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Motivating example: hospital protocol

• A disease gives rise to two symptoms S1 and S2.

• S1 is much worse than S2.

• Depending on which symptoms the patients show, they

have to be put in quarantine.

Protocol

• Patient x shows S1 ⇒ x in quarantine.

• Everyone shows S2 ⇒ Everyone in quarantine.

• Otherwise, no quarantine.

2



Motivating example: hospital protocol

• A disease gives rise to two symptoms S1 and S2.

• S1 is much worse than S2.

• Depending on which symptoms the patients show, they

have to be put in quarantine.

Protocol

• Patient x shows S1 ⇒ x in quarantine.

• Everyone shows S2 ⇒ Everyone in quarantine.

• Otherwise, no quarantine.

2



Q1 ∶ Wether x shows S1

Q2 ∶ Wether everyone shows S2

determine

Q3 ∶ Wether x is in quarantine

Observation: Q1, Q2 and Q3 are questions.

Question Q3 depends on questions Q1 and Q2.
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How can we represent

dependency between questions
in a logical framework?

Question Q3 depends on questions Q1 and Q2.
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Logic and Questions

In FOL (classical first-order logic) a formula is determined by its

associated truth-value in any context ⇒ a FOL formula

represents a statement.

Questions do not have an associated truth-value ⇒ questions

are not (directly) representable in FOL .

The aim of the logic InqBQ (inquisitive first-order logic) is to

• extend FOL to represent questions as formulas;

• extend FOL entailment to capture dependency between

questions.
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InqBQ : Adding Questions to FOL

Disjunction Property

Existence Property
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InqBQ : Adding Questions to FOL



Syntax of InqBQ : introducing questions

φ ∶∶= � ∣ [t1 = t2] ∣R(t1, . . . , tn) ∣φ∧φ ∣φ→ φ ∣∀x.φ ∣ φ

⩾
φ ∣ ∃x.φ

shorthands¬φ ∶= φ→ � φ ∨ ψ ∶= ¬(¬φ ∧ ¬ψ) ∃x.φ ∶= ¬∀x.¬φ

A formula is called FOL or classical if it does not contain the

symbols

⩾

and ∃.

FOL formulas are denoted with α, β, . . .
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Intuition

FOL formulas represent statements.(c = d) ∨ (c ≠ d) ≡ “c is equal to d or not”∃x.[x = c] ≡ “There is an element equal to c”

The operator

⩾

introduces alternative questions.(c = d) ⩾ (c ≠ d) ≡ “Is c equal to d or not?”

The operator ∃ introduces existential questions.∃x.[x = c] ≡ “Which is an element equal to c?”
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Some notations

Fix a signature Σ = {fi,Rj}i∈I,j∈J .

Definition (FOL structure)

M = ⟨D , fi , Rj , ∼ ⟩i∈I,j∈J
where

• fi ∶Dar(fi) →D is the interpretation of fi;

• Rj ⊆Dar(Rj) is the interpretation of Rj ;

• [∼] ⊆D2 is an equivalence relation and a congruence with

respect to {fi , Rj}i∈I,j∈J .
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M = ⟨D , fi , Rj , ∼ ⟩i∈I,j∈J

Definition (Skeleton)

Given M a FOL structure, define

Sk(M) = ⟨D, fi⟩i∈I
i.e., leaving out relations and equality.
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Models of InqBQ : representing information

Definition (Information structure)

M = ⟨Mw∣w ∈WM⟩
where the Mw are classical structures sharing the same skeleton.

We will call WM the set of worlds of the structure.

w0 w1 ⋯

⋯

Example of a simple model in the signature {f (1)}.

