Disjunction and Existence Properties in Inquisitive Logic

Gianluca Grilletti
June 30, 2017

Institute for Logic, Language and Computation (ILLC),
Amsterdam, the Netherlands

Motivating example: hospital protocol

- A disease gives rise to two symptoms S_{1} and S_{2}.
- S_{1} is much worse than S_{2}.
- Depending on which symptoms the patients show, they have to be put in quarantine.

Motivating example: hospital protocol

- A disease gives rise to two symptoms S_{1} and S_{2}.
- S_{1} is much worse than S_{2}.
- Depending on which symptoms the patients show, they have to be put in quarantine.

Protocol

- Patient x shows $S_{1} \Rightarrow x$ in quarantine.
- Everyone shows $S_{2} \Rightarrow$ Everyone in quarantine.
- Otherwise, no quarantine.
$Q_{1}: \quad$ Wether x shows S_{1}
Q_{2} : Wether everyone shows S_{2} determine
Q_{3} : Wether x is in quarantine
Q_{1} : Wether x shows S_{1}
Q_{2} : Wether everyone shows S_{2} determine
Q_{3} : Wether x is in quarantine

Observation: Q_{1}, Q_{2} and Q_{3} are questions.
Question Q_{3} depends on questions Q_{1} and Q_{2}.

How can we represent
 dependency between questions in a logical framework?

Question Q_{3} depends on questions Q_{1} and Q_{2}.

Logic and Questions

In FOL (classical first-order logic) a formula is determined by its associated truth-value in any context \Rightarrow a FOL formula represents a statement.

Questions do not have an associated truth-value \Rightarrow questions are not (directly) representable in FOL .

The aim of the logic InqBQ (inquisitive first-order logic) is to

- extend FOL to represent questions as formulas;
- extend FOL entailment to capture dependency between questions.

InqBQ: Adding Questions to FOL

Disjunction Property

Existence Property

InqBQ: Adding Questions to FOL

Syntax of InqBQ: introducing questions

$\phi::=\perp\left|\left[t_{1}=t_{2}\right]\right| R\left(t_{1}, \ldots, t_{n}\right)|\phi \wedge \phi| \phi \rightarrow \phi|\forall x \cdot \phi \quad| \quad \phi \vee \vee \mid \exists x \cdot \phi$
shorthands
$\neg \phi:=\phi \rightarrow \perp \quad \phi \vee \psi:=\neg(\neg \phi \wedge \neg \psi) \quad \exists x . \phi:=\neg \forall x . \neg \phi$

Syntax of InqBQ: introducing questions

$\phi::=\perp\left|\left[t_{1}=t_{2}\right]\right| R\left(t_{1}, \ldots, t_{n}\right)|\phi \wedge \phi| \phi \rightarrow \phi|\forall x \cdot \phi \quad| \quad \phi \vee \phi \mid \exists x \cdot \phi$
shorthands
$\neg \phi:=\phi \rightarrow \perp \quad \phi \vee \psi:=\neg(\neg \phi \wedge \neg \psi) \quad \exists x . \phi:=\neg \forall x . \neg \phi$

A formula is called FOL or classical if it does not contain the symbols \vee and $\bar{\exists}$.

FOL formulas are denoted with α, β, \ldots

Intuition

FOL formulas represent statements.

$$
\begin{aligned}
& (c=d) \vee(c \neq d) \quad \equiv \quad \text { "c is equal to } d \text { or not" } \\
& \exists x \cdot[x=c] \equiv \text { "There is an element equal to } c "
\end{aligned}
$$

The operator \mathbb{v} introduces alternative questions.

$$
(c=d) \vee(c \neq d) \quad \equiv \quad \text { "Is } c \text { equal to } d \text { or not?" }
$$

The operator $\bar{\exists}$ introduces existential questions.
$\bar{\exists} x \cdot[x=c] \quad \equiv \quad$ "Which is an element equal to c ?"

Some notations

Fix a signature $\Sigma=\left\{f_{i}, R_{j}\right\}_{i \in I, j \in J}$.
Definition (FOL structure)

$$
M=\left\langle D, \mathbf{f}_{i}, \mathbf{R}_{j}, \sim\right\rangle_{i \in I, j \in J}
$$

where

- $\mathbf{f}_{i}: D^{\operatorname{ar}\left(f_{i}\right)} \rightarrow D$ is the interpretation of f_{i};
- $\mathbf{R}_{j} \subseteq D^{\operatorname{ar}\left(R_{j}\right)}$ is the interpretation of R_{j};
- $[\sim] \subseteq D^{2}$ is an equivalence relation and a congruence with respect to $\left\{\mathbf{f}_{i}, \mathbf{R}_{j}\right\}_{i \in I, j \in J}$.

$$
M=\left\langle D, \mathbf{f}_{i}, \mathbf{R}_{j}, \sim\right\rangle_{i \in I, j \in J}
$$

Definition (Skeleton)

Given M a FOL structure, define

$$
\operatorname{Sk}(M)=\left\langle D, \mathbf{f}_{i}\right\rangle_{i \in I}
$$

i.e., leaving out relations and equality.

Models of InqBQ: representing information

Definition (Information structure)

$$
\mathcal{M}=\left\langle M_{w} \mid w \in W^{\mathcal{M}}\right\rangle
$$

where the M_{w} are classical structures sharing the same skeleton.
We will call $W^{\mathcal{M}}$ the set of worlds of the structure.

Models of InqBQ: representing information

Definition (Information structure)

$$
\mathcal{M}=\left\langle M_{w} \mid w \in W^{\mathcal{M}}\right\rangle
$$

where the M_{w} are classical structures sharing the same skeleton.
We will call $W^{\mathcal{M}}$ the set of worlds of the structure.

Example of a simple model in the signature $\left\{\mathbf{f}^{(1)}\right\}$.

Models of InqBQ: representing information

Definition (Information structure)

$$
\mathcal{M}=\left\langle M_{w} \mid w \in W^{\mathcal{M}}\right\rangle
$$

where the M_{w} are classical structures sharing the same skeleton.
We will call $W^{\mathcal{M}}$ the set of worlds of the structure.

Example of a simple model in the signature $\left\{\mathbf{f}^{(1)}\right\}$.
The arrow represents \mathbf{f}.

Models of InqBQ: representing information

Definition (Information structure)

$$
\mathcal{M}=\left\langle M_{w} \mid w \in W^{\mathcal{M}}\right\rangle
$$

where the M_{w} are classical structures sharing the same skeleton.
We will call $W^{\mathcal{M}}$ the set of worlds of the structure.

