The Free Algebra in a Two-sorted Variety of Probability Algebras

TACL 2017

Tomáš Kroupa¹ Vincenzo Marra²

¹Czech Academy of Sciences

²Università degli Studi di Milano

Probability

Standard probability theory

Finitely-additive probability is a function

$$P: A \rightarrow [0,1]$$

where A is a Boolean algebra, P satisfies $P(\top) = 1$ and

If
$$a \wedge b = \bot$$
, then $P(a \vee b) = P(a) + P(b)$ for all $a, b \in A$.

- All probability functions P are σ -additive in the Stone representation.
- The **domain** and the **co-domain** of *P* are sets of different sorts:

events / probability degrees

1

Probability and logic

Hájek-style probability logic for reasoning about uncertainty:

- 2-level syntax for formulas φ representing events and formulas $P\varphi$ speaking about probability of φ
- Łukasiewicz logic makes it possible to axiomatize probability and introduce calculus, which gives meaning to expressions such as

$$P(\varphi \lor \psi) \to (P\varphi \oplus P\psi)$$
 or $\varphi \to \psi \vdash P\varphi \to P\psi$

with unary modality P evaluated in $[0,1]_{MV}$

2

Towards algebraic semantics for Hájek's probability logic

Algebraization of probability

$$P \colon A \to [0,1]$$

Issues

- It is not clear which structure on the co-domain [0, 1] is relevant.
- Which algebras should be in the domain / co-domain?
- The defining property of probability *P* is not equational.
- Composition of probabilities is not defined.
- Can we make universal constructions work in probability theory?

Outline

We introduce a 2-sorted algebraic framework for probability:

• We will define a probability algebra as a 2-sorted algebra

where M, N are MV-algebras and

$$p: M \to N$$

is a probability map.

- The class of all algebras (M, N, p) forms a 2-sorted variety.
- We characterize the free algebra.

4

MV-algebras

An MV-algebra is essentially an order unit interval [0, u] in a unital Abelian ℓ -group (G, u), endowed with the bounded operations of G.

MV-algebras form an equationally-defined class.

Standard MV-algebra $[0,1]_{MV}$

$$a \oplus b \coloneqq \min(a+b,1), \quad \neg a \coloneqq 1-a, \quad a \odot b \coloneqq \max(a+b-1,0)$$

Free *n*-generated MV-algebra

The algebra of continuous functions $[0,1]^n \to [0,1]$ that are

- piecewise linear and
- ullet all linear pieces have $\mathbb Z$ coefficients.

5

Probability maps

Definition

Let M and N be MV-algebras. A probability map is a function $p: M \to N$ such that for every $a, b \in M$ the following hold.

- 1. $p(a \oplus b) = p(a) \oplus p(b \land \neg a)$
- 2. $p(\neg a) = \neg p(a)$
- 3. p(1) = 1

- MV-homomorphisms $M \rightarrow N$
- ullet Finitely-additive probability measures B
 ightarrow [0,1]
- Mundici's states $M \rightarrow [0,1]$
- ullet Flaminio-Montagna's internal states M o M

Example 1: Non-Archimedean co-domain

The Boolean algebra for a uniformly random selection of $n \in \mathbb{N}$ is

$$\mathcal{B} := \{ A \subseteq \mathbb{N} \mid \text{ either } A \text{ or } \neg A \text{ is finite} \}.$$

Finitely-additive probability measure $\mathcal{B} \rightarrow [0,1]$

$$P(A) := \begin{cases} 0 & A \text{ finite,} \\ 1 & A \text{ cofinite.} \end{cases}$$

Example 1: Non-Archimedean co-domain

The Boolean algebra for a uniformly random selection of $n \in \mathbb{N}$ is

$$\mathcal{B} := \{ A \subseteq \mathbb{N} \mid \text{either } A \text{ or } \neg A \text{ is finite} \}.$$

Finitely-additive probability measure $\mathcal{B} \to [0,1]$

$$P(A) := \begin{cases} 0 & A \text{ finite,} \\ 1 & A \text{ cofinite.} \end{cases}$$

Replace the co-domain [0,1] with Chang's MV-algebra

$$C := \{0, \varepsilon, 2\varepsilon, \dots, 1 - 2\varepsilon, 1 - \varepsilon, 1\}.$$

Probability map $\mathcal{B} o \mathcal{C}$

$$p(A) := \begin{cases} |A|\varepsilon & A \text{ finite,} \\ 1 - |\neg A|\varepsilon & A \text{ cofinite,} \end{cases}$$

Example 2: PL-embedding

Define the state space of *M*:

St
$$M := \{s \colon M \to [0,1] \mid s \text{ is a state}\}$$

• For any $a \in M$, let \bar{a} : St $M \to [0,1]$ be given by

$$\bar{a}(s) := s(a), \quad s \in \operatorname{St} M.$$

• Let $\nabla(M)$ be the MV-algebra generated by $\{\bar{a} \mid a \in M\}$.

