Unifying the Leibniz and Maltsev hierarchies

Tommaso Moraschini joint work with Ramon Jansana

Institute of Computer Science of the Czech Academy of Sciences

$$
\text { July 13, } 2017
$$

Definition

An interpretation $\boldsymbol{\tau}$ of \vdash into \vdash^{\prime} is a map that associates every basic n-ary connective $f\left(x_{1}, \ldots, x_{n}\right)$ of \vdash to a term $\varphi\left(x_{1}, \ldots, x_{n}\right)$ of \vdash^{\prime} in such a way that

$$
\text { if }\langle\boldsymbol{A}, F\rangle \in \operatorname{Mod}^{\operatorname{Su}}\left(\vdash^{\prime}\right) \text {, then }\left\langle\boldsymbol{A}^{\tau}, F\right\rangle \in \operatorname{Mod}^{\operatorname{Su}}(\vdash)
$$

where $\boldsymbol{A}^{\boldsymbol{\tau}}:=\langle\boldsymbol{A},\{\boldsymbol{\tau}(f): f$ is a connective of $\vdash\}\rangle$.

Examples:

- The identity is an interpretation of $\mathcal{I P C}$ in $\mathcal{C P C}$.
- The identity is an interpretation of $\mathcal{C P C} \wedge \vee$ in $\mathcal{C P C}$.

Deductive systems

Definition

A logic is a consequence relation \vdash on the set of formulas of an algebraic language built up with an infinite set of variables s.t.

$$
\text { if } \Gamma \vdash \varphi \text {, then } \sigma(\Gamma) \vdash \sigma(\varphi) \text {. }
$$

Let \vdash be a logic, \boldsymbol{A} an algebra and $F \subseteq \boldsymbol{A}$.

1. The Leibniz congruence $\boldsymbol{\Omega}^{\boldsymbol{A}} F$ is the largest congruence θ of \boldsymbol{A} s.t. F is a union of blocks of θ.
2. The Suszko congruence is

$$
\widetilde{\Omega}_{\vdash}^{A} F:=\bigcap\left\{\boldsymbol{\Omega}^{\boldsymbol{A}} G: G \in \mathcal{F} i_{\vdash} \boldsymbol{A} \text { and } F \subseteq G\right\} .
$$

3. The Suszko models of \vdash are

$$
\operatorname{Mod}^{\mathrm{Su}}(\vdash):=\left\{\langle\boldsymbol{A}, F\rangle: \widetilde{\Omega}_{\vdash}^{\mathbf{A}} F=\mathrm{Id}_{\boldsymbol{A}} \text { and } F \in \mathcal{F}_{i} \mid \boldsymbol{A}\right\} .
$$

The poset of logics

Definition

We define a pre-order between logics as follows:

$$
\vdash \leq \vdash^{\prime} \Longleftrightarrow \text { there is an interpretation of } \vdash \text { into } \vdash^{\prime}
$$

Then we set

$$
\llbracket \Vdash \rrbracket:=\left\{\vdash^{\prime}: \vdash^{\prime} \text { is a logic equi-interpretable with } \vdash\right\} \text {. }
$$

Let Log be the poset, whose elements are the classes $\llbracket \vdash \rrbracket$.

Theorem

Log is a complete meet-semilattice, but it is not a join-semilattice. Moreover, Log has no minimum element, it has a maximum and a coatom (that under Vopěnka's Principle is unique).

Term-equivalence and compatible expansions

Definition

Let \vdash and \vdash^{\prime} be two logics.

1. \vdash and \vdash^{\prime} are term-equivalent if there are translations τ of \vdash into \vdash^{\prime} and ρ in the other direction such that

$$
\langle\boldsymbol{A}, F\rangle=\left\langle\boldsymbol{A}^{\tau \rho}, F\right\rangle \text { and }\langle\boldsymbol{B}, G\rangle=\left\langle\boldsymbol{B}^{\rho \tau}, G\right\rangle
$$

for every $\langle\boldsymbol{A}, F\rangle \in \operatorname{Mod}^{\mathrm{Su}}\left(\vdash^{\prime}\right)$ and $\langle\boldsymbol{B}, G\rangle \in \operatorname{Mod}^{\mathrm{Su}}(\vdash)$.
2. \vdash^{\prime} is a compatible expansion of \vdash if the identity is a translation of \vdash into \vdash^{\prime}.