Example of a simple model in the signature $\left\{\mathbf{f}^{(1)}\right\}$.
The arrow represents \mathbf{f}. The colours represent equality.

Truth-condition encoded by World

Truth-condition encoded by World
Information encoded by Info State

Semantics of InqBQ: supporting relation

$\mathcal{M} \leadsto$ info structure
$s \leadsto$ info state
$g \leadsto$ assignment

$$
\mathcal{M}, s \vDash_{g} \phi
$$

$$
\begin{array}{ll}
\mathcal{M}, s \vDash_{g} \perp & \Longleftrightarrow s=\varnothing \\
\mathcal{M}, s \vDash_{g}\left[t_{1}=t_{2}\right] & \Longleftrightarrow \forall w \in s \cdot\left[g\left(t_{1}\right) \sim_{w}^{\mathcal{M}} g\left(t_{2}\right)\right] \\
\mathcal{M}, s \vDash_{g} R\left(t_{1}, \ldots, t_{n}\right) & \Longleftrightarrow \forall w \in s .\left[\mathbf{R}_{w}^{\mathcal{M}}\left(g\left(t_{1}\right), \ldots, g\left(t_{n}\right)\right)\right] \\
\mathcal{M}, s \vDash_{g} \phi \wedge \psi & \Longleftrightarrow \mathcal{M}, s \vDash_{g} \phi \text { and } \mathcal{M}, s \vDash_{g} \psi \\
\mathcal{M}, s \vDash_{g} \phi \rightarrow \psi & \Longleftrightarrow \forall t \subseteq s \cdot\left[\mathcal{M}, t \vDash_{g} \phi \Rightarrow \mathcal{M}, t \vDash_{g} \psi\right] \\
\mathcal{M}, s \vDash_{g} \forall x \cdot \phi & \Longleftrightarrow \forall d \in D^{\mathcal{M}} \cdot \mathcal{M}, s \vDash_{g[x \mapsto d]} \phi \\
& \Longleftrightarrow \mathcal{M}, s \vDash_{g} \phi \text { or } \mathcal{M}, s \vDash_{g} \psi \\
\mathcal{M}, s \vDash_{g} \phi \vee \psi & \Longleftrightarrow \exists d \in D^{\mathcal{M}} \cdot \mathcal{M}, s \vDash_{g[x \mapsto d]} \phi
\end{array}
$$

$\mathcal{M}, s \vDash_{g}\left[t_{1}=t_{2}\right] \Longleftrightarrow \forall w \in s .\left[g\left(t_{1}\right) \sim_{w}^{\mathcal{M}} g\left(t_{2}\right)\right]$

$$
c=d \cong \quad \text { "c is equal to } d "
$$

$\mathcal{M}, s \vDash_{g}\left[t_{1}=t_{2}\right] \Longleftrightarrow \forall w \in s .\left[g\left(t_{1}\right) \sim_{w}^{\mathcal{M}} g\left(t_{2}\right)\right]$

$$
c=d \cong \quad \text { "c is equal to } d "
$$

$\mathcal{M}, s \vDash_{g}\left[t_{1}=t_{2}\right] \Longleftrightarrow \forall w \in s .\left[g\left(t_{1}\right) \sim_{w}^{\mathcal{M}} g\left(t_{2}\right)\right]$

$$
c=d \cong \quad \text { "c is equal to } d "
$$

$\mathcal{M}, s \vDash_{g}\left[t_{1}=t_{2}\right] \Longleftrightarrow \forall w \in s .\left[g\left(t_{1}\right) \sim_{w}^{\mathcal{M}} g\left(t_{2}\right)\right]$

$$
c=d \cong \quad \text { "c is equal to } d "
$$

Fact 1: The info states that support a FOL formula form a principal ideal (truth-conditionality).

An alternative way to state this: $s \vDash \alpha$ iff $\forall w \in s .\{w\} \vDash \alpha$.
$\mathcal{M}, s \vDash_{g} \phi \vee \psi \quad \Longleftrightarrow \mathcal{M}, s \vDash_{g} \phi$ or $\mathcal{M}, s \vDash_{g} \psi$
$[c=d] \rightsquigarrow[c \neq d] \equiv$ "Is c equal to d ?"

$\mathcal{M}, s \vDash_{g} \phi \vee \psi \quad \Longleftrightarrow \quad \mathcal{M}, s \vDash_{g} \phi$ or $\mathcal{M}, s \vDash_{g} \psi$
$[c=d] \rightsquigarrow[c \neq d] \equiv$ "Is c equal to d ?"

$\mathcal{M}, s \vDash_{g} \phi \vee \psi \quad \Longleftrightarrow \mathcal{M}, s \vDash_{g} \phi$ or $\mathcal{M}, s \vDash_{g} \psi$
$[c=d] \rightsquigarrow[c \neq d] \equiv$ "Is c equal to d ?"

$$
\mathcal{M}, s \vDash_{g} \phi \vee \psi \quad \Longleftrightarrow \mathcal{M}, s \vDash_{g} \phi \text { or } \mathcal{M}, s \vDash_{g} \psi
$$

$$
[c=d] \vee[c \neq d] \quad \equiv \quad \text { Is } c \text { equal to } d ? "
$$

Fact 2: The info states that support a formula form an ideal, but in general not principal (Persistency).

Uniform substitution does not hold!

Fact 3: ϕ is truth-conditional iff is equivalent to a FOL formula.

$$
\mathcal{M}, s \vDash_{g} \bar{\exists} x \cdot \phi \quad \Longleftrightarrow \quad \exists d \in D^{\mathcal{M}} \cdot \mathcal{M}, s \vDash_{g[x \mapsto d]}
$$

$\exists x \cdot[f(x)=x] \equiv$ "Which is a fixed point of f ?"

Some insight. . . Information structures as Kripke models

| w_{0} | w_{1}
 $\mathbf{\square}$ w_{2}
 $\mathbf{\square}$
 |
| :--- | :--- | :--- |

Some insight. . . Information structures as Kripke models

Some insight. . . Information structures as Kripke models

- Frame $=\langle\mathcal{P}(W) \backslash\{\varnothing\}, \supseteq\rangle$

Some insight. . . Information structures as Kripke models

- Frame $=\langle\mathcal{P}(W) \backslash\{\varnothing\}, \supseteq\rangle$
- Constant domain $D^{\mathcal{M}}$.

