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Motivating example: hospital protocol

e A disease gives rise to two symptoms S; and So.
e 51 is much worse than Ss.

e Depending on which symptoms the patients show, they
have to be put in quarantine.



Motivating example: hospital protocol

e A disease gives rise to two symptoms S; and So.
e 51 is much worse than Ss.

e Depending on which symptoms the patients show, they
have to be put in quarantine.

Protocol

e Patient x shows S; = z in quarantine.
e Everyone shows So = Everyone in quarantine.

e Otherwise, no quarantine.



Qr:

Qs3:

Wether © shows S1
Wether everyone shows So
determine

Wether x is in quarantine



Q1: Wether x shows S
Q2 : Wether everyone shows So
determine

Q3 : Wether x is in quarantine

Observation: @1, Q2 and Q3 are questions.

Question (3 depends on questions 1 and Q2.



How can we represent

dependency between questions
in a logical framework?

Question ()3 depends on questions ()1 and Qs.



Logic and Questions
In FOL (classical first-order logic) a formula is determined by its
associated truth-value in any context = a FOL formula

represents a statement.

Questions do not have an associated truth-value = questions

are not (directly) representable in FOL.
The aim of the logic IngBQ (inquisitive first-order logic) is to

e extend FOL to represent questions as formulas;

e extend FOL entailment to capture dependency between

questions.



IngBQ: Adding Questions to FOL

Disjunction Property

Existence Property



IngBQ: Adding Questions to FOL



Syntax of IngBQ: introducing questions

6= L|[t1= ta] |R(t1, ., 1) | 970| 6 > 6| Vo | dvo| Tag

shorthands

- =¢—>1 VY = =(=p A1) 3z.¢p == =Vx.—=¢



Syntax of IngBQ: introducing questions

du= L[ty =t2]|R(t1, ..., tn) |9Ad| = d| VT | SV | Tz.0b

shorthands

- =¢—>1 VY = =(=p A1) 3z.¢p == =Vx.—=¢

A formula is called FOL or classical if it does not contain the

symbols v and 3.

FOL formulas are denoted with «, £, ...



Intuition

FOL formulas represent statements.
(c=d)v(c+td) = “cis equal to d or not”
Jxfx=c] =  “There is an element equal to ¢”

The operator W introduces alternative questions.
(c=d)v(c+d) = “Isc equal to d or not?”

The operator 3 introduces ezistential questions.

Jxfrz=c] =  “Which is an element equal to c?”



Some notations

Fix a signature ¥ = { fi, R; }ier jeJ-
Definition (FOL structure)

Mz(D?fi’Rj7N)ieI7jeJ

where

o f;: D*()) 5 D is the interpretation of f;;
e R;c D* (1) ig the interpretation of R;j;

e [~] € D? is an equivalence relation and a congruence with

respect to {f;, R }ier jes-



M=<D,fi7Rj7N)ieI,jeJ

Definition (Skeleton)
Given M a FOL structure, define

Sk(M) = <D7 fi)id

i.e., leaving out relations and equality.
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Models of IngBQ: representing information

Definition (Information structure)
M = (My|w e WM>
where the M, are classical structures sharing the same skeleton.

We will call WM the set of worlds of the structure.
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Models of IngBQ: representing information

Definition (Information structure)
M = (My|w e WM>
where the M, are classical structures sharing the same skeleton.

We will call WM the set of worlds of the structure.

wo w1
| |
| |

Example of a simple model in the signature {f (1)}.
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Models of IngBQ: representing information

Definition (Information structure)
M = (My|w e WM>
where the M, are classical structures sharing the same skeleton.

We will call WM the set of worlds of the structure.

wo w1

g

Example of a simple model in the signature {f (1)}.

The arrow represents f. "



Models of IngBQ: representing information

Definition (Information structure)
M = (My|w e WM>
where the M, are classical structures sharing the same skeleton.

We will call WM the set of worlds of the structure.

wo w1

i

Example of a simple model in the signature {f (1)}.

The arrow represents f. The colours represent equality. u



Wo

wq
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Truth-condition

encoded by

World
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\wo

i

Truth-condition encoded by World
Information encoded by Info State

wl cee
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Semantics of IngBQ: supporting relation

M ~ info structure

M, skl
M,S l=g [tl = t2:|

M,s Fg R(tl,...