The arrow represents f . The colours represent equality.
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w0 w1 ⋯

⋯

World
Info state

Truth-condition encoded by World

Information encoded by Info State
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Semantics of InqBQ : supporting relation

M ↝ info structure s ↝ info state g ↝ assignment

M, s ⊧g φ

M, s ⊧g⊥ ⇐⇒ s = ∅M, s ⊧g [t1 = t2] ⇐⇒ ∀w ∈ s. [g(t1) ∼Mw g(t2)]M, s ⊧g R(t1, . . . , tn) ⇐⇒ ∀w ∈ s. [RMw (g(t1), . . . , g(tn))]M, s ⊧g φ ∧ ψ ⇐⇒ M, s ⊧g φ and M, s ⊧g ψM, s ⊧g φ→ ψ ⇐⇒ ∀t ⊆ s. [M, t ⊧g φ⇒M, t ⊧g ψ]M, s ⊧g ∀x.φ ⇐⇒ ∀d ∈DM.M, s ⊧g[x↦d] φ
M, s ⊧g φ ⩾ ψ ⇐⇒ M, s ⊧g φ or M, s ⊧g ψM, s ⊧g ∃x.φ ⇐⇒ ∃d ∈DM.M, s ⊧g[x↦d] φ
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M, s ⊧g [t1 = t2] ⇐⇒ ∀w ∈ s. [g(t1) ∼Mw g(t2)]

c = d ≅ “c is equal to d”

w0 w1

c

d

c

d ∅
{w0} {w1}
{w0,w1}
⊇ ⊆
⊆ ⊇

Fact 1: The info states that support a FOL formula form a

principal ideal (truth-conditionality).

An alternative way to state this: s ⊧ α iff ∀w ∈ s.{w} ⊧ α.
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M, s ⊧g φ ⩾ ψ ⇐⇒ M, s ⊧g φ or M, s ⊧g ψ

[c = d] ⩾ [c ≠ d] ≡ “Is c equal to d?”

w0 w1

c

d

c

d ∅
{w0} {w1}
{w0,w1}
⊇ ⊆
⊆ ⊇

Fact 2: The info states that support a formula form an ideal,

but in general not principal (Persistency).

Uniform substitution does not hold!

Fact 3: φ is truth-conditional iff is equivalent to a FOL formula.
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M, s ⊧g ∃x.φ ⇐⇒ ∃d ∈DM.M, s ⊧g[x↦d]
∃x.[f(x) = x] ≡ “Which is a fixed point of f?”

w0 w1

c

d

c

d ∅
{w0} {w1}
{w0,w1}
⊇ ⊆
⊆ ⊇
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Some insight. . . Information structures as Kripke models

w0 w1 w2

{w0,w1} {w0,w2} {w1,w2}

{w0,w1,w2}

• Frame = ⟨P(W ) ∖ {∅},⊇⟩
• Constant domain DM.

• JAKg = {w∣Mw ⊧FOLg A}↓ for A atomic

Fact: InqBQ is the logic of a class of Kripke models.
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The Main Result: DP and EP in InqBQ

Theorem (Disjunction and Existence Property)

Consider Γ a FOL theory. Then

• If Γ ⊧ φ ⩾ ψ then Γ ⊧ φ or Γ ⊧ ψ.

• If Γ ⊧ ∃x.φ(x) then Γ ⊧ φ(t) for some term t.

Corollary

If Γ ⊧ ∀x∃!y.φ(x, y) (i.e., φ defines a function), then there

exists a term t such that Γ ⊧ ∀x.φ(x, t).

But how do we prove this?

By playing with the models!
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Model-theoretic constructions

BM Mσ

BσM Mω M⊎N

SM

M ⋆ S

M⊕N
MΓ

S(MΓ)
19



Disjunction Property



Disjunction Property - Proof idea

Γ /⊧ φ and Γ /⊧ ψ Ô⇒ Γ /⊧ φ ⩾ ψ

M
⊧ Γ/⊧ φ⊧ ψ

N
⊧ Γ⊧ φ/⊧ ψ

M⊕N
⊧ Γ/⊧ φ
/⊧ ψ

20
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Combining models - the direct sum ⊕

BM Mσ

BσM Mω M⊎N

SM

M ⋆ S

M⊕N
MΓ

S(MΓ)
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We can define a model M⊕N such that

WM⊕N =WM ⊔WN and DM⊕N =DM ×DN

w0 w1

M

a

b

a

b

ac

bc

ad

bd

ac

bc

ad

bd

v0 v1

N

c d c d

ac

bc

ad

bd

ac

bc

ad

bd

M⊕N

fM′(ac) = ⟨fM(a), fN (c)⟩⟨x, y⟩ ∼M′

w0
⟨x′, y′⟩ ⇐⇒ x ∼Mw0

x′
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Theorem (Main property of ⊕)

Let s ⊆WM, g ∶ Var→DM ×DN an assignment, φ a formula.