Some insight. . . Information structures as Kripke models

- Frame $=\langle\mathcal{P}(W) \backslash\{\varnothing\}, \supseteq\rangle$
- Constant domain $D^{\mathcal{M}}$.
- $\llbracket A \rrbracket_{g}=\left\{w \mid M_{w} \vDash_{g}^{\text {FOL }} A\right\}^{\downarrow}$ for A atomic

Some insight. . . Information structures as Kripke models

- Frame $=\langle\mathcal{P}(W) \backslash\{\varnothing\}, \supseteq\rangle$
- Constant domain $D^{\mathcal{M}}$.
- $\llbracket A \rrbracket_{g}=\left\{w \mid M_{w} \vDash_{g}^{\text {FOL }} A\right\}^{\downarrow}$ for A atomic

Fact: InqBQ is the logic of a class of Kripke models.

The Main Result: DP and EP in InqBQ

Theorem (Disjunction and Existence Property)

Consider Γ a FOL theory. Then

- If $\Gamma \vDash \phi \vee \psi$ then $\Gamma \vDash \phi$ or $\Gamma \vDash \psi$.
- If $\Gamma \vDash \bar{\exists} x . \phi(x)$ then $\Gamma \vDash \phi(t)$ for some term t.

Corollary

If $\Gamma \vDash \forall \bar{x} \bar{\exists}!y \cdot \phi(\bar{x}, y)$ (i.e., ϕ defines a function), then there exists a term t such that $\Gamma \vDash \forall \bar{x} . \phi(\bar{x}, t)$.

The Main Result: DP and EP in InqBQ

Theorem (Disjunction and Existence Property)

Consider Γ a FOL theory. Then

- If $\Gamma \vDash \phi \vee \psi$ then $\Gamma \vDash \phi$ or $\Gamma \vDash \psi$.
- If $\Gamma \vDash \bar{\exists} x . \phi(x)$ then $\Gamma \vDash \phi(t)$ for some term t.

Corollary

If $\Gamma \vDash \forall \bar{x} \bar{\exists}!y \cdot \phi(\bar{x}, y)$ (i.e., ϕ defines a function), then there exists a term t such that $\Gamma \vDash \forall \bar{x} . \phi(\bar{x}, t)$.

But how do we prove this?

The Main Result: DP and EP in InqBQ

Theorem (Disjunction and Existence Property)

Consider Γ a FOL theory. Then

- If $\Gamma \vDash \phi \vee \psi$ then $\Gamma \vDash \phi$ or $\Gamma \vDash \psi$.
- If $\Gamma \vDash \bar{\exists} x . \phi(x)$ then $\Gamma \vDash \phi(t)$ for some term t.

Corollary

If $\Gamma \vDash \forall \bar{x} \bar{\exists}!y \cdot \phi(\bar{x}, y)$ (i.e., ϕ defines a function), then there exists a term t such that $\Gamma \vDash \forall \bar{x} . \phi(\bar{x}, t)$.

But how do we prove this?
By playing with the models!

Model-theoretic constructions

Disjunction Property

Disjunction Property - Proof idea

$$
\Gamma \not \neq \phi \text { and } \Gamma \not \neq \psi \Longrightarrow \Gamma \nLeftarrow \phi \backsim \psi
$$

Disjunction Property - Proof idea

$$
\Gamma \not \vDash \phi \text { and } \Gamma \not \neq \psi \Longrightarrow \Gamma \nLeftarrow \phi \backsim \psi
$$

$$
\begin{aligned}
& \not \neq \psi \\
& \neq \phi \\
& \vDash \Gamma
\end{aligned}
$$

$$
\mathcal{M} \longleftrightarrow \mathcal{M} \oplus \mathcal{N} \longleftrightarrow \mathcal{N}
$$

$\vDash \Gamma$
$\neq \phi$
$\vDash \psi$

$\vDash \Gamma$
$\vDash \phi$
$\neq \psi$

Disjunction Property - Proof idea

$$
\Gamma \not \vDash \phi \text { and } \Gamma \not \vDash \psi \Longrightarrow \Gamma \not \vDash \phi \backsim \psi
$$

$$
\begin{aligned}
& \not \neq \psi \\
& \neq \phi \\
& \vDash \Gamma
\end{aligned}
$$

$$
\mathcal{M} \longleftrightarrow \mathcal{M} \oplus \mathcal{N} \longleftrightarrow \mathcal{N}
$$

Combining models - the direct sum \oplus

We can define a model $\mathcal{M} \oplus \mathcal{N}$ such that

$$
W^{\mathcal{M} \oplus \mathcal{N}}=W^{\mathcal{M}} \sqcup W^{\mathcal{N}} \quad \text { and } \quad D^{\mathcal{M} \oplus \mathcal{N}}=D^{\mathcal{M}} \times D^{\mathcal{N}}
$$

We can define a model $\mathcal{M} \oplus \mathcal{N}$ such that

$$
W^{\mathcal{M} \oplus \mathcal{N}}=W^{\mathcal{M}} \sqcup W^{\mathcal{N}} \quad \text { and } \quad D^{\mathcal{M} \oplus \mathcal{N}}=D^{\mathcal{M}} \times D^{\mathcal{N}}
$$

$$
\begin{array}{ccc}
\mathbf{f}^{\mathcal{M}^{\prime}}(a c) & = & \left\langle\mathbf{f}^{\mathcal{M}}(a), \mathbf{f}^{\mathcal{N}}(c)\right\rangle \\
\langle x, y\rangle \sim_{w_{0}}^{\mathcal{M}^{\prime}}\left\langle x^{\prime}, y^{\prime}\right\rangle & \Longleftrightarrow & x \sim \sim_{w_{0}}^{\mathcal{M}} x^{\prime}
\end{array}
$$

We can define a model $\mathcal{M} \oplus \mathcal{N}$ such that

$$
W^{\mathcal{M} \oplus \mathcal{N}}=W^{\mathcal{M}} \sqcup W^{\mathcal{N}} \quad \text { and } \quad D^{\mathcal{M} \oplus \mathcal{N}}=D^{\mathcal{M}} \times D^{\mathcal{N}}
$$

$\mathcal{M} \oplus \mathcal{N}$			
w_{0}	w_{1}	v_{0}	v_{1}
$a c$ a $a d$	$a c \square a d$	$a c$ a	

Theorem (Main property of \oplus)
Let $s \subseteq W^{\mathcal{M}}, g: \operatorname{Var} \rightarrow D^{\mathcal{M}} \times D^{\mathcal{N}}$ an assignment, ϕ a formula. Then:

$$
\mathcal{M} \oplus \mathcal{N}, s \vDash_{g} \phi \Longleftrightarrow \mathcal{M}, s \vDash_{\pi_{1} g} \phi
$$

Corollary

- Let Γ be a FOL theory. If $\mathcal{M} \vDash_{\pi_{1} g} \Gamma$ and $\mathcal{N} \vDash_{\pi_{2} g} \Gamma$ then $\mathcal{M} \oplus \mathcal{N} \vDash_{g} \Gamma$.
- Let ϕ be a formula. If $\mathcal{M} \not{\neq \pi_{1} g} \phi$ then $\mathcal{M} \oplus \mathcal{N} \neq g \phi$.

