Disjunction and Existence Properties in Inquisitive Logic

Gianluca Grilletti

June 30, 2017

Institute for Logic, Language and Computation (ILLC), Amsterdam, the Netherlands

Motivating example: hospital protocol

- A disease gives rise to two symptoms S_1 and S_2 .
- S_1 is much worse than S_2 .
- Depending on which symptoms the patients show, they have to be put in quarantine.

Motivating example: hospital protocol

- A disease gives rise to two symptoms S_1 and S_2 .
- S_1 is much worse than S_2 .
- Depending on which symptoms the patients show, they have to be put in quarantine.

Protocol

- Patient x shows $S_1 \Rightarrow x$ in quarantine.
- Everyone shows $S_2 \Rightarrow$ Everyone in quarantine.
- Otherwise, no quarantine.

- $Q_1:$ Wether x shows S_1
- Q_2 : Wether everyone shows S_2 determine
- Q_3 : Wether x is in quarantine

 $Q_1:$ Wether x shows S_1

Q_2 : We ther everyone shows S_2 determine

 Q_3 : Wether x is in quarantine

<u>Observation</u>: Q_1 , Q_2 and Q_3 are questions.

Question Q_3 depends on **questions** Q_1 and Q_2 .

How can we represent dependency between questions in a logical framework?

Question Q_3 depends on questions Q_1 and Q_2 .

Logic and Questions

In FOL (classical first-order logic) a formula is determined by its associated truth-value in any context \Rightarrow a FOL formula represents a **statement**.

Questions do not have an associated truth-value \Rightarrow questions are not (directly) representable in FOL.

The aim of the logic InqBQ (inquisitive first-order logic) is to

- extend FOL to represent **questions** as formulas;
- extend FOL entailment to capture **dependency** between questions.

 $\tt InqBQ:$ Adding Questions to <code>FOL</code>

Disjunction Property

Existence Property

InqBQ: Adding Questions to FOL

$$\phi ::= \bot | [t_1 = t_2] | R(t_1, \dots, t_n) | \phi \land \phi | \phi \to \phi | \forall x. \phi \quad | \quad \phi \lor \phi | \exists x. \phi$$

shorthands

$$\neg\phi\coloneqq\phi\to\bot\qquad \phi\vee\psi\coloneqq\neg(\neg\phi\wedge\neg\psi)\qquad \exists x.\phi\coloneqq\neg\forall x.\neg\phi$$

$$\phi ::= \bot | [t_1 = t_2] | R(t_1, \dots, t_n) | \phi \land \phi | \phi \to \phi | \forall x.\phi \quad | \quad \phi \lor \phi | \exists x.\phi$$

shorthands

$$\neg\phi \coloneqq \phi \to \bot \qquad \phi \lor \psi \coloneqq \neg(\neg\phi \land \neg\psi) \qquad \exists x.\phi \coloneqq \neg \forall x.\neg\phi$$

A formula is called FOL or *classical* if it does not contain the symbols \vee and $\overline{\exists}$.

FOL formulas are denoted with α , β , ...

Intuition

FOL formulas represent *statements*.

 $(c = d) \lor (c \neq d) \equiv$ "c is equal to d or not" $\exists x.[x = c] \equiv$ "There is an element equal to c"

The operator \vee introduces alternative questions.

 $(c = d) \lor (c \neq d) \equiv$ "Is c equal to d or not?"

The operator $\overline{\exists}$ introduces existential questions. $\overline{\exists} x.[x=c] \equiv$ "Which is an element equal to c?" Fix a signature $\Sigma = \{f_i, R_j\}_{i \in I, j \in J}$.

Definition (FOL structure)

$$M = \langle D, \mathbf{f}_i, \mathbf{R}_j, \sim \rangle_{i \in I, j \in J}$$

where

- $\mathbf{f}_i: D^{\operatorname{ar}(f_i)} \to D$ is the interpretation of f_i ;
- $\mathbf{R}_j \subseteq D^{\operatorname{ar}(R_j)}$ is the interpretation of R_j ;
- $[\sim] \subseteq D^2$ is an equivalence relation and a congruence with respect to $\{\mathbf{f}_i, \mathbf{R}_j\}_{i \in I, j \in J}$.

$$M = \langle D, \mathbf{f}_i, \mathbf{R}_j, \sim \rangle_{i \in I, j \in J}$$

Definition (Skeleton)

Given M a FOL structure, define

 $\operatorname{Sk}(M) = \langle D, \mathbf{f}_i \rangle_{i \in I}$

i.e., leaving out relations and equality.

Definition (Information structure)

 $\mathcal{M} = \left\langle M_w | w \in W^{\mathcal{M}} \right\rangle$

where the M_w are classical structures sharing the same skeleton. We will call $W^{\mathcal{M}}$ the set of *worlds* of the structure.

Definition (Information structure)

$$\mathcal{M} = \left\langle M_w | w \in W^{\mathcal{M}} \right\rangle$$

where the M_w are classical structures sharing the same skeleton. We will call $W^{\mathcal{M}}$ the set of *worlds* of the structure.

Example of a simple model in the signature $\{\mathbf{f}^{(1)}\}$.

Definition (Information structure)

$$\mathcal{M} = \left\langle M_w | w \in W^{\mathcal{M}} \right\rangle$$

where the M_w are classical structures sharing the same skeleton. We will call $W^{\mathcal{M}}$ the set of *worlds* of the structure.

Example of a simple model in the signature $\{\mathbf{f}^{(1)}\}$.

