Unifying the Leibniz and Maltsev hierarchies

Tommaso Moraschini joint work with Ramon Jansana

Institute of Computer Science of the Czech Academy of Sciences

July 13, 2017

1 / 20

Interpretations between deductive systems

Definition

An interpretation τ of \vdash into \vdash' is a map that associates every basic n-ary connective $f(x_1, \ldots, x_n)$ of \vdash to a term $\varphi(x_1, \ldots, x_n)$ of \vdash' in such a way that

if
$$\langle \pmb{A}, \pmb{F} \rangle \in \mathsf{Mod}^{\mathsf{Su}}(\vdash')$$
, then $\langle \pmb{A^{\tau}}, \pmb{F} \rangle \in \mathsf{Mod}^{\mathsf{Su}}(\vdash)$

where $\mathbf{A}^{\tau} := \langle A, \{ \tau(f) : f \text{ is a connective of } \vdash \} \rangle$.

Examples:

- ightharpoonup The identity is an interpretation of \mathcal{IPC} in \mathcal{CPC} .
- ▶ The identity is an interpretation of $CPC_{\land\lor}$ in CPC.

Deductive systems

Definition

A logic is a consequence relation \vdash on the set of formulas of an algebraic language built up with an infinite set of variables s.t.

if
$$\Gamma \vdash \varphi$$
, then $\sigma(\Gamma) \vdash \sigma(\varphi)$.

Let \vdash be a logic, **A** an algebra and $F \subseteq \mathbf{A}$.

- 1. The Leibniz congruence $\Omega^{\mathbf{A}}F$ is the largest congruence θ of \mathbf{A} s.t. F is a union of blocks of θ .
- 2. The Suszko congruence is

$$\widetilde{\Omega}_{\vdash}^{\mathbf{A}}F := \bigcap \{ \Omega^{\mathbf{A}}G : G \in \mathcal{F}i_{\vdash}\mathbf{A} \text{ and } F \subseteq G \}.$$

3. The Suszko models of ⊢ are

$$\mathsf{Mod}^\mathsf{Su}(\vdash) \coloneqq \{ \langle \boldsymbol{A}, F \rangle : \widetilde{\Omega}^{\boldsymbol{A}}_{\vdash} F = \mathsf{Id}_{\boldsymbol{A}} \text{ and } F \in \mathcal{F}_{i\vdash} \boldsymbol{A} \}.$$

. - -

The poset of logics

Definition

We define a pre-order between logics as follows:

 $\vdash \leq \vdash' \iff$ there is an interpretation of \vdash into \vdash' .

Then we set

 $\llbracket \vdash \rrbracket := \{ \vdash' : \vdash' \text{ is a logic equi-interpretable with } \vdash \}.$

Let **Log** be the **poset**, whose elements are the classes $\llbracket \vdash \rrbracket$.

Theorem

Log is a complete meet-semilattice, but it is not a join-semilattice. Moreover, Log has no minimum element, it has a maximum and a coatom (that under Vopěnka's Principle is unique).

Term-equivalence and compatible expansions

Definition

Let \vdash and \vdash' be two logics.

1. \vdash and \vdash' are term-equivalent if there are translations τ of \vdash into \vdash' and ρ in the other direction such that

$$\langle \mathbf{A}, F \rangle = \langle \mathbf{A}^{\tau \rho}, F \rangle$$
 and $\langle \mathbf{B}, G \rangle = \langle \mathbf{B}^{\rho \tau}, G \rangle$

for every $\langle \boldsymbol{A}, F \rangle \in \mathsf{Mod}^{\mathsf{Su}}(\vdash')$ and $\langle \boldsymbol{B}, G \rangle \in \mathsf{Mod}^{\mathsf{Su}}(\vdash)$.

2. \vdash' is a compatible expansion of \vdash if the identity is a translation of \vdash into \vdash' .

Remark

 $\vdash \leq \vdash'$ iff \vdash' is term-equivalent to a compatible expansion of \vdash .