Theorem (Main property of \oplus)
Let $s \subseteq W^{\mathcal{M}}, g: \operatorname{Var} \rightarrow D^{\mathcal{M}} \times D^{\mathcal{N}}$ an assignment, ϕ a formula. Then:

$$
\mathcal{M} \oplus \mathcal{N}, s \vDash_{g} \phi \Longleftrightarrow \mathcal{M}, s \vDash_{\pi_{1} g} \phi
$$

Corollary

- Let Γ be a FOL theory. If $\mathcal{M} \vDash_{\pi_{1} g} \Gamma$ and $\mathcal{N} \vDash_{\pi_{2} g} \Gamma$ then $\mathcal{M} \oplus \mathcal{N} \vDash_{g} \Gamma$.
- Let ϕ be a formula. If $\mathcal{M} \not{\neq \pi_{1} g} \phi$ then $\mathcal{M} \oplus \mathcal{N} \neq g \phi$.

And this is exactly what we needed!

Corollary

A FOL theory Γ has the disjunction property.

Existence Property

Existence Property - Proof Strategy

$$
\Gamma \nLeftarrow \phi(t) \text { for all } t \Longrightarrow \Gamma \neq \exists \cdot x \cdot \phi(x)
$$

Strategy

Existence Property - Proof Strategy

$$
\Gamma \nLeftarrow \phi(t) \text { for all } t \Longrightarrow \Gamma \neq \exists \cdot x \cdot \phi(x)
$$

Strategy

Existence Property - Proof Strategy

$$
\Gamma \nLeftarrow \phi(t) \text { for all } t \Longrightarrow \Gamma \neq \exists \cdot x \cdot \phi(x)
$$

Strategy

$\mathcal{M} \uplus \mathcal{M}^{\prime}$	
w w^{\prime} $d \square$ $d \square$ $e \square$ e	

I am not a witness of ϕ !

Existence Property - Proof Strategy

$$
\Gamma \nRightarrow \phi(t) \text { for all } t \Longrightarrow \Gamma \neq \exists \cdot x \cdot \phi(x)
$$

Strategy

\mathcal{M} W \mathcal{M}^{\prime}	
w	w^{\prime}
$d^{\text {C }}$	$d \square$
$e \square$	$e{ }^{\text {C }}$

Existence Property - Proof Strategy

$$
\Gamma \nRightarrow \phi(t) \text { for all } t \Longrightarrow \Gamma \neq \exists x \cdot \phi(x)
$$

Strategy

$\mathcal{M} W \mathcal{M}^{\prime}$	
w	w^{\prime}
$d^{\text {C }}$	$d \square$
$e \square$	e

We need a way to deal with the interpretation of the functions.

Relaxing the structure - the blow up model $\mathcal{B M}$

We want to define a model $\mathcal{B M}$ elementary equivalent to \mathcal{M} such that

$$
W^{\mathcal{B M}}=W^{\mathcal{M}} \quad D^{\mathcal{B M}}=\left\{\text { closed terms of } \Sigma\left(D^{M}\right)\right\}
$$

$$
\Sigma=\left\{c ; f^{(1)}\right\}
$$

We want to define a model $\mathcal{B M}$ elementary equivalent to \mathcal{M} such that

$$
W^{\mathcal{B M}}=W^{\mathcal{M}} \quad D^{\mathcal{B M}}=\left\{\text { closed terms of } \Sigma\left(D^{M}\right)\right\}
$$

$$
\Sigma=\left\{c ; f^{(1)}\right\}
$$

We want to define a model $\mathcal{B M}$ elementary equivalent to \mathcal{M} such that

$$
W^{\mathcal{B M}}=W^{\mathcal{M}} \quad D^{\mathcal{B M}}=\left\{\text { closed terms of } \Sigma\left(D^{M}\right)\right\}
$$

$$
\Sigma=\left\{c ; f^{(1)}\right\}
$$

$$
f(f(\underline{d})) \llbracket \quad f(f(\underline{e})) \rrbracket \quad f(f(c)) ■
$$

$$
f(\underline{d}) \llbracket \quad f(\underline{e}) \llbracket \quad f(c) \llbracket
$$

$\underline{d} ■ \quad \underline{e} \square$

We want to define a model $\mathcal{B M}$ elementary equivalent to \mathcal{M} such that

$$
W^{\mathcal{B M}}=W^{\mathcal{M}} \quad D^{\mathcal{B M}}=\left\{\text { closed terms of } \Sigma\left(D^{M}\right)\right\}
$$

We want to define a model $\mathcal{B M}$ elementary equivalent to \mathcal{M} such that

$$
W^{\mathcal{B M}}=W^{\mathcal{M}} \quad D^{\mathcal{B M}}=\left\{\text { closed terms of } \Sigma\left(D^{M}\right)\right\}
$$

$$
\mathbf{f}^{\mathcal{B M}}(t)=f(t)
$$

$$
t_{1} \sim^{\mathcal{B M}} t_{2} \Longleftrightarrow t_{1}^{\mathcal{M}} \sim^{\mathcal{M}} t_{2}^{\mathcal{M}}
$$

Theorem (Blow-up main property)

Let $s \subseteq W^{\mathcal{M}}$ be an info state, t_{1}, \ldots, t_{n} closed terms of $\Sigma\left(D^{\mathcal{M}}\right)$ and $\phi\left(x_{1}, \ldots, x_{n}\right)$ a formula. Then

$$
\mathcal{B M}, s \vDash \phi\left(t_{1}, \ldots, t_{n}\right) \Longleftrightarrow \mathcal{M}, s \vDash \phi\left(t_{1}^{\mathcal{M}}, \ldots, t_{n}^{\mathcal{M}}\right)
$$

Now that we relaxed the structure, we can permute the elements of \mathcal{M} preserving the skeleton.