M,skEg oA
M,skEg =1
M,sEqVz.0

M, sEg VY
M, sy Iz.0

s tn)

s ~ info state g ~ assignment

M,skEq ¢

trered

11

s=0

Vw e s. [g(t1) ~u" g(t2)]

Yw € s. [Rﬁ(g(tl), . ,g(tn))]
M,skEg ¢ and M, sk,
Vics. Mty ¢ = M, t 4 9]
Vde DM M, s ypma) ¢

M,skEgpor M,skEg
dd € DM-M73 ':g[x»»d] ¢

13



M,skq [t =t2] < Ywes. [g(tl) ~M g(tg)]

c=d = ‘“cisequaltod”

PN
A W
Q o N <

d %]
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M,skq [t =t2] < Ywes. [g(tl) ~M g(tg)]

c=d = ‘“cisequaltod”

w o o)

PN
A W
Q o N <

d %]
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M,skq [t =t2] < Ywes. [g(tl) ~M g(tg)]

~  ‘“cis equal to d”

c=d
- )

;

PN
A W
Q o N <

d %]
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M,sEg [t =t2] <= Ywes. [g(tl) ~wM g(tQ)]

c=d = ‘“cisequaltod”

wo {wo, w1}

A

(] c (ﬂ c {wo} {w1}
) 2 N <&

d 1%}

Fact 1: The info states that support a FOL formula form a
principal ideal (truth-conditionality).

An alternative way to state this: sk a iff Yw e s.{w} E a.

14



M,sEgovy)y = M,skgpor M,sEq4

[c=d]wV[c#d]

wWo

w1

= “Isc equal to d?”

& N
{wo} {wr}
N <

&
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M,sEgovy)y = M,skgpor M,sEq4

[c=d]wV[c#d]

l.

.

= “Isc equal to d?”

& N
{wo} {wr}
N <

&

15



M,sEgovy)y = M,skgpor M,sEq4

[c=d]wV[c#d]

0

Cc

d

0

Cc

d

= “Isc equal to d?”

& N
{wo} {wr}
N <

&
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M,sEgovy)y = M,skgpor M,sEq4

[c=d]v[c+d] = “Isc equal to d?”
()
< R
c c {wo} {w1}
) 2 Y
d d %]

Fact 2: The info states that support a formula form an ideal,

but in general not principal (Persistency).
Uniform substitution does not hold!
Fact 3: ¢ is truth-conditional iff is equivalent to a FOL formula.
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M,sbgﬁx.qs — HdeDM.M,Sbg[wd]

Jz.[f(z) =]

= “Which is a fixed point of f?”

|

0

Cc

d

..

% QP
o) o)
O

<
%]
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Some insight. . . Information structures as Kripke models
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Some insight. . . Information structures as Kripke models

{wo, w1, ws}

N

{wo, w1} {wo,wa}  {wi,wa}

T
HamHEH
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Some insight. . . Information structures as Kripke models

{wO/wh wz}

N

{wo, w1} {wo,wa}  {wi,wa}

><><
HEmHEaH

e Frame = (P(W) \ {@&},2)
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Some insight. . . Information structures as Kripke models

{wO/wh wz}

N

{wo, w1} {wo,wa}  {wi,wa}

5t
HamHEH

e Frame = (P(W) \ {@},2)
e Constant domain DM.
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Some insight. . . Information structures as Kripke models

{wo, w1, ws}

N

wo’w2} {w17w2}

{w07w1}

%aw

HENBEEH

e Frame = (P(W) \ {@&},2)
e Constant domain DM.
o [A], = {w|M, =5 A} for A atomic
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Some insight. . . Information structures as Kripke models

{wO/wh wz}

N

wo, w2} {wi,wa}

wo ’w—l‘

HENBEEH

e Frame = (P(W) \ {@&},2)
e Constant domain DM.
o [A], = {w|M, =5 A} for A atomic

Fact: IngBQ is the logic of a class of Kripke models.
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The Main Result: DP and EP in IngBQ

Theorem (Disjunction and Existence Property)
Consider I" a FOL theory. Then

o IfTEpWVY then'E ¢ or I' E .
o IfT' = 3x.¢(x) then T & ¢(t) for some term t.

Corollary

If T'= vz 3ly.¢(T,y) (ie., ¢ defines a function), then there
exists a term ¢ such that I' = Vz.¢(Z, t).

18
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The Main Result: DP and EP in IngBQ

Theorem (Disjunction and Existence Property)
Consider I" a FOL theory. Then

o IfTEpWVY then'E ¢ or I' E .
o IfT' = 3x.¢(x) then T & ¢(t) for some term t.

