
Unifying the Leibniz and Maltsev hierarchies

Tommaso Moraschini
joint work with Ramon Jansana

Institute of Computer Science of the Czech Academy of Sciences

July 13, 2017

1 / 20

Deductive systems

Definition
A logic is a consequence relation ` on the set of formulas of an
algebraic language built up with an infinite set of variables s.t.

if Γ ` ϕ, then σ(Γ) ` σ(ϕ).

Let ` be a logic, A an algebra and F ⊆ A.
1. The Leibniz congruence ΩAF is the largest congruence θ of A

s.t. F is a union of blocks of θ.
2. The Suszko congruence is

∼
ΩA

`F :=
⋂
{ΩAG : G ∈ Fi`A and F ⊆ G}.

3. The Suszko models of ` are

ModSu(`) := {〈A,F 〉 :
∼
ΩA

`F = IdA and F ∈ Fi`A}.
2 / 20

Interpretations between deductive systems

Definition
An interpretation τ of ` into `′ is a map that associates every
basic n-ary connective f (x1, . . . , xn) of ` to a term ϕ(x1, . . . , xn) of
`′ in such a way that

if 〈A,F 〉 ∈ ModSu(`′), then 〈Aτ ,F 〉 ∈ ModSu(`)

where Aτ := 〈A, {τ (f) : f is a connective of `}〉.

Examples:
I The identity is an interpretation of IPC in CPC.
I The identity is an interpretation of CPC∧∨ in CPC.

3 / 20

The poset of logics

Definition
We define a pre-order between logics as follows:

`≤`′⇐⇒ there is an interpretation of ` into `′ .

Then we set

J`K := {`′:`′ is a logic equi-interpretable with `}.

Let Log be the poset, whose elements are the classes J`K.

Theorem
Log is a complete meet-semilattice, but it is not a join-semilattice.
Moreover, Log has no minimum element, it has a maximum and a
coatom (that under Vopěnka’s Principle is unique).

4 / 20

Term-equivalence and compatible expansions

Definition
Let ` and `′ be two logics.

1. ` and `′ are term-equivalent if there are translations τ of `
into `′ and ρ in the other direction such that

〈A,F 〉 = 〈Aτρ,F 〉 and 〈B,G 〉 = 〈Bρτ ,G 〉

for every 〈A,F 〉 ∈ ModSu(`′) and 〈B,G 〉 ∈ ModSu(`).
2. `′ is a compatible expansion of ` if the identity is a translation

of ` into `′.

Remark
`≤`′ iff `′ is term-equivalent to a compatible expansion of `.

5 / 20

Taylorian products of algebras

I Let {Li : i ∈ I} be a set algebraic languages.
I We define a new language ⊗i∈ILi by considering as n-ary

operations symbols the sequences

〈ti (x1, . . . , xn) : i ∈ I 〉

where ti is an n-ary term of Li in the variables x1, . . . , xn.

Definition
Let {Ai : i ∈ I} be a set of algebras respectively of language Li .
The Taylorian product of this family is the algebra ⊗i∈IAi of type
⊗i∈ILi with universe

∏
i∈I Ai and operations defined as

〈ti : i ∈ I 〉(~a1, . . . , ~an) := 〈tAi
i ((~a1(i), . . . , ~an(i)) : i ∈ I 〉.

6 / 20

Taylorian products of logics

Definition
Let {`i : i ∈ I} be a set of logics each of which is formulated in κi
variables. The Taylorian product of this family is the logic ⊗i∈I `i
formulated in |I | ∪

⋃
i∈I κi variables induced by the class of matrices

{〈
⊗
i∈I

Ai ,
∏
i∈I

Fi 〉 : 〈Ai ,Fi 〉 ∈ ModSu(`i) for every i ∈ I}.

I Observe that Taylorian products of huge families of logics are
formulated in huge sets of variables.

Corollary
Log has infima of families indexed by sets. More precisely,

J⊗i∈I `iK =
∧
i∈I

J`iK.

7 / 20

Log has not finite suprema (anecdotally...)

I Let A = 〈A,∨, a,b, 0〉 be the join-semilattice, expanded with
constants, depicted below:

• 1

c • • b

a • e • • d

0 •
I Let `∨ be the logic determined by the matrix 〈A, {1}〉.
I Let `¬ be the negation fragment of CPC.
I The supremum of `∨ and `¬ in Log does not exist.

Theorem
The subposet of Log consisting of all equivalential logics is a
non-modular complete lattice.

8 / 20

Leibniz conditions and Leibniz classes

Definition

1. A strong Leibniz condition Φ is a logic `Φ.
2. A logic ` satisfies Φ if `Φ≤`.
3. A Leibniz condition Φ is a sequence of logics

Ψ := {`α: α ∈ ORD}

such that
if α ≤ β, then `β≤`α .