BM

Now that we relaxed the structure, we can permute the elements of \mathcal{M} preserving the skeleton.

BM

Now that we relaxed the structure, we can permute the elements of \mathcal{M} preserving the skeleton.

Now that we relaxed the structure, we can permute the elements of \mathcal{M} preserving the skeleton.

The role of the elements \underline{d} and \underline{e} has been reversed, while c assumes the same role.

Swapping and gluing - full permutation model $\mathfrak{S M}$

$$
\mathcal{M} \leadsto \mathcal{B M} \leadsto \mathcal{B}^{\sigma} \mathcal{M} \leadsto \mathfrak{S} \mathcal{M}
$$

The full permutation model - $\mathfrak{S M}$
The idea to build up the model $\mathfrak{S M}$ is to consider all the models $\mathcal{B}^{\sigma} \mathcal{M}$ for $\sigma \in \mathfrak{S}\left(D^{\mathcal{M}}\right)$ and combine them into a unique structure. This is possible because the models $\mathcal{B}^{\sigma} \mathcal{M}$ share the same skeleton.

$$
\mathcal{M} \leadsto \mathcal{B M} \leadsto \mathcal{B}^{\sigma} \mathcal{M} \leadsto \mathfrak{S} \mathcal{M}
$$

The full permutation model - $\mathfrak{S M}$
The idea to build up the model $\mathfrak{S M}$ is to consider all the models $\mathcal{B}^{\sigma} \mathcal{M}$ for $\sigma \in \mathfrak{S}\left(D^{\mathcal{M}}\right)$ and combine them into a unique structure. This is possible because the models $\mathcal{B}^{\sigma} \mathcal{M}$ share the same skeleton.

Theorem (Properties of $\mathfrak{S} \mathcal{M}$)

- Let Γ be a FOL theory. If $\mathcal{M} \vDash \Gamma$ then $\mathfrak{S} \mathcal{M} \vDash \Gamma$.
- Let g be a fixed assignment. If $\mathcal{M} \not \neq g \phi(t)$ for every term t, then $\mathfrak{S} \mathcal{M} \neq \bar{\exists} x \cdot \phi(x)$.

The characteristic model of a FOL theory - \mathcal{M}_{Γ}

Theorem (The characteristic model of Γ)

Given Γ a FOL theory, there exists a model \mathcal{M}_{Γ} and an
evaluation g_{Γ} such that

$$
\mathcal{M}_{\Gamma} \vDash_{g_{\Gamma}} \phi \Longleftrightarrow \Gamma \vDash \phi
$$

Idea to build \mathcal{M}_{Γ}

- For every non-entailment $\Gamma \not \neq \psi$ choose $\left\langle\mathcal{M}_{\psi}, g_{\psi}\right\rangle$ such that

$$
\mathcal{M}_{\psi} \vDash \Gamma \quad \mathcal{M}_{\psi} \not \text { 利 } \psi
$$

- Combine the models and assignments choosen.

Existence property - proof

Theorem

Let Γ be a closed FOL theory. Then

$$
\Gamma \not \vDash \phi(t) \text { for every } t \text { term } \Longrightarrow \Gamma \not{ }^{\prime} \bar{\exists} x \cdot \phi(x)
$$

Proof

Consider the characteristic model \mathcal{M}_{Γ} and the assignment g_{Γ}. Then

$$
\begin{array}{ll}
\mathcal{M}_{\Gamma} \vDash \Gamma & \Longrightarrow \mathfrak{S}\left(\mathcal{M}_{\Gamma}\right) \vDash \Gamma \\
\mathcal{M}_{\Gamma} \not \text { 生 } \phi(t) \text { for every } t & \Longrightarrow \mathfrak{S}\left(\mathcal{M}_{\Gamma}\right) \not \vDash \bar{\exists} x . \phi(x)
\end{array}
$$

Thus $\Gamma \not \vDash \bar{\exists} x . \phi(x)$ as wanted.

Thank you for your attention!

I. Ciardelli.

Inquisitive semantics and intermediate logics.
MSc Thesis, University of Amsterdam, 2009.
I. Ciardelli.

Dependency as question entailment.
In S. Abramsky, J. Kontinen, J. Väänänen, and H. Vollmer, editors,
Dependence Logic: theory and applications, pages 129-181. Springer
International Publishing Switzerland, 2016.
I. Ciardelli.

Questions in logic.
PhD thesis, Institute for Logic, Language and Computation, University of Amsterdam, 2016.
F. Roelofsen.

Algebraic foundations for inquisitive semantics.
In H. van Ditmarsch, J. Lang, and J. Shier, editors, Proceedings of the Third
International Conference on Logic, Rationality, and Interaction, pages
233-243. Springer-Verlag, 2011.
F. Yang and J. Väänänen.

Propositional logics of dependence.
Annals of Pure and Applied Logic, 167(7):557 - 589, 2016.

Definition (Support semantics)

Let $\mathcal{M}=\left\langle M_{w} \mid w \in W^{\mathcal{M}}\right\rangle$ be a model, $s \subseteq W^{\mathcal{M}}$ an info state and $g: \operatorname{Var} \rightarrow D^{\mathcal{M}}$ an assignment. We define

$$
\begin{aligned}
& \mathcal{M}, s \vDash_{g} \perp \\
& \mathcal{M}, s \vDash_{g}\left[t_{1}=t_{2}\right] \\
& \mathcal{M}, s \vDash_{g} R\left(t_{1}, \ldots\right. \\
& \mathcal{M}, s \vDash_{g} \phi \wedge \psi \\
& \mathcal{M}, s \vDash_{g} \phi \rightarrow \psi \\
& \mathcal{M}, s \vDash_{g} \forall x . \phi
\end{aligned}
$$

$$
\Longleftrightarrow s=\varnothing
$$

$$
\Longleftrightarrow v w \in S \cdot\left[g\left(\iota_{1}\right) \sim_{w} g\left(\iota_{2}\right)\right]
$$

$$
\mathcal{M}, s \vDash_{g} R\left(t_{1}, \ldots, t_{n}\right) \quad \Longleftrightarrow \quad \forall w \in s .\left[\mathbf{R}_{w}^{\mathcal{M}}\left(g\left(t_{1}\right), \ldots, g\left(t_{n}\right)\right)\right]
$$

$$
\Longleftrightarrow \mathcal{M}, s \vDash_{g} \phi \text { and } \mathcal{M}, s \vDash_{g} \psi
$$

$$
\Longleftrightarrow \quad \forall t \subseteq s .\left[\mathcal{M}, t \vDash_{g} \phi \Rightarrow \mathcal{M}, t \vDash_{g} \psi\right]
$$

$$
\Longleftrightarrow \quad \forall d \in D^{\mathcal{M}} \cdot \mathcal{M}, s \vDash_{g[x \mapsto d]} \phi
$$