The arrow represents \mathbf{f} .

Definition (Information structure)

$$\mathcal{M} = \left\langle M_w | w \in W^{\mathcal{M}} \right\rangle$$

where the M_w are classical structures sharing the same skeleton. We will call $W^{\mathcal{M}}$ the set of *worlds* of the structure.

Example of a simple model in the signature $\{\mathbf{f}^{(1)}\}$.

The arrow represents \mathbf{f} . The colours represent equality.

w_0	w_1	

Truth-condition encoded by World

Truth-conditionencoded byWorldInformationencoded byInfo State

Semantics of InqBQ: supporting relation

 $\mathcal{M} \rightsquigarrow \text{info structure}$ $s \rightsquigarrow \text{info state}$ $g \rightsquigarrow \text{assignment}$ $\mathcal{M}, s \vDash_g \phi$

$$\begin{split} \mathcal{M}, s \vDash_{g} \bot & \iff s = \emptyset \\ \mathcal{M}, s \vDash_{g} [t_{1} = t_{2}] & \iff \forall w \in s. \left[g(t_{1}) \sim_{w}^{\mathcal{M}} g(t_{2})\right] \\ \mathcal{M}, s \vDash_{g} R(t_{1}, \dots, t_{n}) & \iff \forall w \in s. \left[\mathbf{R}_{w}^{\mathcal{M}}(g(t_{1}), \dots, g(t_{n}))\right] \\ \mathcal{M}, s \vDash_{g} \phi \land \psi & \iff \mathcal{M}, s \vDash_{g} \phi \text{ and } \mathcal{M}, s \vDash_{g} \psi \\ \mathcal{M}, s \vDash_{g} \phi \rightarrow \psi & \iff \forall t \subseteq s. \left[\mathcal{M}, t \vDash_{g} \phi \Rightarrow \mathcal{M}, t \vDash_{g} \psi\right] \\ \mathcal{M}, s \vDash_{g} \forall x. \phi & \iff \forall d \in D^{\mathcal{M}}. \mathcal{M}, s \vDash_{g} \psi \\ \mathcal{M}, s \vDash_{g} \phi \lor \psi & \iff \mathcal{M}, s \vDash_{g} \phi \text{ or } \mathcal{M}, s \vDash_{g} \psi$$

 $\mathcal{M}, s \models_g \overline{\exists} x. \phi \qquad \iff \exists d \in D^{\mathcal{M}}. \mathcal{M}, s \models_{g[x \mapsto d]} \phi$

$$\mathcal{M}, s \vDash_g [t_1 = t_2] \iff \forall w \in s. [g(t_1) \sim_w^{\mathcal{M}} g(t_2)]$$

$$\mathcal{M}, s \vDash_g [t_1 = t_2] \iff \forall w \in s. [g(t_1) \sim_w^{\mathcal{M}} g(t_2)]$$

$$\mathcal{M}, s \vDash_g [t_1 = t_2] \iff \forall w \in s. [g(t_1) \sim_w^{\mathcal{M}} g(t_2)]$$

$$\mathcal{M}, s \vDash_g [t_1 = t_2] \iff \forall w \in s. [g(t_1) \sim_w^{\mathcal{M}} g(t_2)]$$

Fact 1: The info states that support a FOL formula form a *principal ideal* (truth-conditionality).

An alternative way to state this: $s \models \alpha$ iff $\forall w \in s.\{w\} \models \alpha$.

$$\mathcal{M}, s \vDash_g \phi \lor \psi \quad \iff \quad \mathcal{M}, s \vDash_g \phi \text{ or } \mathcal{M}, s \vDash_g \psi$$

$$[c = d] \lor [c \neq d] \equiv$$
 "Is c equal to d?"

$$\mathcal{M}, s \vDash_g \phi \lor \psi \quad \iff \quad \mathcal{M}, s \vDash_g \phi \text{ or } \mathcal{M}, s \vDash_g \psi$$

$$[c = d] \lor [c \neq d] \equiv$$
 "Is c equal to d?"

$$\mathcal{M}, s \vDash_g \phi \lor \psi \quad \iff \quad \mathcal{M}, s \vDash_g \phi \text{ or } \mathcal{M}, s \vDash_g \psi$$

$$[c = d] \lor [c \neq d] \equiv$$
 "Is c equal to d?"

$$\mathcal{M}, s \vDash_g \phi \lor \psi \quad \iff \quad \mathcal{M}, s \vDash_g \phi \text{ or } \mathcal{M}, s \vDash_g \psi$$

$$[c = d] \lor [c \neq d] \equiv$$
 "Is c equal to d?"

Fact 2: The info states that support a formula form an *ideal*, but in general *not principal* (Persistency).

Uniform substitution does not hold!

Fact 3: ϕ is truth-conditional iff is equivalent to a FOL formula.

$$\mathcal{M}, s \vDash_g \exists x. \phi \quad \Longleftrightarrow \quad \exists d \in D^{\mathcal{M}}. \mathcal{M}, s \vDash_{g[x \mapsto d]}$$

 $\exists x.[f(x) = x] \equiv$ "Which is a fixed point of f?"

• Frame = $\langle \mathcal{P}(W) \setminus \{ \emptyset \}, \supseteq \rangle$

- Frame = $\langle \mathcal{P}(W) \setminus \{ \emptyset \}, \supseteq \rangle$
- Constant domain $D^{\mathcal{M}}$.