5 / 20

Taylorian products of logics

Definition

Let $\{\vdash_i: i \in I\}$ be a set of logics each of which is formulated in κ_i variables. The Taylorian product of this family is the logic $\otimes_{i \in I} \vdash_i$ formulated in $|I| \cup \bigcup_{i \in I} \kappa_i$ variables induced by the class of matrices

$$\{\langle \bigotimes_{i \in I} \mathbf{A}_i, \prod_{i \in I} F_i \rangle : \langle \mathbf{A}_i, F_i \rangle \in \mathsf{Mod}^{\mathsf{Su}}(\vdash_i) \text{ for every } i \in I \}.$$

► Observe that Taylorian products of huge families of logics are formulated in huge sets of variables.

Corollary

Log has infima of families indexed by sets. More precisely,

$$\llbracket \otimes_{i \in I} \vdash_i \rrbracket = \bigwedge_{i \in I} \llbracket \vdash_i \rrbracket.$$

Taylorian products of algebras

- ▶ Let $\{L_i : i \in I\}$ be a set algebraic languages.
- ▶ We define a new language $\bigotimes_{i \in I} L_i$ by considering as *n*-ary operations symbols the sequences

$$\langle t_i(x_1,\ldots,x_n): i\in I\rangle$$

where t_i is an *n*-ary term of L_i in the variables x_1, \ldots, x_n .

Definition

Let $\{A_i : i \in I\}$ be a set of algebras respectively of language L_i . The Taylorian product of this family is the algebra $\bigotimes_{i \in I} A_i$ of type $\bigotimes_{i \in I} L_i$ with universe $\prod_{i \in I} A_i$ and operations defined as

$$\langle t_i : i \in I \rangle (\vec{a}_1, \ldots, \vec{a}_n) := \langle t_i^{\mathbf{A}_i} ((\vec{a}_1(i), \ldots, \vec{a}_n(i)) : i \in I \rangle.$$

6 / 20

Log has not finite suprema (anecdotally...)

▶ Let $\mathbf{A} = \langle A, \lor, \mathbf{a}, \mathbf{b}, \mathbf{0} \rangle$ be the join-semilattice, expanded with constants, depicted below:

- ▶ Let \vdash_{\lor} be the logic determined by the matrix $\langle \mathbf{A}, \{1\} \rangle$.
- ▶ Let \vdash_{\neg} be the negation fragment of \mathcal{CPC} .
- ▶ The supremum of \vdash_{\lor} and \vdash_{\lnot} in **Log** does not exist.

Theorem

The subposet of **Log** consisting of all equivalential logics is a non-modular complete lattice.

Leibniz conditions and Leibniz classes

Definition

- 1. A strong Leibniz condition Φ is a logic \vdash_{Φ} .
- 2. A logic \vdash satisfies Φ if $\vdash_{\Phi} < \vdash$.
- 3. A Leibniz condition Φ is a sequence of logics

$$\Psi := \{\vdash_{\alpha} : \alpha \in \mathsf{ORD}\}$$

such that

if
$$\alpha \leq \beta$$
, then $\vdash_{\beta} \leq \vdash_{\alpha}$.

- 4. A logic \vdash satisfies Ψ if $\vdash_{\alpha} \leq \vdash$ for some $\alpha \in \mathsf{ORD}$.
- 5. $Mod(\Psi)$ is the class of logics satisfying Ψ .
- 6. A class of logics K is a (strong) Leibniz class if $K = Mod(\Psi)$ for some (strong) Leibniz condition Ψ .

9 / 20

Semantic description of Leibniz classes

Leibniz classes can be characterized as follows:

Theorem

Let K be a class of logics. TFAE:

- 1. K is a Leibniz class.
- 2. K is closed under term-equivalence, compatible expansions and Taylorian products indexed by sets.
- 3. There is a complete filter F of \mathbf{Log} such that

$$\mathsf{K} = \{ \vdash : \llbracket \vdash \rrbracket \in F \}.$$

► In this picture,

Strong Leibniz classes = principal filters of Log.