$\mathcal{M}, s \vDash_{g} \phi \vee \psi$
$\Longleftrightarrow \mathcal{M}, s \vDash_{g} \phi$ or $\mathcal{M}, s \vDash_{g} \psi$
$\mathcal{M}, s \vDash_{g} \bar{\exists} x . \phi$
$\Longleftrightarrow \exists d \in D^{\mathcal{M}} . \mathcal{M}, s \vDash_{g[x \mapsto d]} \phi$

Definition (Support semantics)

Let $\mathcal{M}=\left\langle M_{w} \mid w \in W^{\mathcal{M}}\right\rangle$ be a model, $s \subseteq W^{\mathcal{M}}$ an info state and $g: \operatorname{Var} \rightarrow D^{\mathcal{M}}$ an assignment. We define

$$
\begin{array}{ll}
\mathcal{M}, s \vDash_{g} \perp & \Longleftrightarrow s=\varnothing \\
\mathcal{M}, s \vDash_{g}\left[t_{1}=t_{2}\right] & \Longleftrightarrow \forall w \in s .\left[g\left(t_{1}\right) \sim \mathcal{M} g\left(t_{2}\right)\right] \\
\mathcal{M}, s \vDash_{g} R\left(t_{1}, \ldots, t_{n}\right) & \Longleftrightarrow \forall w \in s .\left[\mathbf{R}_{w}^{\mathcal{M}}\left(g\left(t_{1}\right), \ldots, g\left(t_{n}\right)\right)\right] \\
\mathcal{M}, s \vDash_{g} \phi \wedge \psi & \Longleftrightarrow \mathcal{M}, s \vDash_{g} \phi \text { and } \mathcal{M}, s \vDash_{g} \psi \\
\mathcal{M}, s \vDash_{g} \phi \rightarrow \psi & \Longleftrightarrow \forall \subseteq \subseteq s \cdot\left[\mathcal{M}, t \vDash_{g} \phi \Rightarrow \mathcal{M}, t \vDash_{g} \psi\right] \\
\mathcal{M}, s \vDash_{g} \forall x \cdot \phi & \Longleftrightarrow \forall d \in D^{\mathcal{M}} \cdot \mathcal{M}, s \vDash_{g[x \mapsto d]} \phi \\
\mathcal{M}, s \vDash_{g} \phi \vee \psi & \Longleftrightarrow \mathcal{M}, s \vDash_{g} \phi \text { or } \mathcal{M}, s \vDash_{g} \psi \\
\mathcal{M}, s \vDash_{g} \exists x \cdot \phi & \Longleftrightarrow \exists d \in D^{\mathcal{M}} \cdot \mathcal{M}, s \vDash_{g[x \rightarrow d]} \phi
\end{array}
$$

Definition (Support semantics)

Let $\mathcal{M}=\left\langle M_{w} \mid w \in W^{\mathcal{M}}\right\rangle$ be a model, $s \subseteq W^{\mathcal{M}}$ an info state and $g: \operatorname{Var} \rightarrow D^{\mathcal{M}}$ an assignment. We define

$$
\begin{aligned}
& \mathcal{M}, s \vDash_{g} \perp \\
& \mathcal{M}, s \vDash_{g}\left[t_{1}=t_{2}\right] \\
& \mathcal{M}, s \vDash_{g} R\left(t_{1}, \ldots\right. \\
& \mathcal{M}, s \vDash_{g} \phi \wedge \psi \\
& \mathcal{M}, s \vDash_{g} \phi \rightarrow \psi \\
& \mathcal{M}, s \vDash_{g} \forall x . \phi
\end{aligned}
$$

$$
\Longleftrightarrow \quad s=\varnothing
$$

$$
\mathcal{M}, s \vDash_{g} R\left(t_{1}, \ldots, t_{n}\right) \quad \Longleftrightarrow \quad \forall w \in s .\left[\mathbf{R}_{w}^{\mathcal{M}}\left(g\left(t_{1}\right), \ldots, g\left(t_{n}\right)\right)\right]
$$

$$
\Longleftrightarrow \mathcal{M}, s \vDash_{g} \phi \text { and } \mathcal{M}, s \vDash_{g} \psi
$$

$$
\Longleftrightarrow \quad \forall t \subseteq s .\left[\mathcal{M}, t \vDash_{g} \phi \Rightarrow \mathcal{M}, t \vDash_{g} \psi\right]
$$

$$
\Longleftrightarrow \quad \forall d \in D^{\mathcal{M}} \cdot \mathcal{M}, s \vDash_{g[x \mapsto d]} \phi
$$

$\mathcal{M}, s \vDash_{g} \phi \vee \psi$
$\Longleftrightarrow \mathcal{M}, s \vDash_{g} \phi$ or $\mathcal{M}, s \vDash_{g} \psi$
$\mathcal{M}, s \vDash_{g} \bar{\exists} x . \phi$
$\Longleftrightarrow \exists d \in D^{\mathcal{M}} . \mathcal{M}, s \vDash_{g[x \mapsto d]} \phi$

Definition (Support semantics)

Let $\mathcal{M}=\left\langle M_{w} \mid w \in W^{\mathcal{M}}\right\rangle$ be a model, $s \subseteq W^{\mathcal{M}}$ an info state and $g: \operatorname{Var} \rightarrow D^{\mathcal{M}}$ an assignment. We define

