The computational complexity of the Leibniz hierarchy

Tommaso Moraschini

Institute of Computer Science of the Czech Academy of Sciences

June 28, 2017

Relative equational consequence

Definition

Let K be a class of similar algebras. Given a set of equations $\Theta \cup\{\varphi \approx \psi\}$, we define

$$
\begin{aligned}
\Theta \vDash_{K} \varphi \approx \psi \Longleftrightarrow & \text { for every } \boldsymbol{A} \in \mathrm{K} \text { and } \vec{a} \in A, \\
& \text { if } \epsilon^{\boldsymbol{A}}(\vec{a})=\delta^{\boldsymbol{A}}(\vec{a}) \text { for all } \epsilon \approx \delta \in \Theta, \\
& \text { then } \varphi^{\boldsymbol{A}}(\vec{a})=\psi^{\boldsymbol{A}}(\vec{a}) .
\end{aligned}
$$

The relation \vDash_{K} is the equational consequence relative to K .

- Example: If K is the variety of Heyting algebras, then

$$
\varphi \approx 1, \varphi \rightarrow \psi \approx 1 \vDash_{\mathrm{K}} \psi \approx 1
$$

Definition

A logic \vdash is a consequence relation over the set of formulas Fm of an algebraic language, which is substitution invariant in the sense that

$$
\text { if } \Gamma \vdash \varphi \text {, then } \sigma(\Gamma) \vdash \sigma(\varphi)
$$

for all substitutions $\sigma: \boldsymbol{F m} \rightarrow \boldsymbol{F m}$.

- Logics are consequence relations (as opposed to sets of valid formulas).
- Example: IPC is the logic defined as follows:

$$
\begin{aligned}
\Gamma \vdash \text { IPC } \varphi \Longleftrightarrow & \text { for every Heyting algebra } \boldsymbol{A} \text { and } \vec{a} \in A, \\
& \text { if } \Gamma^{\boldsymbol{A}}(\vec{a})=1, \text { then } \varphi^{\boldsymbol{A}}(\vec{a})=1 .
\end{aligned}
$$

Algebraizable logics

Example: Consider

$$
\begin{aligned}
\mathrm{IPC} & =\text { intuitionistic propositional logic } \\
\mathrm{HA} & =\text { variety of Heyting algebras }
\end{aligned}
$$

- Pick the translations between formulas and equations:

$$
\begin{gathered}
\varphi \longmapsto \varphi \approx 1 \\
\alpha \approx \beta \longmapsto\{\alpha \leftrightarrow \beta\} .
\end{gathered}
$$

- These translations allow to equi-interpret $\vdash_{\text {IPC }}$ and $\vdash_{\text {HA }}$:

$$
\begin{aligned}
\Gamma \vdash_{\mathrm{IPC}} \varphi & \Longleftrightarrow\{\gamma \approx 1: \gamma \in \Gamma\} \vDash_{\mathrm{HA}} \varphi \approx 1 \\
\Theta \vdash_{\mathrm{HA}} \varphi \approx \psi & \Longleftrightarrow\{\alpha \leftrightarrow \beta: \alpha \approx \beta \in \Theta\} \vdash_{\mathrm{IPC}}\{\varphi \leftrightarrow \psi\} .
\end{aligned}
$$

- Moreover, the translations are one inverse to the other:

$$
\varphi \approx \psi=\models_{\mathrm{HA}} \varphi \leftrightarrow \psi \approx 1 \text { and } \varphi \vdash^{\mathrm{IPC}} \varphi \leftrightarrow 1
$$

- Hence $\vdash_{\text {IPC }}$ and $\vDash_{\text {HA }}$ are essentially the same.
- Intuitive idea: a logic \vdash is algebraizable when it can be essentially identified with a relative equational consequence \vDash_{K}.

Definition

A logic \vdash is algebraizable when there exists:

1. A class of algebras K (of the same type as \vdash);
2. A set of equations $\boldsymbol{\tau}(x)$ in one variable x;
3. A set of formulas $\rho(x, y)$ in two variables x and y such that τ and ρ equi-interpret \vdash and \vDash_{K} :

$$
\begin{aligned}
\Gamma \vdash \varphi & \Longleftrightarrow \boldsymbol{\tau}(\Gamma) \vDash_{\mathrm{K}} \boldsymbol{\tau}(\varphi) \\
\Theta \vDash_{\mathrm{K}} \varphi \approx \psi & \Longleftrightarrow \boldsymbol{\rho}(\Theta) \vdash \boldsymbol{\rho}(\varphi, \psi)
\end{aligned}
$$

and the two interpretations are one inverse to the other:

$$
\varphi \approx \psi=\|_{\mathrm{K}} \tau \rho(\varphi, \psi) \text { and } \varphi \dashv \vdash \rho \tau(\varphi) .
$$

Semantic Algebraization Problem

Given a finite reduced logical matrix $\langle\boldsymbol{A}, F\rangle$ of finite type, determine whether its induced logic is algebraizable or not.

- There is an easy decision procedure for this problem because:

Theorem

Let $\langle\boldsymbol{A}, F\rangle$ be a finite reduced matrix and \vdash its induced logic. \vdash is algebraizable iff there is a finite set of equations $\tau(x)$ and a finite set of formulas $\rho(x, y)$ such that

$$
\begin{aligned}
& a=b \Longleftrightarrow \boldsymbol{\rho}(a, b) \subseteq F \\
& a \in F \Longleftrightarrow \boldsymbol{A} \vDash \boldsymbol{\tau}(a)
\end{aligned}
$$

- Since finitely generated free algebras over $\mathbb{V}(\boldsymbol{A})$ are finite, we can just check the existence of the sets $\rho(x, y)$ and $\tau(x)$.
- Hence the Semantic Algebraization Problem is in EXPTIME.