Remark

$\vdash \leq \vdash^{\prime}$ iff \vdash^{\prime} is term-equivalent to a compatible expansion of \vdash.

Taylorian products of logics

Definition

Let $\left\{\vdash_{i}: i \in I\right\}$ be a set of logics each of which is formulated in κ_{i} variables. The Taylorian product of this family is the logic $\otimes_{i \in I} \vdash_{i}$ formulated in $|I| \cup \bigcup_{i \in I} \kappa_{i}$ variables induced by the class of matrices

$$
\left\{\left\langle\bigotimes_{i \in I} \boldsymbol{A}_{i}, \prod_{i \in I} F_{i}\right\rangle:\left\langle\boldsymbol{A}_{i}, F_{i}\right\rangle \in \operatorname{Mod}^{\text {Su }}\left(\vdash_{i}\right) \text { for every } i \in I\right\}
$$

- Observe that Taylorian products of huge families of logics are formulated in huge sets of variables.

Corollary

Log has infima of families indexed by sets. More precisely,

$$
\llbracket \otimes_{i \in I} \vdash_{i} \rrbracket=\bigwedge_{i \in I} \llbracket \vdash_{i} \rrbracket .
$$

Taylorian products of algebras

- Let $\left\{L_{i}: i \in I\right\}$ be a set algebraic languages.
- We define a new language $\otimes_{i \in I} L_{i}$ by considering as n-ary operations symbols the sequences

$$
\left\langle t_{i}\left(x_{1}, \ldots, x_{n}\right): i \in I\right\rangle
$$

where t_{i} is an n-ary term of L_{i} in the variables x_{1}, \ldots, x_{n}.

Definition

Let $\left\{\boldsymbol{A}_{i}: i \in I\right\}$ be a set of algebras respectively of language L_{i}. The Taylorian product of this family is the algebra $\otimes_{i \in I} \boldsymbol{A}_{\boldsymbol{i}}$ of type $\otimes_{i \in I} L_{i}$ with universe $\prod_{i \in I} A_{i}$ and operations defined as

$$
\left\langle t_{i}: i \in I\right\rangle\left(\vec{a}_{1}, \ldots, \vec{a}_{n}\right):=\left\langle t_{i}^{\boldsymbol{A}_{i}}\left(\left(\vec{a}_{1}(i), \ldots, \vec{a}_{n}(i)\right): i \in I\right\rangle .\right.
$$

Log has not finite suprema (anecdotally...)

- Let $\boldsymbol{A}=\langle A, \vee, \boldsymbol{a}, \boldsymbol{b}, \mathbf{0}\rangle$ be the join-semilattice, expanded with constants, depicted below:

- Let \vdash_{\checkmark} be the logic determined by the matrix $\langle\boldsymbol{A},\{1\}\rangle$.
- Let \vdash_{\neg} be the negation fragment of $\mathcal{C P C}$.
- The supremum of \vdash_{\vee} and \vdash_{\neg} in Log does not exist.

Theorem

The subposet of Log consisting of all equivalential logics is a non-modular complete lattice.

Leibniz conditions and Leibniz classes

Equivalentiality is a Leibniz condition

Definition

1. A strong Leibniz condition Φ is a logic \vdash_{ϕ}.
2. A logic \vdash satisfies Φ if $\vdash_{\Phi} \leq \vdash$.
3. A Leibniz condition Φ is a sequence of logics

$$
\Psi:=\left\{\vdash_{\alpha}: \alpha \in \mathrm{ORD}\right\}
$$

such that

$$
\text { if } \alpha \leq \beta \text {, then } \vdash_{\beta} \leq \vdash_{\alpha} \text {. }
$$

4. A logic \vdash satisfies Ψ if $\vdash_{\alpha} \leq \vdash$ for some $\alpha \in$ ORD.
5. $\operatorname{Mod}(\Psi)$ is the class of logics satisfying Ψ.
6. A class of logics K is a (strong) Leibniz class if $\mathrm{K}=\operatorname{Mod}(\Psi)$ for some (strong) Leibniz condition Ψ.