- Frame = $\langle \mathcal{P}(W) \setminus \{ \emptyset \}, \supseteq \rangle$
- Constant domain $D^{\mathcal{M}}$.
- $\llbracket A \rrbracket_g = \{ w | M_w \vDash_g^{\texttt{FOL}} A \}^{\downarrow}$ for A atomic

Some insight... Information structures as Kripke models

- Frame = $\langle \mathcal{P}(W) \setminus \{ \emptyset \}, \supseteq \rangle$
- Constant domain $D^{\mathcal{M}}$.
- $\llbracket A \rrbracket_g = \{ w | M_w \vDash_g^{\mathsf{FOL}} A \}^{\downarrow} \text{ for } A \text{ atomic}$

Fact: InqBQ is the logic of a class of Kripke models.

Theorem (Disjunction and Existence Property) Consider Γ a FOL theory. Then

- If $\Gamma \vDash \phi \lor \psi$ then $\Gamma \vDash \phi$ or $\Gamma \vDash \psi$.
- If $\Gamma \models \overline{\exists} x.\phi(x)$ then $\Gamma \models \phi(t)$ for some term t.

Corollary

If $\Gamma \vDash \forall \overline{x} \,\overline{\exists} ! y.\phi(\overline{x}, y)$ (i.e., ϕ defines a function), then there exists a term t such that $\Gamma \vDash \forall \overline{x}.\phi(\overline{x}, t)$.

Theorem (Disjunction and Existence Property) Consider Γ a FOL theory. Then

- If $\Gamma \vDash \phi \lor \psi$ then $\Gamma \vDash \phi$ or $\Gamma \vDash \psi$.
- If $\Gamma \models \overline{\exists} x.\phi(x)$ then $\Gamma \models \phi(t)$ for some term t.

Corollary

If $\Gamma \vDash \forall \overline{x} \ \overline{\exists} ! y.\phi(\overline{x}, y)$ (i.e., ϕ defines a function), then there exists a term t such that $\Gamma \vDash \forall \overline{x}.\phi(\overline{x}, t)$.

But how do we prove this?

Theorem (Disjunction and Existence Property) Consider Γ a FOL theory. Then

- If $\Gamma \vDash \phi \lor \psi$ then $\Gamma \vDash \phi$ or $\Gamma \vDash \psi$.
- If $\Gamma \models \overline{\exists} x.\phi(x)$ then $\Gamma \models \phi(t)$ for some term t.

Corollary

If $\Gamma \vDash \forall \overline{x} \,\overline{\exists} ! y.\phi(\overline{x}, y)$ (i.e., ϕ defines a function), then there exists a term t such that $\Gamma \vDash \forall \overline{x}.\phi(\overline{x}, t)$.

But how do we prove this?

By playing with the models!

Model-theoretic constructions

Disjunction Property

Disjunction Property - Proof idea

$$\Gamma \not\models \phi \text{ and } \Gamma \not\models \psi \implies \Gamma \not\models \phi \! \lor \! \psi$$

$$\begin{array}{c} \vDash \Gamma \\ \notin \phi \\ \vDash \psi \end{array}$$

$$\models \Gamma \\ \models \phi \\ \notin \psi$$

Disjunction Property - Proof idea

$$\Gamma \not\models \phi \text{ and } \Gamma \not\models \psi \implies \Gamma \not\models \phi \lor \psi$$

Disjunction Property - Proof idea

$$\Gamma \not\models \phi \text{ and } \Gamma \not\models \psi \implies \Gamma \not\models \phi \lor \psi$$

Combining models - the direct sum \oplus

We can define a model $\mathcal{M}\oplus\mathcal{N}$ such that

 $W^{\mathcal{M}\oplus\mathcal{N}} = W^{\mathcal{M}} \sqcup W^{\mathcal{N}}$ and $D^{\mathcal{M}\oplus\mathcal{N}} = D^{\mathcal{M}} \times D^{\mathcal{N}}$ \mathcal{N} \mathcal{M} w_0 w_1 v_0 v_1 ab 🛔 Ь

22

We can define a model $\mathcal{M}\oplus\mathcal{N}$ such that

$$W^{\mathcal{M}\oplus\mathcal{N}} = W^{\mathcal{M}} \sqcup W^{\mathcal{N}}$$
 and $D^{\mathcal{M}\oplus\mathcal{N}} = D^{\mathcal{M}} \times D^{\mathcal{N}}$

 \mathcal{M}'

 \mathcal{N}'

$$\begin{aligned} \mathbf{f}^{\mathcal{M}'}(ac) &= \left\langle \mathbf{f}^{\mathcal{M}}(a), \mathbf{f}^{\mathcal{N}}(c) \right\rangle \\ \langle x, y \rangle \sim_{w_0}^{\mathcal{M}'} \langle x', y' \rangle &\iff x \sim_{w_0}^{\mathcal{M}} x' \end{aligned}$$

We can define a model $\mathcal{M}\oplus\mathcal{N}$ such that

 $W^{\mathcal{M}\oplus\mathcal{N}} = W^{\mathcal{M}} \sqcup W^{\mathcal{N}} \qquad \text{and} \qquad D^{\mathcal{M}\oplus\mathcal{N}} = D^{\mathcal{M}} \times D^{\mathcal{N}}$

w_0	w_1	v_0	v_1
ac ad bc bd		\times	ac ad bc bd

 $\mathcal{M}\oplus\mathcal{N}$

Theorem (Main property of \oplus)