Corollary

If T'= vz 3ly.¢(T,y) (ie., ¢ defines a function), then there
exists a term ¢ such that I' = Vz.¢(Z, t).

But how do we prove this?
By playing with the models!

18



Model-theoretic constructions
BM M

B"M w MuN M+ S
MoN

\/

S(Mr)

19



Disjunction Property




Disjunction Property - Proof idea

F#pand Ty = T H oV

M N
=T ED
o) E ¢
E Y i 1)
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Disjunction Property - Proof idea

F#pand Ty = T H oV

¢

i ¢
T

M—— MaeN —N

=T ED

o) E ¢
E Y Y

20



Disjunction Property - Proof idea

F#pand Ty = T H oV

¢

i ¢
=T

M—— MaeN —N

el L

o) E ¢
E Y Y
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Combining models - the direct sum @
BM M?

B"M w MuN M+ S
MaoN

\/

S(Mr)

21



We can define a model M & A such that

WwMeN _yyM N and pMeN _ pM  pN

wo w1 0 V1




We can define a model M @& A such that

WM@N — WM UWN and DM@N — DM XDN

M N’
wo w1 ) 1
ac ad ac ad ac ad ac ad
be X bd be X bd be X bd be X bd
M (ac) = ({tM(a), V(o))

(z,y) ~2 (2, y) = z !

22



We can define a model M & A such that

wMEN —wMuwN and DMV =pMx DV
MeN
wo w1 Vo (%1
D e e
be MW bd be MW bd be O M bd be O M bd

22



Theorem (Main property of @)

Let sc WM, g:Var - DM x DN an assignment, ¢ a formula.

Then:
MoN,skq¢p <= M,skEr 4 ¢

Corollary

e Let I' be a FOL theory. If M x4 ' and N g,q I' then
MeN kg, T.

e Let ¢ be a formula. If M ¥, , ¢ then MoN #, ¢.
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Theorem (Main property of @)

Let sc WM, g:Var - DM x DN an assignment, ¢ a formula.

Then:
MoN,skq¢p <= M,skEr 4 ¢

Corollary

e Let I' be a FOL theory. If M x4 ' and N g,q I' then
MeN kg, T.

e Let ¢ be a formula. If M ¥, , ¢ then MoN #, ¢.

And this is exactly what we needed!

Corollary
A FOL theory I' has the disjunction property.
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Existence Property



Existence Property - Proof Strategy

[ # ¢(t) for all t = T # Fz.¢(x)

Strategy

M

w
de

e




Existence Property - Proof Strategy

Strategy

M

de

e

[ # ¢(t) for all t = T # Fz.¢(x)

M/

d &

e

24



Existence Property - Proof Strategy

[ # ¢(t) for all t = T # Fz.¢(x)

Strategy

Moy M’

I am not a witness of ¢!
dm |dB

e@d |e@ Neither am I!

[




Existence Property - Proof Strategy

[ # ¢(t) for all t = T # Fz.¢(x)

Strategy

24



Existence Property - Proof Strategy

[ # ¢(t) for all t = T # Fz.¢(x)

Strategy

e@d |e@m

We need a way to deal with the interpretation of the functions.
24



Relaxing the structure - the blow up model M
BM M?

B"M w MuN M+ S
MoN

\/

S(Mr)

25



We want to define a model BM elementary equivalent to M
such that

WhBM = yM DBM = {closed terms of £(DM)}
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We want to define a model BM elementary equivalent to M
such that

WhBM = yM DBM = {closed terms of £(DM)}
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We want to define a model BM elementary equivalent to M
such that

WhBM = yM DBM = {closed terms of £(DM)}

T={efM} FUF)m f(fe)m  f(f(e) m
f(d) m fle)m flo) m

dm_oe im cm cm

26



We want to define a model BM elementary equivalent to M
such that

WhBM = yM DBM = {closed terms of £(DM)}
= {e s} F(F(@) F(£(9) l F(£())
f(d) f(e) f(e)
Jw oe d e l c

£5M(t) = f(t)

26



We want to define a model BM elementary equivalent to M
such that

WhBM = yM DBM = {closed terms of £(DM)}
2 ={cfV} F(£(@) F(f(e)) i F(£(e))
f(d) f(e) f(c)
i o d ¢ ;

£5M(1) = f(¢) ty SBM ity = M MM

26



Theorem (Blow-up main property)
Let s € WM be an info state, ti,...,t, closed terms of ¥ (DM)

and ¢(x1,...,2,) a formula. Then

BM,sE ¢ (t,....tn) == M,sE¢(t1,...,t01)

n

27



Now that we relaxed the structure, we can permute the
elements of M preserving the skeleton.