Then: M⊕N , s ⊧g φ ⇐⇒ M, s ⊧π1g φ

Corollary

• Let Γ be a FOL theory. If M ⊧π1g Γ and N ⊧π2g Γ thenM⊕N ⊧g Γ.

• Let φ be a formula. If M /⊧π1g φ then M⊕N /⊧g φ.

And this is exactly what we needed!

Corollary

A FOL theory Γ has the disjunction property.
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Existence Property



Existence Property - Proof Strategy

Γ /⊧ φ(t) for all t Ô⇒ Γ /⊧ ∃x.φ(x)
Strategy

M
w

d

e

I am not a witness of φ!

I am!

M′

w′

d

e

M⊎M′
w w′

d

e

d

e

I am not a witness of φ!

Neither am I!

We need a way to deal with the interpretation of the functions.
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Relaxing the structure - the blow up model BM

BM Mσ

BσM Mω M⊎N

SM

M ⋆ S

M⊕N
MΓ

S(MΓ)
25



We want to define a model BM elementary equivalent to M
such that

WBM =WM DBM = {closed terms of Σ(DM)}

d e
c

Σ = {c; f (1)}

d e c

f(d) f(e) f(c)
f(f(d)) f(f(e)) f(f(c))

⋮ ⋮ ⋮

f BM(t) = f(t) t1 ∼BM t2 ⇐⇒ tM1 ∼M tM2

26
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Theorem (Blow-up main property)

Let s ⊆WM be an info state, t1, . . . , tn closed terms of Σ (DM)
and φ(x1, . . . , xn) a formula. Then

BM, s ⊧ φ (t1, . . . , tn) ⇐⇒ M, s ⊧ φ (tM1 , . . . , tMn )

27



Now that we relaxed the structure, we can permute the

elements of M preserving the skeleton.

M
d e

c

σ = (d, e)
Mσ

e d
c

BM

B(Mσ)

d e c

f(d) f(e) f(c)
f(f(d)) f(f(e)) f(f(c))

⋮ ⋮ ⋮

The role of the elements d and e has been reversed, while c

assumes the same role.
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Swapping and gluing - full permutation model SM

BM Mσ

BσM Mω M⊎N

SM

M ⋆ S

M⊕N
MΓ

S(MΓ)
29



M ↝ BM ↝ BσM ↝ SM
The full permutation model - SM
The idea to build up the model SM is to consider all the

models BσM for σ ∈S (DM) and combine them into a unique

structure. This is possible because the models BσM share the

same skeleton.

Theorem (Properties of SM)

• Let Γ be a FOL theory. If M ⊧ Γ then SM ⊧ Γ.

• Let g be a fixed assignment. If M /⊧g φ(t) for every term t,

then SM /⊧ ∃x.φ(x).
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The characteristic model of a FOL theory - MΓ

BM Mσ

BσM Mω M⊎N

SM

M ⋆ S

M⊕N
MΓ

S(MΓ)
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Theorem (The characteristic model of Γ)

Given Γ a FOL theory, there exists a model MΓ and an

evaluation gΓ such that

MΓ ⊧gΓ
φ ⇐⇒ Γ ⊧ φ

Idea to build MΓ

• For every non-entailment Γ /⊧ ψ choose ⟨Mψ, gψ⟩ such that

Mψ ⊧ Γ Mψ /⊧gψ ψ
• Combine the models and assignments choosen.
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Existence property - proof

Theorem

Let Γ be a closed FOL theory. Then

Γ /⊧ φ(t) for every t term Ô⇒ Γ /⊧ ∃x.φ(x)
Proof

Consider the characteristic model MΓ and the assignment gΓ.