Semantic description of Leibniz classes

- Leibniz classes can be characterized as follows:

Theorem

Let K be a class of logics. TFAE:

1. K is a Leibniz class.
2. K is closed under term-equivalence, compatible expansions and Taylorian products indexed by sets.
3. There is a complete filter F of Log such that

$$
K=\{\vdash: \llbracket \vdash \rrbracket \in F\}
$$

- In this picture,

Strong Leibniz classes $=$ principal filters of Log.

Example

- For every $\alpha \in$ ORD, consider the language $\left\{\multimap_{\beta}: \beta \leq \alpha\right\}$.
- Define

$$
\Delta_{\alpha}(x, y):=\left\{x \multimap_{\beta} y: \beta \leq \alpha\right\}
$$

- Let \vdash_{α} be the logic defined by the rules

$$
\begin{aligned}
\emptyset & \triangleright \Delta_{\alpha}(x, x) \\
x, \Delta_{\alpha}(x, y) & \triangleright y \\
\Delta_{\alpha}\left(x_{1}, y_{1}\right) \cup \Delta_{\alpha}\left(x_{2}, y_{2}\right) & \triangleright \Delta_{\alpha}\left(x_{1} \multimap_{\beta} x_{2}, y_{1} \multimap_{\beta} y_{2}\right) .
\end{aligned}
$$

- Consider the Leibniz condition

$$
\Psi:=\left\{\vdash_{\alpha}: \alpha \in \mathrm{ORD}\right\}
$$

- $\operatorname{Mod}(\Psi)$ is the class of equivalential logics with theorems.

Indecomposable Leibniz classes

- This order-theoretic perspective allows to single out the fundamental bricks of the Leibniz hierarchy:

Definition

A Leibniz class K is indecomposable if it is meet-irreducible among Leibniz classes.

- The class of logics with theorems is idecomposable.

Hopeless Lemma

Let K be a Leibniz class such that:

1. The members of K have theorems.
2. There is a logic with theorems outside K.

Then K is decomposable.

- Almost all reasonable Leibniz classes are decomposable.

Indecomposability among logics with theorems

- We use the following principle independent from GNB.

Vopěnka's Principle

Every prevariety is a generalized quasi-variety.

Theorem

Under Vopěnka's Principle, the classes of truth equational and assertional logics are indecomposable among logics with theorems.

Theorem

The classes of order-algebraizable and equivalential logics with theorems are decomposable among logics with theorems.

- It is open whether the class of protoalgebraic logics is decomposable among logics with theorems.
\qquad

14 / 20

Finitely presentable deductive systems

Definition

1. A logic is finitely presentable if it is finitary, axiomatizable by a finite set of finite rules, and formulated in a finite language.
2. A finitely presentable Leibniz condition is a sequence of finitely presentable and finitely equivalential logics

$$
\Psi=\left\{\vdash_{n}: n \in \omega\right\}
$$

such that if $n \leq m$, then $\vdash_{m} \leq \vdash_{n}$.
3. A class of logics K is a finitely presentable Leibniz class if $K=\operatorname{Mod}(\Psi)$ for some fin. pres. Leibniz condition Ψ.

Convention

finite companion of the Leibniz hierarchy $=$ poset of finitely presentable Leibniz classes.

The Maltsev hierarchy

Definition

1. A Maltsev condition is a sequence of finitely presentable varieties

$$
\Psi=\left\{\mathrm{V}_{n}: n \in \omega\right\}
$$

such that

$$
\text { if } n \leq m \text {, then } V_{m} \leq V_{n}
$$

2. A class of varieties K is a Maltsev class if $K=\operatorname{Mod}(\Psi)$ for some Maltsev condition Ψ.

Theorem

A class of varieties K is a Maltsev class iff there is a fin. pres. Leibniz class M of 2-deductive systems such that

$$
K=\left\{V: V \text { is a variety and } \vDash_{V} \in M\right\} .
$$

Future directions

Finally..

...thank you for coming!