Let $s \subseteq W^{\mathcal{M}}$, $g: \operatorname{Var} \to D^{\mathcal{M}} \times D^{\mathcal{N}}$ an assignment, ϕ a formula. Then:

$$\mathcal{M} \oplus \mathcal{N}, s \vDash_g \phi \iff \mathcal{M}, s \vDash_{\pi_1 g} \phi$$

Corollary

- Let Γ be a FOL theory. If $\mathcal{M} \vDash_{\pi_1 g} \Gamma$ and $\mathcal{N} \vDash_{\pi_2 g} \Gamma$ then $\mathcal{M} \oplus \mathcal{N} \vDash_g \Gamma$.
- Let ϕ be a formula. If $\mathcal{M} \not\models_{\pi_1 g} \phi$ then $\mathcal{M} \oplus \mathcal{N} \not\models_g \phi$.

Theorem (Main property of \oplus)

Let $s \subseteq W^{\mathcal{M}}$, $g: \operatorname{Var} \to D^{\mathcal{M}} \times D^{\mathcal{N}}$ an assignment, ϕ a formula. Then:

$$\mathcal{M} \oplus \mathcal{N}, s \vDash_g \phi \iff \mathcal{M}, s \vDash_{\pi_1 g} \phi$$

Corollary

- Let Γ be a FOL theory. If $\mathcal{M} \vDash_{\pi_1 g} \Gamma$ and $\mathcal{N} \vDash_{\pi_2 g} \Gamma$ then $\mathcal{M} \oplus \mathcal{N} \vDash_g \Gamma$.
- Let ϕ be a formula. If $\mathcal{M} \not\models_{\pi_1 g} \phi$ then $\mathcal{M} \oplus \mathcal{N} \not\models_g \phi$.

And this is exactly what we needed!

Corollary

A FOL theory Γ has the disjunction property.

Existence Property

$$\Gamma \not\models \phi(t) \text{ for all } t \implies \Gamma \not\models \exists x.\phi(x)$$

Strategy

$$\Gamma \not\models \phi(t) \text{ for all } t \implies \Gamma \not\models \overline{\exists} x.\phi(x)$$

Strategy

$$\Gamma \not\models \phi(t) \text{ for all } t \implies \Gamma \not\models \exists x.\phi(x)$$

Strategy

 $\mathcal{M} \uplus \mathcal{M}'$

$$\Gamma \not\models \phi(t) \text{ for all } t \implies \Gamma \not\models \exists x.\phi(x)$$

Strategy

$\mathcal{M} \uplus \mathcal{M}'$

$$\Gamma \not\models \phi(t) \text{ for all } t \implies \Gamma \not\models \overline{\exists} x.\phi(x)$$

Strategy

$\mathcal{M} \uplus \mathcal{M}'$

We need a way to deal with the interpretation of the functions.

Relaxing the structure - the blow up model \mathcal{BM}

We want to define a model \mathcal{BM} elementary equivalent to $\mathcal M$ such that

$$W^{\mathcal{BM}} = W^{\mathcal{M}}$$
 $D^{\mathcal{BM}} = \{ \text{closed terms of } \Sigma(D^M) \}$

$$\Sigma = \left\{c; f^{(1)}\right\}$$

We want to define a model \mathcal{BM} elementary equivalent to $\mathcal M$ such that

$$W^{\mathcal{BM}} = W^{\mathcal{M}}$$
 $D^{\mathcal{BM}} = \{ \text{closed terms of } \Sigma(D^M) \}$

$$\Sigma = \left\{c; f^{(1)}\right\}$$

c

We want to define a model \mathcal{BM} elementary equivalent to \mathcal{M} such that

$$W^{\mathcal{BM}} = W^{\mathcal{M}}$$
 $D^{\mathcal{BM}} = \{ \text{closed terms of } \Sigma(D^M) \}$

: : :

$$\Sigma = \{c; f^{(1)}\} \qquad f(f(\underline{d})) \blacksquare \quad f(f(\underline{e})) \blacksquare \quad f(f(c)) \blacksquare$$
$$f(\underline{d}) \blacksquare \quad f(\underline{e}) \blacksquare \quad f(c) \blacksquare$$
$$d \blacksquare \qquad \underbrace{e}_{\Box} \qquad c \blacksquare$$

We want to define a model \mathcal{BM} elementary equivalent to \mathcal{M} such that

$$W^{\mathcal{BM}} = W^{\mathcal{M}}$$
 $D^{\mathcal{BM}} = \{\text{closed terms of } \Sigma(D^M)\}$

$$\Sigma = \{c; f^{(1)}\} \qquad f(f(\underline{d})) \qquad f(f(\underline{e})) \qquad f(f(c)) \qquad f(f(c)) \qquad f(f(c)) \qquad f(c) \qquad f($$

$$\mathbf{f}^{\mathcal{B}\mathcal{M}}(t) = f(t)$$

We want to define a model \mathcal{BM} elementary equivalent to \mathcal{M} such that

$$W^{\mathcal{BM}} = W^{\mathcal{M}}$$
 $D^{\mathcal{BM}} = \{\text{closed terms of } \Sigma(D^M)\}$

Theorem (Blow-up main property)

Let $s \subseteq W^{\mathcal{M}}$ be an info state, t_1, \ldots, t_n closed terms of $\Sigma(D^{\mathcal{M}})$ and $\phi(x_1, \ldots, x_n)$ a formula. Then

$$\mathcal{BM}, s \models \phi(t_1, \dots, t_n) \iff \mathcal{M}, s \models \phi(t_1^{\mathcal{M}}, \dots, t_n^{\mathcal{M}})$$

 $\mathcal{B}\mathcal{M} \stackrel{:}{:} \stackrel{:$

The role of the elements \underline{d} and \underline{e} has been reversed, while c assumes the same role.

