axiom.

Canonical Extensions 11/26



Canonical extension of C ∗(X )

Let X be a topological space. We denote by C ∗(X ) the vector lattice
of all bounded continuous functions on X .

Theorem. Let X be completely regular.

1 The inclusion C∗(X ) ↪→ B(X ) satisfies the density axiom.

2 The inclusion C∗(X ) ↪→ B(X ) satisfies the compactness axiom iff X is
compact.

Corollary. The inclusion C ∗(X ) ↪→ B(X ) is a canonical extension of
C ∗(X ) iff X is compact.
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The Yosida space

Let A ∈ bav. An `-ideal of A is a subgroup I of A satisfying

a ∈ I and |b| ≤ |a| imply b ∈ I .

If M is a maximal `-ideal of A, then A/M ∼= R.

For A ∈ bav, the Yosida space of A is the set Y (A) of maximal
`-ideals of A equipped with the topology whose closed sets are the
sets of the form

Z (I ) := {M ∈ Y (A) : I ⊆ M}

where I is an `-ideal of A.
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Existence

It is well known that the Yosida space Y of A is compact Hausdorff,
e : A→ C (Y ) is an embedding, and e[A] separates points, where
e(a) is the continuous function defined by

e(a)(M) = λ

if a + M = λ+ M.

Theorem. Suppose A ∈ bav. Then e : A→ B(Y ) is a canonical
extension of A.
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Some observations

(1) It is well known that if A is a Boolean algebra and Aσ = (B, e) is a
canonical extension of A, then e : A→ B is an isomorphism iff the
Stone space of A is finite, which is equivalent to A being finite.

While in bav we still have that e : A→ Aσ is an isomorphism iff the
Yosida space Y is finite, it is no longer true that this is equivalent to
A being finite. It is well known that Y is finite iff A ∼= Rn for some n.

Therefore, in bav, the vector lattices Rn play the role of finite
Boolean algebras with respect to canonical extensions.
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(2) It is easy to see that canonical extensions of Boolean algebras do not
preserve any existing strictly infinite joins or meets.

For, suppose A is a Boolean algebra and a =
∨
T in A. If

e(a) =
∨
e[T ], then the compactness axiom yields a finite T ′ ⊆ T

with e(a) =
∨

e[T ′] = e(
∨
T ′). Thus, a is a finite join in A.

On the other hand, since the compactness axiom for bounded
archimedean vector lattices is different, the above fact is not true in
bav.

Let A = C ([0, 1]). Then B([0, 1]) is a canonical extension of
C ([0, 1]), and 0 is a strictly infinite join of (−∞, 0) which is preserved
by the embedding C ([0, 1]) ↪→ B([0, 1]).
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(3) Let A be a Boolean algebra, X the Stone space of A, and Xdisc the
discrete topology on X . Then it is well known that if Aσ = (B, e) is a
canonical extension of A, then the Stone space of B is homeomorphic
to β(Xdisc).

Similarly, let A ∈ bav and Y be the Yosida space of A. If Aσ = (B, e)
is a canonical extension of A, then the Yosida space of B is β(Ydisc).

Thus, from the topological perspective, our definition of canonical
extensions for bav provides a natural generalization of the definition
of canonical extensions for Boolean algebras.
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Uniqueness

Let (B, e) and (B ′, e ′) be two canonical extensions of A. Define
α : B → B ′ as follows. First, if y ∈ B is closed (that is, a meet from
e[A]), we set

α(y) =
∧
{e ′(a) : a ∈ A and y ≤ e(a)}.

Define α in general for each x ∈ B by

α(x) =
∨
{α(y) : y ≤ x , y closed}.

Theorem. The map α is an isomorphism in bav. Thus, any two
canonical extensions of A ∈ bav are isomorphic.
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Functorality

The canonical extension of A is, up to isomorphism, (B(Y ), e), where
Y is the Yosida space of A and e : A→ B(Y ) is the composition of
the Yosida embedding A→ C (Y ) and the inclusion C (Y )→ B(Y ).