Algebraization Problem

- We study the computational aspects of the following problem:

Algebraization Problem

Given a logic \vdash, determine whether \vdash is algebraizable or not.

- Logic can be presented (at least) in two ways:
syntactically $=$ by means of Hilbert calculi
semantically $=$ by means of collections of logical matrices.

Theorem (M. 2015)

The Algebraization Problem for logics presented by finite consistent Hilbert calculi is undecidable.

A useful EXPTIME-complete problem

- We want to prove that the Semantic Algebraization Problem is complete for EXPTIME.
- We need to construct a polynomial-time reduction to such a complete problem.

The Problem Gen-Clo

Given a finite algebra \boldsymbol{A} of finite type and a function $h: A^{n} \rightarrow A$, determine whether h belongs to the clone of \boldsymbol{A} or not.

- Gen-Clo ${ }_{3}^{1}$ is the same problem, restricted to the case where h is unary and the operations of \boldsymbol{A} are at most ternary.

Theorem (Bergman, Juedes, and Slutzki)
 Both Gen-Clo and Gen-Clo ${ }_{3}^{1}$ are complete for EXPTIME.

- We will construct a polynomial reduction of $\mathrm{Gen}-\mathrm{Clo}_{3} \frac{1}{3}$ to the Semantic Algebraization Problem.

Reduction

Pick an input $\langle\boldsymbol{A}, h\rangle$ for Gen- Clo_{3}^{1}. We define a new algebra \boldsymbol{A}^{b} as:

- The universe of \boldsymbol{A}^{b} is eight disjoint copies A_{1}, \ldots, A_{8} of A :

An arbitrary finite set of elements in A^{b} can be denote as

$$
\left\{a_{1}^{m_{1}}, \ldots, a_{n}^{m_{n}}\right\}
$$

for some $a_{1}, \ldots, a_{n} \in A$ and $m_{1}, \ldots, m_{n} \leq 8$.

- The basic operation of \boldsymbol{A}^{b} are as follows:

1. For every n-ary basic f of \boldsymbol{A}, we add an operation \hat{f} on \boldsymbol{A}^{b} as

$$
\hat{f}\left(a_{1}^{m_{1}} \ldots, a_{n}^{m_{n}}\right):=f^{\boldsymbol{A}}\left(a_{1}, \ldots, a_{n}\right)^{5} .
$$

2. Then we add to \boldsymbol{A}^{b} the following operation \square :

$$
\square\left(a^{m}\right):= \begin{cases}a^{m} & \text { if } m=1 \text { or } m=2 \\ a^{m-1} & \text { if } m \text { is even and } m \geq 3 \\ a^{m+1} & \text { if } m \text { is odd and } m \geq 3 .\end{cases}
$$

Hardness result

Theorem

There is a polynomial-time reduction of $\mathrm{Gen}-\mathrm{Clo}_{3}^{1}$ to the Semantic Algebraization Problem, i.e. given a finite algebra \boldsymbol{A} of finite type, whose basic operations are at most ternary, and a unary map $h: A \rightarrow A$, TFAE:

1. h belongs to the clone of \boldsymbol{A}.
2. The logic induced by the matrix $\left\langle\boldsymbol{A}^{b}, F\right\rangle$ is algebraizable.

Corollary

The Semantic Algebraization Problem is complete for EXPTIME.
3. Finally we add to \boldsymbol{A}^{b} the following operation \odot :

$$
\triangle\left(a^{m}, b^{n}, c^{k}\right):=\left\{\begin{array}{ll}
a^{1} \quad & \text { if } a^{m}=c^{k} \text { and } h(a)^{5}=b^{n} \\
& \text { and } m \in\{1,3,4\}
\end{array}\right] \begin{array}{ll}
a^{2} \quad \text { if } a^{m}=c^{k}
\end{array} \quad \text { and } h(a)^{5}=b^{n} \text { and } m \in\{2,5,6,7,8\} .
$$

- Then define $F \subseteq A^{b}$ as follows: $F:=A_{1} \cup A_{2}$.
- The pair $\left\langle\boldsymbol{A}^{b}, F\right\rangle$ is a finite reduced matrix of finite type, and thus an input for the Semantic Algebraization Problem!

Remark

Since the arity of the operations of \boldsymbol{A} is bounded by 3 , the matrix $\left\langle\boldsymbol{A}^{b}, F\right\rangle$ can be constructed in polynomial time.

- Variants of the construction $\boldsymbol{A} \longmapsto\left\langle\boldsymbol{A}^{b}, F\right\rangle$ can be used to show that

Theorem

The problem of determining whether the logic of a finite reduced matrix of finite type belongs to any of the following classes

$$
\left\{\begin{array}{l}
\text { algebraizable logics } \\
\text { protoalgebraic logics } \\
\text { equivalential logics } \\
\text { truth-equational logics } \\
\text { order algebraizable logics, }
\end{array}\right.
$$

is hard for EXPTIME.

- For all the above classes of logics (except the one of truth-equational logics), the problem is complete for EXPTIME.
- A similar situation appears in the study of Malsetv conditions:

Theorem (Freese and Valeriote)

The problem of determining whether a finite algebra \boldsymbol{A} of finite type generates a congruence distributive (resp. modular) variety is complete for EXPTIME.

- However, the above problems become tractable when \boldsymbol{A} is idempotent, i.e when for every operation f of \boldsymbol{A} and $a \in A$

$$
f^{\boldsymbol{A}}(a, \ldots, a)=a
$$

Open Problem

Find tractability conditions for Semantic Algebraization Problem.

- Remark: idempotency will not work here, since no idempotent non-trivial matrix determines an algebraizable logic.