BM
s [
Jw_me U@ e )Y ()
e (6] 1)

d

I
o

28



Now that we relaxed the structure, we can permute the
elements of M preserving the skeleton.

BM
s I
dm_"Oe f(f(d) f(f(e) f(f(e))
ﬂa = (de) f(d) f(e) f(e)
MU’

C

cm_Z0d d

I
o

28



Now that we relaxed the structure, we can permute the
elements of M preserving the skeleton.

B(M®)
Qo Lo ol
dm_de F(f(@) f(f(e) f(f(e)
HU =(d,e) f(d) f(e) f(e)
MU’

C

cm_Z0d d

|
o

28



Now that we relaxed the structure, we can permute the
elements of M preserving the skeleton.

B(M7)
s L il
e f(f(d) f(f(e) f(f(e)) @
ﬂa = (de) f(d) f(e) fle)m
ME
cw o a ¢ 3

The role of the elements d and e has been reversed, while ¢

assumes the same role.

28



Swapping and gluing - full permutation model & M
BM M?

B"M w MuN M+ S
b/\/l MoN

\

S(Mr)

29



M ~ BM ~ BM ~ 6M

The full permutation model - G M

The idea to build up the model & M is to consider all the
models B M for 0 € & (DM) and combine them into a unique
structure. This is possible because the models B° M share the
same skeleton.

30



M ~ BM ~ BM ~ 6M

The full permutation model - G M

The idea to build up the model & M is to consider all the
models B M for 0 € & (DM) and combine them into a unique
structure. This is possible because the models B° M share the
same skeleton.

Theorem (Properties of & M)

o Let I’ be a FOL theory. If M T then G MET.

e Let g be a fized assignment. If M4 ¢(t) for every term t,
then & M ¢ Jz.¢(x).

30



The characteristic model of a FOL theory - M
BM M7

B"M w MuN M+ S
MoN

\/

S(Mr)

31



Theorem (The characteristic model of I')
Given I" a FOL theory, there exists a model Mr and an

evaluation gr such that

MrEeg ¢ <= TE9

Idea to build Mp

e For every non-entailment I" # ¢ choose <M¢, g¢> such that
MTZJ I Mw Eégw P

e Combine the models and assignments choosen.

32



Existence property - proof

Theorem
Let T" be a closed FOL theory. Then

[ # ¢(t) for everyt term == T # Jx.¢(x)

Proof
Consider the characteristic model Mr and the assignment gr.
Then

MpeT = 6(Mrp)ET

Mr 4. o(t) for every ¢ — S(Mp) # Jz.¢(x)

Thus I' # 32.¢(x) as wanted.

33



Thank you for your attention!

THERE EXISTS SOME.
NUMBER X SUCH
THAT F(X)=G(F(O)=1.

OH YES.
SOMEWHERE OUT
THERE, IT EXISTS.

J

AND WE MuUsT
FIND IT... AND
DESIROY IT.

J

GRAB YOUR SLIORDS,
STUDENTS! WE RIDE!
T THINE ITMIN

THE LIRONG
MATH (LASS?

e
TM FINALLY IN
THE. RIGHT ONE.

N
“n
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Definition (Support semantics)

Let M = (Mw|w € WM) be a model, s € WM an info state and
g: Var » DM an assignment. We define

M,sE4L

M, sy [t =t2]
M, s =4 R(t1,..
M,sEgdnY
M,skEg 0=
M,skEg V2.0

M,skEg Vv
M, sy Iz

-y tn)

Lrered

11

s=9

Vwes. [g(t1) ~u" g(t2)]

Yw € s. [R{\U/t(g(tl),...,g(tn))]
M,skEg ¢ and M, sk, 9
Vics. Mty ¢ = M, t=g]
Vd e DM M, s Egppea) ¢

M,segpor M,sEg
d € DM.M,S Fglzmd] 10}



Definition (Support semantics)

Let M = (Mw|w € WM) be a model, s € WM an info state and
g: Var » DM an assignment. We define