Definition

PL-embedding of M is a probability map $\pi: M \to \nabla(M)$ given by

$$\pi(a) := \bar{a}, \quad a \in M.$$

PL-embedding of a finite Boolean algebra

Universal probability maps

Theorem

For any MV-algebra M there exists an MV-algebra U(M) and a probability map

$$\alpha \colon M \to U(M)$$

such that α is universal (for M): for any probability map $p: M \to N$ there is exactly one MV-homomorphism $h: U(M) \to N$ satisfying

Universal probability maps

Theorem

For any MV-algebra M there exists an MV-algebra U(M) and a probability map

$$\alpha \colon M \to U(M)$$

such that α is universal (for M): for any probability map $p: M \to N$ there is exactly one MV-homomorphism $h: U(M) \to N$ satisfying

M is semisimple *iff* α is the PL embedding π of *M*

Probability algebra

We introduce this two-sorted similarity type:

- (T1) The single-sorted operations of MV-algebras \oplus , \neg , 0 in the 1st sort.
- (T2) The single-sorted operations of MV-algebras $\oplus, \neg, 0$ in the 2nd sort.
- (T3) The two-sorted operation p between the two sorts.

Probability algebra

We introduce this two-sorted similarity type:

- (T1) The single-sorted operations of MV-algebras \oplus , \neg , 0 in the 1st sort.
- (T2) The single-sorted operations of MV-algebras \oplus , \neg , 0 in the 2nd sort.
- (T3) The two-sorted operation p between the two sorts.

Definition

A probability algebra is an algebra (M, N, p) of the two-sorted similarity type (T1)–(T3) such that

- $(M, \oplus, \neg, 0)$ is an MV-algebra.
- $(N, \oplus, \neg, 0)$ is an MV-algebra.
- The operation $p: M \to N$ is a probability map.

Homomorphisms

A homomorphism between (M_1, N_1, p_1) and (M_2, N_2, p_2) is a function

$$h := (h_1, h_2) \colon (M_1, N_1) \to (M_2, N_2),$$

where $h_1 \colon M_1 \to M_2$ and $h_2 \colon N_1 \to N_2$ are MV-homomorphisms such that the following diagram commutes:

Free probability algebra

Definition

- By 2-sorted universal algebra $F(S_1, S_2)$ exists
- By category theory: since $(S_1, S_2) = S_1 \coprod S_2$ we get

$$F(S_1, S_2) = F(S_1, \emptyset) \coprod F(\emptyset, S_2)$$

Free algebra generated by (\emptyset, S_2)

Let (\emptyset, S_2) be a two-sorted set.

The probability algebra freely generated by (\emptyset, S_2) is

where p_0 is the unique probability map

$$\mathbf{2} \rightarrow F(S_2).$$

Free algebra generated by (S_1, \emptyset)

Using the construction of universal probability map we get

Theorem

Let (S_1, \emptyset) be a two-sorted set of generators. Then the probability algebra freely generated by (S_1, \emptyset) is

$$(F(S_1), \nabla(F(S_1)), \pi),$$

where

$$\pi \colon F(S_1) \to \nabla(F(S_1))$$

is the PL-embedding of the free MV-algebra $F(S_1)$.

Free algebra generated by (S_1, S_2)

Theorem

Let (S_1, S_2) be a two-sorted set. The probability algebra freely generated by (S_1, S_2) is

$$F(S_1, S_2) = (F(S_1), \nabla(F(S_1)) \coprod_{MV} F(S_2), \tau),$$

for $\tau := \beta_1 \circ \pi$, where

$$F(S_1) \stackrel{\pi}{\longrightarrow} \nabla(F(S_1)) \stackrel{\beta_1}{\longrightarrow} \nabla(F(S_1)) \coprod_{MV} F(S_2)$$

- π is the PL-embedding and
- β_1 is the coproduct injection.

Final remarks

MV-algebras : ℓ -groups

 \simeq

probability maps: unital positive group homomorphisms

• The total ignorance of an agent is modeled by the universal map

$$M \stackrel{\alpha}{\longrightarrow} U(M)$$

- Is $F(S_1, S_2)$ semisimple?
- Independence and conditioning for probability maps/algebras