Equivalentiality is a Leibniz condition

Example

- ▶ For every $\alpha \in \mathsf{ORD}$, consider the language $\{ \multimap_{\beta} : \beta \leq \alpha \}$.
- Define

$$\Delta_{\alpha}(x,y) := \{x \multimap_{\beta} y : \beta \leq \alpha\}.$$

▶ Let \vdash_{α} be the logic defined by the rules

$$\emptyset \rhd \Delta_{\alpha}(x,x)$$

$$x, \Delta_{\alpha}(x,y) \rhd y$$

$$\Delta_{\alpha}(x_{1},y_{1}) \cup \Delta_{\alpha}(x_{2},y_{2}) \rhd \Delta_{\alpha}(x_{1} \multimap_{\beta} x_{2}, y_{1} \multimap_{\beta} y_{2}).$$

► Consider the Leibniz condition

$$\Psi := \{ \vdash_{\alpha} : \alpha \in \mathsf{ORD} \}.$$

 \blacktriangleright Mod(Ψ) is the class of equivalential logics with theorems.

10 / 20

The Leibniz hierarchy revisited

▶ We propose to adopt the following:

Convention

Leibniz hierarchy = poset of Leibniz classes of logics.

Some motivations:

- ▶ This perspective subsumes Maltsev conditions.
- ► Leibniz classes captures the interaction between syntactic conditions and the behaviour of the Leibniz operator.
- ► Leibniz classes are not too general. They do not include metalogical properties and the Frege hierarchy.

Indecomposable Leibniz classes

▶ This order-theoretic perspective allows to single out the fundamental bricks of the Leibniz hierarchy:

Definition

A Leibniz class K is indecomposable if it is meet-irreducible among Leibniz classes.

▶ The class of logics with theorems is idecomposable.

Hopeless Lemma

Let K be a Leibniz class such that:

- 1. The members of K have theorems.
- 2. There is a logic with theorems outside K.

Then K is decomposable.

► Almost all reasonable Leibniz classes are decomposable.

13 / 20

regularly algebraizable regularly algebraizable weakly-algebraizable order algebraizable equivalential weakly assertional algebraizable with theorems protoalgebraic truth-equational with theorems with theorems

Indecomposability among logics with theorems

▶ We use the following principle independent from GNB.

Vopěnka's Principle

Every prevariety is a generalized quasi-variety.

Theorem

Under Vopěnka's Principle, the classes of truth equational and assertional logics are indecomposable among logics with theorems.

Theorem

The classes of order-algebraizable and equivalential logics with theorems are decomposable among logics with theorems.

▶ It is open whether the class of protoalgebraic logics is decomposable among logics with theorems.

15 / 20

Finitely presentable deductive systems

Definition

- 1. A logic is finitely presentable if it is finitary, axiomatizable by a finite set of finite rules, and formulated in a finite language.
- 2. A finitely presentable Leibniz condition is a sequence of finitely presentable and finitely equivalential logics

$$\Psi = \{ \vdash_n : n \in \omega \}$$

such that if $n \leq m$, then $\vdash_m \leq \vdash_n$.

3. A class of logics K is a finitely presentable Leibniz class if $K = Mod(\Psi)$ for some fin. pres. Leibniz condition Ψ .

Convention

finite companion of the Leibniz hierarchy = poset of finitely presentable Leibniz classes.

17 / 20

Future directions

- ► Can we have a suitable version of Taylor terms for logic?
- ► Can we prove that non-trivial Leibniz conditions implies the validity of some non-trivial (quasi)-equation involving the Leibniz operator?
- ► Are protoalgebraic logics indecomposable/prime?

The Maltsev hierarchy

Definition

1. A Maltsev condition is a sequence of finitely presentable varieties

$$\Psi = \{ V_n : n \in \omega \}$$

such that

if
$$n \leq m$$
, then $V_m \leq V_n$.

2. A class of varieties K is a Maltsev class if $K = Mod(\Psi)$ for some Maltsev condition Ψ .

Theorem

A class of varieties K is a Maltsev class iff there is a fin. pres. Leibniz class M of 2-deductive systems such that

$$K = \{V : V \text{ is a variety and } \models_V \in M\}.$$

18 / 20

Finally...

...thank you for coming!