Swapping and gluing - full permutation model $\mathfrak{S}\,\mathcal{M}$

$\mathcal{M} \rightsquigarrow \mathcal{B}\mathcal{M} \rightsquigarrow \mathcal{B}^{\sigma}\mathcal{M} \rightsquigarrow \mathfrak{S}\mathcal{M}$

The full permutation model - $\mathfrak{S}\mathcal{M}$

The idea to build up the model $\mathfrak{S}\mathcal{M}$ is to consider all the models $\mathcal{B}^{\sigma}\mathcal{M}$ for $\sigma \in \mathfrak{S}(D^{\mathcal{M}})$ and combine them into a unique structure. This is possible because the models $\mathcal{B}^{\sigma}\mathcal{M}$ share the same skeleton.

$\mathcal{M} \rightsquigarrow \mathcal{B}\mathcal{M} \rightsquigarrow \mathcal{B}^{\sigma}\mathcal{M} \rightsquigarrow \mathfrak{S}\mathcal{M}$

The full permutation model - $\mathfrak{S}\mathcal{M}$

The idea to build up the model $\mathfrak{S}\mathcal{M}$ is to consider all the models $\mathcal{B}^{\sigma}\mathcal{M}$ for $\sigma \in \mathfrak{S}(D^{\mathcal{M}})$ and combine them into a unique structure. This is possible because the models $\mathcal{B}^{\sigma}\mathcal{M}$ share the same skeleton.

Theorem (Properties of \mathfrak{SM})

- Let Γ be a FOL theory. If $\mathcal{M} \models \Gamma$ then $\mathfrak{S} \mathcal{M} \models \Gamma$.
- Let g be a fixed assignment. If $\mathcal{M} \not\models_g \phi(t)$ for every term t, then $\mathfrak{S} \mathcal{M} \not\models \exists x.\phi(x)$.

The characteristic model of a FOL theory - \mathcal{M}_{Γ}

Theorem (The characteristic model of Γ)

Given Γ a FOL theory, there exists a model \mathcal{M}_{Γ} and an evaluation g_{Γ} such that

$$\mathcal{M}_{\Gamma} \vDash_{g_{\Gamma}} \phi \iff \Gamma \vDash \phi$$

Idea to build \mathcal{M}_{Γ}

• For every non-entailment $\Gamma \notin \psi$ choose $\langle \mathcal{M}_{\psi}, g_{\psi} \rangle$ such that

$$\mathcal{M}_{\psi} \vDash \Gamma \qquad \mathcal{M}_{\psi} \not\models_{g_{\psi}} \psi$$

• Combine the models and assignments choosen.

Theorem

Let Γ be a closed FOL theory. Then

 $\Gamma \not\models \phi(t) \text{ for every } t \text{ term} \implies \Gamma \not\models \exists x.\phi(x)$

Proof

Consider the characteristic model \mathcal{M}_{Γ} and the assignment g_{Γ} . Then

$$\mathcal{M}_{\Gamma} \models \Gamma \qquad \implies \mathfrak{S}(\mathcal{M}_{\Gamma}) \models \Gamma$$
$$\mathcal{M}_{\Gamma} \not\models_{g_{\Gamma}} \phi(t) \text{ for every } t \qquad \implies \mathfrak{S}(\mathcal{M}_{\Gamma}) \not\models \overline{\exists} x.\phi(x)$$

Thus $\Gamma \notin \overline{\exists} x.\phi(x)$ as wanted.

Thank you for your attention!

I. Ciardelli.

Inquisitive semantics and intermediate logics.

MSc Thesis, University of Amsterdam, 2009.

I. Ciardelli.

Dependency as question entailment.

In S. Abramsky, J. Kontinen, J. Väänänen, and H. Vollmer, editors, *Dependence Logic: theory and applications*, pages 129–181. Springer International Publishing Switzerland, 2016.

I. Ciardelli.

Questions in logic.

PhD thesis, Institute for Logic, Language and Computation, University of Amsterdam, 2016.

F. Roelofsen.

Algebraic foundations for inquisitive semantics.

In H. van Ditmarsch, J. Lang, and J. Shier, editors, *Proceedings of the Third International Conference on Logic, Rationality, and Interaction*, pages 233–243. Springer-Verlag, 2011.

F. Yang and J. Väänänen.

Propositional logics of dependence.

Annals of Pure and Applied Logic, 167(7):557 - 589, 2016.