$$
\begin{array}{ll}
\mathcal{M}, s \vDash_{g \perp} & \Longleftrightarrow s=\varnothing \\
\mathcal{M}, s \vDash_{g}\left[t_{1}=t_{2}\right] & \Longleftrightarrow \forall w \in s \cdot\left[g\left(t_{1}\right) \sim_{w}^{\mathcal{M}} g\left(t_{2}\right)\right] \\
\mathcal{M}, s \vDash_{g} R\left(t_{1}, \ldots, t_{n}\right) & \Longleftrightarrow \forall w \in s .\left[\mathbf{R}_{w}^{\mathcal{M}}\left(g\left(t_{1}\right), \ldots, g\left(t_{n}\right)\right)\right] \\
\mathcal{M}, s \vDash_{g} \phi \wedge \psi & \Longleftrightarrow \mathcal{M}, s \vDash_{g} \phi \text { and } \mathcal{M}, s \vDash_{g} \psi \\
\mathcal{M}, s \vDash_{g} \phi \rightarrow \psi & \Longleftrightarrow \forall t \subseteq s \cdot\left[\mathcal{M}, t \vDash_{g} \phi \Rightarrow \mathcal{M}, t \vDash_{g} \psi\right] \\
\mathcal{M}, s \vDash_{g} \forall x \cdot \phi & \Longleftrightarrow \forall d \in D^{\mathcal{M}} \cdot \mathcal{M}, s \vDash_{g[x \mapsto d]} \phi \\
& \Longleftrightarrow \mathcal{M}, s \vDash_{g} \phi \text { or } \mathcal{M}, s \vDash_{g} \psi \\
\mathcal{M}, s \vDash_{g} \phi \vee \psi & \Longleftrightarrow \exists d \in D^{\mathcal{M}} \cdot \mathcal{M}, s \vDash_{g[x \mapsto d]} \phi
\end{array}
$$

Definition (Support semantics)

Let $\mathcal{M}=\left\langle M_{w} \mid w \in W^{\mathcal{M}}\right\rangle$ be a model, $s \subseteq W^{\mathcal{M}}$ an info state and $g: \operatorname{Var} \rightarrow D^{\mathcal{M}}$ an assignment. We define

$$
\begin{aligned}
& \mathcal{M}, s \vDash_{g} \perp \\
& \mathcal{M}, s \vDash_{g}\left[t_{1}=t_{2}\right] \\
& \mathcal{M}, s \vDash_{g} R\left(t_{1}, \ldots\right. \\
& \mathcal{M}, s \vDash_{g} \phi \wedge \psi \\
& \mathcal{M}, s \vDash_{g} \phi \rightarrow \psi \\
& \mathcal{M}, s \vDash_{g} \forall x . \phi
\end{aligned}
$$

$$
\Longleftrightarrow s=\varnothing
$$

$$
\Longleftrightarrow \nabla w \in S \cdot\left\lfloor g\left(t_{1}\right) \sim_{w} g\left(t_{2}\right)\right\rfloor
$$

$$
\mathcal{M}, s \vDash_{g} R\left(t_{1}, \ldots, t_{n}\right) \quad \Longleftrightarrow \quad \forall w \in s .\left[\mathbf{R}_{w}^{\mathcal{M}}\left(g\left(t_{1}\right), \ldots, g\left(t_{n}\right)\right)\right]
$$

$$
\Longleftrightarrow \mathcal{M}, s \vDash_{g} \phi \text { and } \mathcal{M}, s \vDash_{g} \psi
$$

$$
\Longleftrightarrow \quad \forall t \subseteq s \cdot\left[\mathcal{M}, t \vDash_{g} \phi \Rightarrow \mathcal{M}, t \vDash_{g} \psi\right]
$$

$$
\Longleftrightarrow \forall d \in D^{\mathcal{M}} \cdot \mathcal{M}, s \vDash_{g[x \mapsto d]} \phi
$$

$\mathcal{M}, s \vDash_{g} \phi \vee \psi$
$\Longleftrightarrow \mathcal{M}, s \vDash_{g} \phi$ or $\mathcal{M}, s \vDash_{g} \psi$
$\mathcal{M}, s \vDash_{g} \bar{\exists} x . \phi$
$\Longleftrightarrow \exists d \in D^{\mathcal{M}} . \mathcal{M}, s \vDash_{g[x \mapsto d]} \phi$

Definition (Support semantics)

Let $\mathcal{M}=\left\langle M_{w} \mid w \in W^{\mathcal{M}}\right\rangle$ be a model, $s \subseteq W^{\mathcal{M}}$ an info state and $g: \operatorname{Var} \rightarrow D^{\mathcal{M}}$ an assignment. We define

$$
\begin{aligned}
& \mathcal{M}, s \vDash_{g} \perp \\
& \mathcal{M}, s \vDash_{g}\left[t_{1}=t_{2}\right] \\
& \mathcal{M}, s \vDash_{g} R\left(t_{1}, \ldots\right. \\
& \mathcal{M}, s \vDash_{g} \phi \wedge \psi \\
& \mathcal{M}, s \vDash_{g} \phi \rightarrow \psi \\
& \mathcal{M}, s \vDash_{g} \forall x . \phi
\end{aligned}
$$

$$
\Longleftrightarrow s=\varnothing
$$

$$
\Longleftrightarrow v w \in s \cdot\left[g\left(\iota_{1}\right) \sim_{w} g\left(\iota_{2}\right)\right]
$$

$$
\mathcal{M}, s \vDash_{g} R\left(t_{1}, \ldots, t_{n}\right) \quad \Longleftrightarrow \quad \forall w \in s .\left[\mathbf{R}_{w}^{\mathcal{M}}\left(g\left(t_{1}\right), \ldots, g\left(t_{n}\right)\right)\right]
$$

$$
\Longleftrightarrow \mathcal{M}, s \vDash_{g} \phi \text { and } \mathcal{M}, s \vDash_{g} \psi
$$

$$
\Longleftrightarrow \quad \forall t \subseteq s .\left[\mathcal{M}, t \vDash_{g} \phi \Rightarrow \mathcal{M}, t \vDash_{g} \psi\right]
$$

$$
\Longleftrightarrow \quad \forall d \in D^{\mathcal{M}} \cdot \mathcal{M}, s \vDash_{g[x \mapsto d]} \phi
$$

$\mathcal{M}, s \vDash_{g} \phi \vee \psi$
$\Longleftrightarrow \mathcal{M}, s \vDash_{g} \phi$ or $\mathcal{M}, s \vDash_{g} \psi$
$\mathcal{M}, s \vDash_{g} \bar{\exists} x . \phi$
$\Longleftrightarrow \exists d \in D^{\mathcal{M}} . \mathcal{M}, s \vDash_{g[x \mapsto d]} \phi$

Definition (Direct sum - \oplus)

- $W^{\mathcal{M} \oplus \mathcal{N}}=W^{\mathcal{M}} \sqcup W^{\mathcal{N}}$
- $D^{\mathcal{M} \oplus \mathcal{N}}=D^{\mathcal{M}} \times D^{\mathcal{N}}$
- $f^{\mathcal{M} \oplus \mathcal{N}}=\left\langle f^{\mathcal{M}} ; f^{\mathcal{N}}\right\rangle$
- If $w \in W^{\mathcal{M}}$ then $\left\langle d_{1}, e_{1}\right\rangle \sim_{w}^{\mathcal{M}} \oplus \mathcal{N}\left\langle d_{2}, e_{2}\right\rangle \Longleftrightarrow d_{1} \sim^{\mathcal{M}} d_{2}$