4. A logic ` satisfies Ψ if `α≤` for some α ∈ ORD.
5. Mod(Ψ) is the class of logics satisfying Ψ.
6. A class of logics K is a (strong) Leibniz class if K = Mod(Ψ)

for some (strong) Leibniz condition Ψ.

9 / 20

Equivalentiality is a Leibniz condition

Example
I For every α ∈ ORD, consider the language {(β: β ≤ α}.
I Define

∆α(x , y) := {x (β y : β ≤ α}.

I Let `α be the logic defined by the rules

∅� ∆α(x , x)

x ,∆α(x , y) � y

∆α(x1, y1) ∪∆α(x2, y2) � ∆α(x1 (β x2, y1 (β y2).

I Consider the Leibniz condition

Ψ := {`α: α ∈ ORD}.

I Mod(Ψ) is the class of equivalential logics with theorems.
10 / 20

Semantic description of Leibniz classes

I Leibniz classes can be characterized as follows:

Theorem
Let K be a class of logics. TFAE:
1. K is a Leibniz class.
2. K is closed under term-equivalence, compatible expansions and

Taylorian products indexed by sets.
3. There is a complete filter F of Log such that

K = {` : J`K ∈ F}.

I In this picture,
Strong Leibniz classes = principal filters of Log.

11 / 20

The Leibniz hierarchy revisited

I We propose to adopt the following:

Convention
Leibniz hierarchy = poset of Leibniz classes of logics.

Some motivations:
I This perspective subsumes Maltsev conditions.
I Leibniz classes captures the interaction between syntactic

conditions and the behaviour of the Leibniz operator.
I Leibniz classes are not too general. They do not include

metalogical properties and the Frege hierarchy.

12 / 20

Indecomposable Leibniz classes

I This order-theoretic perspective allows to single out the
fundamental bricks of the Leibniz hierarchy:

Definition
A Leibniz class K is indecomposable if it is meet-irreducible among
Leibniz classes.

I The class of logics with theorems is idecomposable.

Hopeless Lemma
Let K be a Leibniz class such that:
1. The members of K have theorems.
2. There is a logic with theorems outside K.

Then K is decomposable.

I Almost all reasonable Leibniz classes are decomposable.
13 / 20

regularly
algebraizable

~~

algebraizable
~~

regularly
weakly-algebraizable

~~

order algebraizable
~~

equivalential
with theorems

weakly
algebraizable

~~

assertional

~~protoalgebraic
with theorems

truth-equational

~~
with theorems

14 / 20

Indecomposability among logics with theorems

I We use the following principle independent from GNB.

Vopěnka’s Principle
Every prevariety is a generalized quasi-variety.

Theorem
Under Vopěnka’s Principle, the classes of truth equational and
assertional logics are indecomposable among logics with theorems.

Theorem
The classes of order-algebraizable and equivalential logics with
theorems are decomposable among logics with theorems.

I It is open whether the class of protoalgebraic logics is
decomposable among logics with theorems.

15 / 20

regularly
algebraizable

~~

algebraizable
~~

regularly
weakly-algebraizable

~~

order algebraizable
~~

equivalential
with theorems

weakly
algebraizable

~~

assertional

~~protoalgebraic
with theorems

truth-equational

~~
with theorems

16 / 20

Finitely presentable deductive systems

Definition
1. A logic is finitely presentable if it is finitary, axiomatizable by a

finite set of finite rules, and formulated in a finite language.
2. A finitely presentable Leibniz condition is a sequence of finitely

presentable and finitely equivalential logics

Ψ = {`n : n ∈ ω}

such that if n ≤ m, then `m≤`n.
3. A class of logics K is a finitely presentable Leibniz class if

K = Mod(Ψ) for some fin. pres. Leibniz condition Ψ.

Convention
finite companion of the Leibniz hierarchy = poset of finitely

presentable Leibniz classes.
17 / 20

The Maltsev hierarchy

Definition
1. A Maltsev condition is a sequence of finitely presentable

varieties
Ψ = {Vn : n ∈ ω}

such that
if n ≤ m, then Vm ≤ Vn.

2. A class of varieties K is a Maltsev class if K = Mod(Ψ) for
some Maltsev condition Ψ.

Theorem
A class of varieties K is a Maltsev class iff there is a fin. pres.
Leibniz class M of 2-deductive systems such that

K = {V : V is a variety and �V∈ M}.
18 / 20

Future directions

I Can we have a suitable version of Taylor terms for logic?
I Can we prove that non-trivial Leibniz conditions implies the

validity of some non-trivial (quasi)-equation involving the
Leibniz operator?

I Are protoalgebraic logics indecomposable/prime?

19 / 20

Finally...

...thank you for coming!

20 / 20