M,sEg4L = =0

M, s kg [t1 = t2] — Vwes. [g(t1) ~" g(t2)]
M,sE=4 R(t1,...,t,) <<= VYwes. [R{\U/t(g(tl),...,g(tn))]
M,sEgdnY — M,sk;¢and M,sk&, 9
M,skEg 0= — ViCs. [M,te; =Mty 1]
M,skEg Vr.g — VYde DM M,s Eglemd]
M,sEeg pVvip — M,skgspor M,sE4

M, sy Iz < 3de DM M, s=ya ¢



Definition (Support semantics)

Let M = (Mw|w € WM> be a model, s € WM an info state and
g: Var » DM an assignment. We define

M, s kgL

M, s g4 [t = t2]
M,skeg R(ty, ... ty)
M,sEgdnY
M,skEg 0=
M,sEg V2.0

M,skEg Vv
M, sy Iz.0

Pretred

11

s=0

Vu € 5. [g(t) =M g(t2)]

Vue s [RM(g(tr), . g(ta))]
M,sEg¢pand M,skE4 9
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Definition (Support semantics)

Let M = (Mw|w € WM) be a model, s € WM an info state and
g: Var » DM an assignment. We define

M,sE4L

M, s kg [t =t2]
M, s =4 R(t1,..
M,skEg PAY
M,skEg 0=
M,skEg V2.0

M, s k4 oV
M, sy Iz.0

-y tn)

<~

<~

1117

11

s=0

Vwes. [g(t1) ~u" g(t2)]

Yw € s. [R{\U/t(g(tl),...,g(tn))]
M,skEg ¢ and M, sk, 9
Vics. Mty ¢ = M, t=g]
Vd e DM M, s Egppea) ¢

M,sEgpor M,skEg
d € DM.M, S Bglamd] 10}



Definition (Support semantics)

Let M = (Mw|w € WM) be a model, s € WM an info state and
g: Var » DM an assignment. We define

M, skEgl — s=0

M, s kg [t1 = t2] — Vwes. [g(t1) ~" g(t2)]
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Definition (Support semantics)

Let M = (Mw|w € WM) be a model, s € WM an info state and
g: Var » DM an assignment. We define

M, skEgl — s5=g

M, s kg [t1 = t2] — Vwes. [g(t1) ~" g(t2)]
M,sE=4 R(t1,...,t,) <<= VYwes. [R{\U/t(g(tl),...,g(tn))]
M,sEgdnY — M,sk;¢and M,sk&, 9
M,skEg 0= — ViCs. [M,te; =Mty 1]
M, sk, V2.¢ < Vde DM M, sk ¢
M,sEeg pVvip — M,skgspor M,sE4

M, sy Iz < 3de DM M, sEya ¢



Definition (Direct sum - @)
o WMON M N
pDMeN _ pM DN
fMeaN:<fM.fN>
o If we WM then (d,e1) ~'®N (do, e2) <= di ~M dy
If w e W then (dy,er) ~ MEN (dg,e2) < e1 N e,
o If we WM then
RMON((dy e1),... . (dn,en)) = RM(dy,. .. dy)
If w e W then
RMON((dy e1),... . (dn,en)) = RN (e1,.. . en)



Definition (Blowup Model)
Given a model M we define its blow-up as the model

BM = <WM DBM IBM NBM)
where

o DBM s the set of terms in the signature ¥ u {d|d e D™}

"EDBM

e Given ty,ta,- we define

t_l”th_Q = 14 Nf,\JAtQ
REM( 1, tn) = Rt tn)

o fBM s defined as the formal term combinator

Mt b)) = F(tr,. e ts)



Definition (The permutation model 5,M)
Given M a model and o € §(D™) a permutation, we define

BO_M — <WM, DBM, IBUM, NBGM>

where

o fBoM - fBM g the formal combinator of terms.

e Given ty,t3,--- € DBM it holds

REM(t1,.. . t,) <= REM (o7 t1,...,0 )

t1 Mtg — 0 1751 NBM t_g



Hospital protocol: formalization

The protocol:
T=Q(x) < Si(x) vVy.S2(y)

The dependence:
7, 7151(x) w?Vy.52(y) E7Q(x)

wo w1 w2
W 51,5,Q | B S @ 51,52,Q
| Sva u | SQ7Q

.SQ | .SQ7Q
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The protocol:
T=Q(x) < Si(x) vVy.S2(y)

The dependence:
7, 7151(x) w?Vy.52(y) E7Q(x)
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