If $w \in W^{\mathcal{N}}$ then $\left\langle d_{1}, e_{1}\right\rangle \sim_{w}^{\mathcal{M}} \oplus \mathcal{N}\left\langle d_{2}, e_{2}\right\rangle \Longleftrightarrow e_{1} \sim^{\mathcal{N}} e_{2}$

- If $w \in W^{\mathcal{M}}$ then
$R_{w}^{\mathcal{M} \oplus \mathcal{N}}\left(\left\langle d_{1}, e_{1}\right\rangle, \ldots,\left\langle d_{n}, e_{n}\right\rangle\right)=R_{w}^{\mathcal{M}}\left(d_{1}, \ldots, d_{n}\right)$
If $w \in W^{\mathcal{N}}$ then

$$
R_{w}^{\mathcal{M} \oplus \mathcal{N}}\left(\left\langle d_{1}, e_{1}\right\rangle, \ldots,\left\langle d_{n}, e_{n}\right\rangle\right)=R_{w}^{\mathcal{N}}\left(e_{1}, \ldots, e_{n}\right)
$$

Definition (Blowup Model)

Given a model \mathcal{M} we define its blow-up as the model

$$
\mathcal{B M}=\left\langle W^{\mathcal{M}}, D^{\mathcal{B M}}, I^{\mathcal{B M}}, \sim^{\mathcal{B M}}\right\rangle
$$

where

- $D^{\mathcal{B M}}$ is the set of terms in the signature $\Sigma \sqcup\left\{\underline{d} \mid d \in D^{\mathcal{M}}\right\}$
- Given $\underline{t_{1}}, \underline{t_{2}}, \cdots \in D^{\mathcal{B M}}$ we define

$$
\begin{aligned}
\underline{t_{1}} \sim_{w}^{\mathcal{B} \mathcal{M}} \underline{t_{2}} & \Longleftrightarrow t_{1} \sim_{w}^{\mathcal{M}} t_{2} \\
R_{w}^{\mathcal{B M}}\left(\underline{t_{1}}, \ldots, \underline{t_{n}}\right) & \Longleftrightarrow R_{w}^{\mathcal{M}}\left(t_{1}, \ldots, t_{n}\right)
\end{aligned}
$$

- $f^{\mathcal{B M}}$ is defined as the formal term combinator

$$
f^{\mathcal{B M}}\left(\underline{t_{1}}, \ldots, \underline{t_{n}}\right)=\underline{f\left(t_{1}, \ldots, t_{n}\right)}
$$

Definition (The permutation model $\mathcal{B}_{\sigma} \mathcal{M}$)

Given \mathcal{M} a model and $\sigma \in \mathfrak{S}\left(D^{\mathcal{M}}\right)$ a permutation, we define

$$
\mathcal{B}_{\sigma} \mathcal{M}=\left\langle W^{\mathcal{M}}, D^{\mathcal{B} \mathcal{M}}, I^{\mathcal{B}_{\sigma} \mathcal{M}}, \sim^{\mathcal{B}_{\sigma} \mathcal{M}}\right\rangle
$$

where

- $f^{\mathcal{B}_{\sigma} \mathcal{M}}=f^{\mathcal{B M}}$ is the formal combinator of terms.
- Given $\underline{t_{1}}, \underline{t_{2}}, \cdots \in D^{\mathcal{B M}}$ it holds

$$
\begin{aligned}
R_{w}^{\mathcal{B}_{\sigma} \mathcal{M}}\left(\underline{t_{1}}, \ldots, t_{n}\right) & \Longleftrightarrow R_{w}^{\mathcal{B} \mathcal{M}}\left(\sigma^{-1} \underline{t_{1}}, \ldots, \sigma^{-1} \underline{t_{n}}\right) \\
\underline{t}_{1} \sim_{w}^{\mathcal{B}_{\sigma} \mathcal{M}} \underline{t_{2}} & \Longleftrightarrow \sigma^{-1} \underline{t_{1}} \sim_{w}^{\mathcal{B} \mathcal{M}} \sigma^{-1} \underline{t_{2}}
\end{aligned}
$$

Hospital protocol: formalization

$$
\begin{gathered}
\text { The protocol: } \\
\tau \equiv Q(x) \leftrightarrow S_{1}(x) \vee \forall y \cdot S_{2}(y)
\end{gathered}
$$

The dependence:

$$
\tau, ? S_{1}(x) \vee ? \forall y \cdot S_{2}(y) \vDash ? Q(x)
$$

w_{0}	w_{1}	w_{2}
$\square S_{1}, S_{2}, Q$	$\square S_{2}$	$\square S_{1}, S_{2}, Q$
$\square S_{1}, Q$	\square	$\square S_{2}, Q$
$\square S_{2}$	\square	$\square S_{2}, Q$

Hospital protocol: formalization

$$
\begin{gathered}
\text { The protocol: } \\
\tau \equiv Q(x) \leftrightarrow S_{1}(x) \vee \forall y \cdot S_{2}(y)
\end{gathered}
$$

The dependence:

$$
\tau, ? S_{1}(x) \vee ? \forall y \cdot S_{2}(y) \vDash ? Q(x)
$$

w_{0}	w_{1}	w_{2}
$\square S_{1}, S_{2}, Q$	$\square S_{2}$	$\square S_{1}, S_{2}, Q$
$\square S_{1}, Q$	\square	$\square S_{2}, Q$
$\square S_{2}$	\square	$\square S_{2}, Q$

Hospital protocol: formalization

$$
\begin{gathered}
\text { The protocol: } \\
\tau \equiv Q(x) \leftrightarrow S_{1}(x) \vee \forall y \cdot S_{2}(y)
\end{gathered}
$$

The dependence:

$$
\tau, ? S_{1}(x) \vee ? \forall y \cdot S_{2}(y) \vDash ? Q(x)
$$

w_{0}	w_{1}	w_{2}
$\square S_{1}, S_{2}, Q$	$\square S_{2}$	$\square S_{1}, S_{2}, Q$
$\square S_{1}, Q$	\square	$\square S_{2}, Q$
$\square S_{2}$	\square	$\square S_{2}, Q$