Let $\mathcal{M} = \langle M_w | w \in W^{\mathcal{M}} \rangle$ be a model, $s \subseteq W^{\mathcal{M}}$ an info state and $g: \text{Var} \to D^{\mathcal{M}}$ an assignment. We define

$$\begin{split} \mathcal{M}, s \vDash_{g} \bot & \iff s = \emptyset \\ \mathcal{M}, s \vDash_{g} [t_{1} = t_{2}] & \iff \forall w \in s. \left[g(t_{1}) \sim_{w}^{\mathcal{M}} g(t_{2})\right] \\ \mathcal{M}, s \vDash_{g} R(t_{1}, \dots, t_{n}) & \iff \forall w \in s. \left[\mathbf{R}_{w}^{\mathcal{M}}(g(t_{1}), \dots, g(t_{n}))\right] \\ \mathcal{M}, s \vDash_{g} \phi \land \psi & \iff \mathcal{M}, s \vDash_{g} \phi \text{ and } \mathcal{M}, s \vDash_{g} \psi \\ \mathcal{M}, s \vDash_{g} \phi \rightarrow \psi & \iff \forall t \subseteq s. \left[\mathcal{M}, t \vDash_{g} \phi \Rightarrow \mathcal{M}, t \vDash_{g} \psi\right] \\ \mathcal{M}, s \vDash_{g} \forall x. \phi & \iff \forall d \in D^{\mathcal{M}}. \mathcal{M}, s \vDash_{g[x \mapsto d]} \phi$$

$$\iff \mathcal{M}, s \vDash_g \phi \text{ or } \mathcal{M}, s \vDash_g \psi$$
$$\iff \exists d \in D^{\mathcal{M}}. \mathcal{M}, s \vDash_{g[x \mapsto d]} \phi$$

Let $\mathcal{M} = \langle M_w | w \in W^{\mathcal{M}} \rangle$ be a model, $s \subseteq W^{\mathcal{M}}$ an info state and $g: \text{Var} \to D^{\mathcal{M}}$ an assignment. We define

$$\begin{array}{lll} \mathcal{M},s\models_{g}\bot & \Longleftrightarrow & s=\varnothing \\ \mathcal{M},s\models_{g}\left[t_{1}=t_{2}\right] & \Longleftrightarrow & \forall w\in s.\left[g(t_{1})\sim_{w}^{\mathcal{M}}g(t_{2})\right] \\ \mathcal{M},s\models_{g}R(t_{1},\ldots,t_{n}) & \Longleftrightarrow & \forall w\in s.\left[\mathbf{R}_{w}^{\mathcal{M}}(g(t_{1}),\ldots,g(t_{n}))\right] \\ \mathcal{M},s\models_{g}\phi\wedge\psi & \Longleftrightarrow & \mathcal{M},s\models_{g}\phi \text{ and } \mathcal{M},s\models_{g}\psi \\ \mathcal{M},s\models_{g}\phi\rightarrow\psi & \Longleftrightarrow & \forall t\subseteq s.\left[\mathcal{M},t\models_{g}\phi\Rightarrow\mathcal{M},t\models_{g}\psi\right] \\ \mathcal{M},s\models_{g}\forall x.\phi & \Longleftrightarrow & \forall d\in D^{\mathcal{M}}.\mathcal{M},s\models_{g[x\mapsto d]}\phi \end{array}$$

$$\iff \mathcal{M}, s \vDash_g \phi \text{ or } \mathcal{M}, s \vDash_g \psi$$
$$\iff \exists d \in D^{\mathcal{M}}. \mathcal{M}, s \vDash_{g[x \mapsto d]} \phi$$

Let $\mathcal{M} = \langle M_w | w \in W^{\mathcal{M}} \rangle$ be a model, $s \subseteq W^{\mathcal{M}}$ an info state and $g: \text{Var} \to D^{\mathcal{M}}$ an assignment. We define

$$\begin{split} \mathcal{M}, s \vDash_{g \perp} & \iff s = \emptyset \\ \mathcal{M}, s \vDash_{g} [t_{1} = t_{2}] & \iff \forall w \in s. \left[g(t_{1}) \sim_{w}^{\mathcal{M}} g(t_{2})\right] \\ \mathcal{M}, s \vDash_{g} \mathcal{R}(t_{1}, \dots, t_{n}) & \iff \forall w \in s. \left[\mathbf{R}_{w}^{\mathcal{M}}(g(t_{1}), \dots, g(t_{n}))\right] \\ \mathcal{M}, s \vDash_{g} \phi \land \psi & \iff \mathcal{M}, s \vDash_{g} \phi \text{ and } \mathcal{M}, s \vDash_{g} \psi \\ \mathcal{M}, s \vDash_{g} \phi \rightarrow \psi & \iff \forall t \subseteq s. \left[\mathcal{M}, t \vDash_{g} \phi \Rightarrow \mathcal{M}, t \vDash_{g} \psi\right] \\ \mathcal{M}, s \vDash_{g} \forall x. \phi & \iff \forall d \in D^{\mathcal{M}}. \mathcal{M}, s \vDash_{g[x \mapsto d]} \phi \end{aligned}$$

$$\iff \mathcal{M}, s \vDash_g \phi \text{ or } \mathcal{M}, s \vDash_g \psi$$
$$\iff \exists d \in D^{\mathcal{M}}. \mathcal{M}, s \vDash_{g[x \mapsto d]} \phi$$