Thus, on objects, Aσ is obtained by applying to A the composition

bav
Y //

(−)σ

33KHaus
F // Set

B // dbav,

where KHaus is the category of compact Hausdorff spaces, Set is the
category of sets, and F : KHaus→ Set is the forgetful functor.

Canonical Extensions 19/26



Functorality

The canonical extension of A is, up to isomorphism, (B(Y ), e), where
Y is the Yosida space of A and e : A→ B(Y ) is the composition of
the Yosida embedding A→ C (Y ) and the inclusion C (Y )→ B(Y ).

Thus, on objects, Aσ is obtained by applying to A the composition

bav
Y //

(−)σ

33KHaus
F // Set

B // dbav,

where KHaus is the category of compact Hausdorff spaces, Set is the
category of sets, and F : KHaus→ Set is the forgetful functor.

Canonical Extensions 19/26



(−)σ not a reflector

The canonical extension functor (−)σ : bav→ dbav is not a reflector.

For, as the map A→ B(Y ) is monic for each A ∈ bav, if (−)σ were a
reflector, then it would be a monoreflector. Therefore, (−)σ would be
a bireflector. Thus, the map A→ B(Y ) would be epic.

But then the image of A would be uniformly dense in B(Y ).
However, by Yosida duality, the image of A is uniformly dense in
C (Y ). Hence, if the image of A were uniformly dense in B(Y ), then
B(Y ) = C (Y ), which is false for Y infinite.

A similar argument shows that the canonical extension functor is not
a reflector in the Boolean algebra setting.
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Intrinsic characterization of canonical extensions

Let B ∈ dbav. Then B is uniformly complete, so by Yosida duality, B
is isomorphic to C (Y (B)), and hence B is a commutative ring with 1.

Therefore, the idempotents Id(B) of B form a Boolean algebra. Since
B is Dedekind complete, Id(B) is complete.

Since the canonical extension of a Boolean algebra A is isomorphic to
the powerset of the Stone space of A, the underlying Boolean algebra
of the canonical extension of A is always complete and atomic.
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The same is true for the idempotents of the canonical extension of
A ∈ bav. Let Y be its Yosida space.

If B is the underlying vector lattice of the canonical extension of A,
then B is isomorphic to the ring B(Y ).

Thus, the idempotents of B correspond to characteristic functions on
Y , so Id(B) is isomorphic to the powerset of Y , which is a complete
and atomic Boolean algebra.

Canonical Extensions 22/26



The socle soc(A) of a commutative ring A is the sum of the minimal
ideals of R; the socle is essential if I ∩ soc(A) 6= 0 for all nonzero
ideals I of A.

Theorem. The following are equivalent for B ∈ dbav.

1 B is realized as the canonical extension of some A ∈ bav.

2 Id(B) is a complete and atomic Boolean algebra.

3 B has essential socle.
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We further justify our use of the term “canonical extension” to
describe the extension e : A→ Aσ by showing how canonical
extension for bav is a lifting of canonical extension in the category
BA of Boolean algebras with Boolean homomorphisms.

Let Stone be the category of Stone spaces with continuous maps,
and let X : BA→ Stone be the Stone duality functor.

BA
(−)σ //

X
��

BA

X
��

Stone

C
��

Stone

C
��

bav
(−)σ

// bav
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BA
(−)σ //

X
��

BA

X
��

Stone

C
��

Stone

C
��

bav
(−)σ

// bav

For BA we have (−)σ = ℘ ◦ X , where ℘ is the powerset functor; and
for bav we have (−)σ = B ◦ Y .

The diagram commutes up to isomorphism of functors.

Thus, the canonical extension functor in bav lifts that of BA.
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Thanks for listening, and thanks to the organizers for their work
setting up this conference.
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