Then

MΓ ⊧ Γ Ô⇒ S(MΓ) ⊧ Γ

MΓ /⊧gΓ
φ(t) for every t Ô⇒ S(MΓ) /⊧ ∃x.φ(x)

Thus Γ /⊧ ∃x.φ(x) as wanted.
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Thank you for your attention!
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Definition (Support semantics)

Let M = ⟨Mw∣w ∈WM⟩ be a model, s ⊆WM an info state and

g ∶ Var→DM an assignment. We define

M, s ⊧g⊥ ⇐⇒ s = ∅M, s ⊧g [t1 = t2] ⇐⇒ ∀w ∈ s. [g(t1) ∼Mw g(t2)]M, s ⊧g R(t1, . . . , tn) ⇐⇒ ∀w ∈ s. [RMw (g(t1), . . . , g(tn))]M, s ⊧g φ ∧ ψ ⇐⇒ M, s ⊧g φ and M, s ⊧g ψM, s ⊧g φ→ ψ ⇐⇒ ∀t ⊆ s. [M, t ⊧g φ⇒M, t ⊧g ψ]M, s ⊧g ∀x.φ ⇐⇒ ∀d ∈DM.M, s ⊧g[x↦d] φ
M, s ⊧g φ ⩾ ψ ⇐⇒ M, s ⊧g φ or M, s ⊧g ψM, s ⊧g ∃x.φ ⇐⇒ ∃d ∈DM.M, s ⊧g[x↦d] φ
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Definition (Direct sum - ⊕)

• WM⊕N =WM ⊔WN
• DM⊕N =DM ×DN
• fM⊕N = ⟨fM; fN ⟩
• If w ∈WM then ⟨d1, e1⟩ ∼M⊕N

w ⟨d2, e2⟩ ⇐⇒ d1 ∼M d2

If w ∈WN then ⟨d1, e1⟩ ∼M⊕N
w ⟨d2, e2⟩ ⇐⇒ e1 ∼N e2

• If w ∈WM then

RM⊕N
w (⟨d1, e1⟩ , . . . , ⟨dn, en⟩) = RMw (d1, . . . , dn)

If w ∈WN then

RM⊕N
w (⟨d1, e1⟩ , . . . , ⟨dn, en⟩) = RNw (e1, . . . , en)



Definition (Blowup Model)

Given a model M we define its blow-up as the model

BM = ⟨WM, DBM, IBM, ∼BM⟩
where

• DBM is the set of terms in the signature Σ ⊔ {d∣d ∈DM}
• Given t1, t2, ⋅ ⋅ ⋅ ∈DBM we define

t1 ∼BMw t2 ⇐⇒ t1 ∼Mw t2

RBMw ( t1, . . . , tn ) ⇐⇒ RMw ( t1, . . . , tn )
• fBM is defined as the formal term combinator

fBM( t1, . . . , tn ) = f(t1, . . . , tn)



Definition (The permutation model BσM)

Given M a model and σ ∈S(DM) a permutation, we define

BσM = ⟨WM, DBM, IBσM, ∼BσM⟩
where

• fBσM = fBM is the formal combinator of terms.

• Given t1, t2, ⋅ ⋅ ⋅ ∈DBM it holds

RBσMw (t1, . . . , tn) ⇐⇒ RBMw (σ−1t1, . . . , σ
−1tn)

t1 ∼BσMw t2 ⇐⇒ σ−1t1 ∼BMw σ−1t2



Hospital protocol: formalization

The protocol:

τ ≡ Q(x)↔ S1(x) ∨ ∀y.S2(y)
The dependence:

τ, ?S1(x) ⩾

?∀y.S2(y) ⊧ ?Q(x)
w0 w1 w2

S1, S2,Q

S1,Q

S2

S2 S1, S2,Q

S2,Q

S2,Q
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