Let $\mathcal{M} = \langle M_w | w \in W^{\mathcal{M}} \rangle$ be a model, $s \subseteq W^{\mathcal{M}}$ an info state and $g: \text{Var} \to D^{\mathcal{M}}$ an assignment. We define

$$\begin{array}{lll} \mathcal{M},s\vDash_{g}\bot & \Longleftrightarrow & s=\varnothing \\ \mathcal{M},s\vDash_{g}\left[t_{1}=t_{2}\right] & \Longleftrightarrow & \forall w\in s.\left[g(t_{1})\sim_{w}^{\mathcal{M}}g(t_{2})\right] \\ \mathcal{M},s\vDash_{g}R(t_{1},\ldots,t_{n}) & \Longleftrightarrow & \forall w\in s.\left[\mathbf{R}_{w}^{\mathcal{M}}(g(t_{1}),\ldots,g(t_{n}))\right] \\ \mathcal{M},s\vDash_{g}\phi\wedge\psi & \Longleftrightarrow & \mathcal{M},s\vDash_{g}\phi \text{ and } \mathcal{M},s\vDash_{g}\psi \\ \mathcal{M},s\vDash_{g}\phi\rightarrow\psi & \Longleftrightarrow & \forall t\subseteq s.\left[\mathcal{M},t\vDash_{g}\phi\Rightarrow\mathcal{M},t\vDash_{g}\psi\right] \\ \mathcal{M},s\vDash_{g}\forall x.\phi & \Longleftrightarrow & \forall d\in D^{\mathcal{M}}.\mathcal{M},s\vDash_{g}[x\mapsto d]\phi$$

 $\mathcal{M}, s \vDash_{g} \phi \lor \psi$ $\mathcal{M}, s \vDash_{g} \overline{\exists} x. \phi$

 $\iff \mathcal{M}, s \vDash_g \phi \text{ or } \mathcal{M}, s \vDash_g \psi$ $\iff \exists d \in D^{\mathcal{M}}. \mathcal{M}, s \vDash_{g[x \mapsto d]} \phi$

Let $\mathcal{M} = \langle M_w | w \in W^{\mathcal{M}} \rangle$ be a model, $s \subseteq W^{\mathcal{M}}$ an info state and $g: \text{Var} \to D^{\mathcal{M}}$ an assignment. We define

$$\begin{array}{lll} \mathcal{M},s\vDash_{g}\bot & \Longleftrightarrow & s=\varnothing \\ \mathcal{M},s\vDash_{g}\left[t_{1}=t_{2}\right] & \Longleftrightarrow & \forall w\in s.\left[g(t_{1})\sim_{w}^{\mathcal{M}}g(t_{2})\right] \\ \mathcal{M},s\vDash_{g}R(t_{1},\ldots,t_{n}) & \Longleftrightarrow & \forall w\in s.\left[\mathbf{R}_{w}^{\mathcal{M}}(g(t_{1}),\ldots,g(t_{n}))\right] \\ \mathcal{M},s\vDash_{g}\phi\wedge\psi & \Longleftrightarrow & \mathcal{M},s\vDash_{g}\phi \text{ and } \mathcal{M},s\vDash_{g}\psi \\ \mathcal{M},s\vDash_{g}\phi\rightarrow\psi & \Longleftrightarrow & \forall t\subseteq s.\left[\mathcal{M},t\vDash_{g}\phi\Rightarrow\mathcal{M},t\vDash_{g}\psi\right] \\ \mathcal{M},s\vDash_{g}\forall x.\phi & \Longleftrightarrow & \forall d\in D^{\mathcal{M}}.\mathcal{M},s\vDash_{g}[x\mapsto d]\phi$$

$$\iff \mathcal{M}, s \vDash_g \phi \text{ or } \mathcal{M}, s \vDash_g \psi$$
$$\iff \exists d \in D^{\mathcal{M}}. \mathcal{M}, s \vDash_{g[x \mapsto d]} \phi$$

Let $\mathcal{M} = \langle M_w | w \in W^{\mathcal{M}} \rangle$ be a model, $s \subseteq W^{\mathcal{M}}$ an info state and $g: \text{Var} \to D^{\mathcal{M}}$ an assignment. We define

$$\begin{split} \mathcal{M}, s \vDash_{g \perp} & \iff s = \varnothing \\ \mathcal{M}, s \vDash_{g} [t_{1} = t_{2}] & \iff \forall w \in s. \left[g(t_{1}) \sim_{w}^{\mathcal{M}} g(t_{2})\right] \\ \mathcal{M}, s \vDash_{g} \mathcal{R}(t_{1}, \dots, t_{n}) & \iff \forall w \in s. \left[\mathbf{R}_{w}^{\mathcal{M}}(g(t_{1}), \dots, g(t_{n}))\right] \\ \mathcal{M}, s \vDash_{g} \phi \land \psi & \iff \mathcal{M}, s \vDash_{g} \phi \text{ and } \mathcal{M}, s \vDash_{g} \psi \\ \mathcal{M}, s \vDash_{g} \phi \rightarrow \psi & \iff \forall t \subseteq s. \left[\mathcal{M}, t \vDash_{g} \phi \Rightarrow \mathcal{M}, t \vDash_{g} \psi\right] \\ \mathcal{M}, s \vDash_{g} \forall x. \phi & \iff \forall d \in D^{\mathcal{M}}. \mathcal{M}, s \vDash_{g[x \mapsto d]} \phi$$

$$\iff \mathcal{M}, s \vDash_g \phi \text{ or } \mathcal{M}, s \vDash_g \psi$$
$$\iff \exists d \in D^{\mathcal{M}}. \mathcal{M}, s \vDash_g [x \mapsto d] \phi$$

Definition (Direct sum - \oplus)

- $W^{\mathcal{M} \oplus \mathcal{N}} = W^{\mathcal{M}} \sqcup W^{\mathcal{N}}$
- $D^{\mathcal{M} \oplus \mathcal{N}} = D^{\mathcal{M}} \times D^{\mathcal{N}}$
- $f^{\mathcal{M} \oplus \mathcal{N}} = \langle f^{\mathcal{M}}; f^{\mathcal{N}} \rangle$
- If $w \in W^{\mathcal{M}}$ then $\langle d_1, e_1 \rangle \sim_w^{\mathcal{M} \oplus \mathcal{N}} \langle d_2, e_2 \rangle \iff d_1 \sim^{\mathcal{M}} d_2$ If $w \in W^{\mathcal{N}}$ then $\langle d_1, e_1 \rangle \sim_w^{\mathcal{M} \oplus \mathcal{N}} \langle d_2, e_2 \rangle \iff e_1 \sim^{\mathcal{N}} e_2$
- If $w \in W^{\mathcal{M}}$ then $R_w^{\mathcal{M} \oplus \mathcal{N}}(\langle d_1, e_1 \rangle, \dots, \langle d_n, e_n \rangle) = R_w^{\mathcal{M}}(d_1, \dots, d_n)$ If $w \in W^{\mathcal{N}}$ then $R_w^{\mathcal{M} \oplus \mathcal{N}}(\langle d_1, e_1 \rangle, \dots, \langle d_n, e_n \rangle) = R_w^{\mathcal{N}}(e_1, \dots, e_n)$

Definition (Blowup Model)

Given a model \mathcal{M} we define its **blow-up** as the model

$$\mathcal{BM} = \left\langle W^{\mathcal{M}}, \ D^{\mathcal{BM}}, \ I^{\mathcal{BM}}, \ \sim^{\mathcal{BM}} \right\rangle$$

where

- $D^{\mathcal{BM}}$ is the set of terms in the signature $\Sigma \sqcup \{\underline{d} | d \in D^{\mathcal{M}}\}$
- Given $\underline{t_1}, \underline{t_2}, \dots \in D^{\mathcal{BM}}$ we define

$$\frac{\underline{t_1}}{R_w^{\mathcal{BM}}} \stackrel{\sim \mathcal{BM}}{\underbrace{t_2}} \iff t_1 \stackrel{\sim \mathcal{M}}{\underset{w}{\mathcal{M}}} t_2$$
$$R_w^{\mathcal{BM}}(\underline{t_1}, \dots, \underline{t_n}) \iff R_w^{\mathcal{M}}(t_1, \dots, t_n)$$

• $f^{\mathcal{BM}}$ is defined as the formal term combinator

$$f^{\mathcal{BM}}(\underline{t_1},\ldots,\underline{t_n}) = \underline{f(t_1,\ldots,t_n)}$$

Definition (The permutation model $\mathcal{B}_{\sigma}\mathcal{M}$)

Given \mathcal{M} a model and $\sigma \in \mathfrak{S}(D^{\mathcal{M}})$ a permutation, we define

$$\mathcal{B}_{\sigma}\mathcal{M} = \left\langle W^{\mathcal{M}}, D^{\mathcal{B}\mathcal{M}}, I^{\mathcal{B}_{\sigma}\mathcal{M}}, \sim^{\mathcal{B}_{\sigma}\mathcal{M}} \right\rangle$$

where

- $f^{\mathcal{B}_{\sigma}\mathcal{M}} = f^{\mathcal{B}\mathcal{M}}$ is the formal combinator of terms.
- Given $\underline{t_1}, \underline{t_2}, \dots \in D^{\mathcal{BM}}$ it holds

$$R_w^{\mathcal{B}_{\sigma}\mathcal{M}}\left(\underline{t_1},\ldots,\underline{t_n}\right) \iff R_w^{\mathcal{B}\mathcal{M}}\left(\sigma^{-1}\underline{t_1},\ldots,\sigma^{-1}\underline{t_n}\right)$$
$$\underline{t_1} \sim_w^{\mathcal{B}_{\sigma}\mathcal{M}} \underline{t_2} \iff \sigma^{-1}\underline{t_1} \sim_w^{\mathcal{B}\mathcal{M}} \sigma^{-1}\underline{t_2}$$

Hospital protocol: formalization

The protocol: $\tau \equiv Q(x) \leftrightarrow S_1(x) \lor \forall y.S_2(y)$

The dependence: $\tau, ?S_1(x) \lor ? \forall y.S_2(y) \vDash ?Q(x)$

w_0	w_1	w_2
$\blacksquare S_1, S_2, Q$	$\square S_2$	$\blacksquare S_1, S_2, Q$
$\blacksquare S_1, Q$	•	$\blacksquare S_2, Q$
$\blacksquare S_2$		$\blacksquare S_2, Q$

Hospital protocol: formalization

The protocol: $\tau \equiv Q(x) \leftrightarrow S_1(x) \lor \forall y.S_2(y)$

The dependence: $\tau, ?S_1(x) \lor ? \forall y.S_2(y) \vDash ?Q(x)$

w_0	w_1	w_2
$\blacksquare S_1, S_2, Q$	$\square S_2$	$\blacksquare S_1, S_2, Q$
$\blacksquare S_1, Q$	•	$\blacksquare S_2, Q$
$\blacksquare S_2$		$\blacksquare S_2, Q$

Hospital protocol: formalization

The protocol: $\tau \equiv Q(x) \leftrightarrow S_1(x) \lor \forall y.S_2(y)$

The dependence: $\tau, ?S_1(x) \lor ? \forall y.S_2(y) \vDash ?Q(x)$

w_0	w_1	w_2
$\blacksquare S_1, S_2, Q$	$\square S_2$	$\blacksquare S_1, S_2, Q$
$\blacksquare S_1, Q$	•	$\blacksquare S_2, Q$
$\blacksquare S_2$		$\blacksquare S_2, Q$