The computational complexity of the Leibniz hierarchy

Tommaso Moraschini
Institute of Computer Science of the Czech Academy of Sciences
June 28, 2017

Logics

Definition
A logic \(\vdash \) is a consequence relation over the set of formulas \(Fm \) of an algebraic language, which is substitution invariant in the sense that

\[
\text{if } \Gamma \vdash \varphi, \text{ then } \sigma(\Gamma) \vdash \sigma(\varphi)
\]

for all substitutions \(\sigma : Fm \to Fm \).

▶ Logics are consequence relations (as opposed to sets of valid formulas).
▶ Example: IPC is the logic defined as follows:

\(\Gamma \vdash_{\text{IPC}} \varphi \iff \) for every Heyting algebra \(A \) and \(\vec{a} \in A \),

\[
\text{if } \Gamma^A(\vec{a}) = 1, \text{ then } \varphi^A(\vec{a}) = 1.
\]

Relative equational consequence

Definition
Let \(K \) be a class of similar algebras. Given a set of equations \(\Theta \cup \{ \varphi \approx \psi \} \), we define

\[
\Theta \models_K \varphi \approx \psi \iff \text{for every } A \in K \text{ and } \vec{a} \in A,
\]

\[
\text{if } \epsilon^A(\vec{a}) = \delta^A(\vec{a}) \text{ for all } \epsilon \approx \delta \in \Theta,
\]

\[
\text{then } \varphi^A(\vec{a}) = \psi^A(\vec{a}).
\]

The relation \(\models_K \) is the equational consequence relative to \(K \).

▶ Example: If \(K \) is the variety of Heyting algebras, then

\[
\varphi \approx 1, \varphi \to \psi \approx 1 \models_K \psi \approx 1.
\]

Algebraizable logics

Example: Consider

\(\text{IPC} = \) intuitionistic propositional logic
\(\text{HA} = \) variety of Heyting algebras

▶ Pick the translations between formulas and equations:

\[
\varphi \mapsto \varphi \approx 1
\]

\[
\alpha \approx \beta \mapsto \{ \alpha \leftrightarrow \beta \}.
\]

▶ These translations allow to equi-interpret \(\vdash_{\text{IPC}} \) and \(\models_{\text{HA}} \):

\[
\Gamma \vdash_{\text{IPC}} \varphi \iff \{ \gamma \approx 1 : \gamma \in \Gamma \} \models_{\text{HA}} \varphi \approx 1
\]

\[
\Theta \models_{\text{HA}} \varphi \approx \psi \iff \{ \alpha \leftrightarrow \beta : \alpha \approx \beta \in \Theta \} \vdash_{\text{IPC}} \{ \varphi \leftrightarrow \psi \}.
\]

▶ Moreover, the translations are one inverse to the other:

\[
\varphi \approx \psi \models_{\text{HA}} \varphi \leftrightarrow \psi \approx 1 \text{ and } \varphi \vdash_{\text{IPC}} \varphi \leftrightarrow \psi.
\]

▶ Hence \(\vdash_{\text{IPC}} \) and \(\models_{\text{HA}} \) are essentially the same.
Intuitive idea: a logic \vdash is algebraizable when it can be essentially identified with a relative equational consequence \vDash_K.

Definition

A logic \vdash is **algebraizable** when there exists:

1. A class of algebras K (of the same type as \vdash);
2. A set of equations $\tau(x)$ in one variable x;
3. A set of formulas $\rho(x, y)$ in two variables x and y such that τ and ρ equi-interpret \vdash and \vDash_K:

\[
\Gamma \vdash \varphi \iff \tau(\Gamma) \vDash_K \tau(\varphi) \\
\Theta \vDash_K \varphi \approx \psi \iff \rho(\Theta) \vdash \rho(\varphi, \psi)
\]

and the two interpretations are one inverse to the other:

\[
\varphi \approx \psi \iff \models_K \tau(a, b) \subseteq F \\
a \in F \iff A \models \tau(a).
\]

Since finitely generated free algebras over $\forall(A)$ are finite, we can just check the existence of the sets $\rho(x, y)$ and $\tau(x)$.

Hence the Semantic Algebraization Problem is in **EXPTIME**.

Algebraization Problem

- We study the computational aspects of the following problem:

Algebraization Problem

Given a logic \vdash, determine whether \vdash is algebraizable or not.

- Logic can be presented (at least) in two ways:

 syntactically = by means of Hilbert calculi

 semantically = by means of collections of logical matrices.

Theorem (M. 2015)

The Algebraization Problem for logics presented by finite consistent Hilbert calculi is **undecidable**.

A useful **EXPTIME-complete problem**

- We want to prove that the Semantic Algebraization Problem is complete for **EXPTIME**.
- We need to construct a polynomial-time reduction to such a complete problem.

The Problem Gen-Clo

Given a finite algebra A of finite type and a function $h: A^n \rightarrow A$, determine whether h belongs to the clone of A or not.

- Gen-Clo$_1$ is the same problem, restricted to the case where h is unary and the operations of A are at most ternary.

Theorem (Bergman, Juedes, and Slutzki)

Both Gen-Clo and Gen-Clo$_1$ are complete for **EXPTIME**.

- We will construct a polynomial reduction of Gen-Clo$_1$ to the Semantic Algebraization Problem.
Reduction

Pick an input \(\langle A, h \rangle \) for \(\text{Gen-Clo}_3^1 \). We define a new algebra \(A^\flat \) as:

- The universe of \(A^\flat \) is eight disjoint copies \(A_1, \ldots, A_8 \) of \(A \):

 \[\{a_1^{m_1}, \ldots, a_n^{m_n}\} \]

 for some \(a_1, \ldots, a_n \in A \) and \(m_1, \ldots, m_n \leq 8 \).
- The basic operation of \(A^\flat \) are as follows:
 1. For every \(n \)-ary basic \(f \) of \(A \), we add an operation \(\hat{f} \) on \(A^\flat \) as
 \[\hat{f}(a_1^{m_1}, \ldots, a_n^{m_n}) := f^A(a_1, \ldots, a_n)^5. \]
 2. Then we add to \(A^\flat \) the following operation \(\Box \):
 \[\Box(a^m) := \begin{cases}
 a^m & \text{if } m = 1 \text{ or } m = 2 \\
 a^{m-1} & \text{if } m \text{ is even and } m \geq 3 \\
 a^{m+1} & \text{if } m \text{ is odd and } m \geq 3.
 \end{cases} \]

3. Finally we add to \(A^\flat \) the following operation \(\heartsuit \):
 \[\heartsuit(a^m, b^n, c^k) := \begin{cases}
 a^1 & \text{if } a^m = c^k \text{ and } h(a)^5 = b^n \\
 a^2 & \text{if } a^m = c^k \text{ and } h(a)^5 = b^n \text{ and } m \in \{1, 3, 4\} \\
 a^4 & \text{if } m, k \in \{1, 3, 4\} \text{ and } (\text{either } a^m \neq c^k \text{ or } h(a)^5 \neq b^n) \\
 a^7 & \text{if } \{m, k\} \cap \{2, 5, 6, 7, 8\} \neq \emptyset \text{ and } (\text{either } a^m \neq c^k \text{ or } h(a)^5 \neq b^n).
 \end{cases} \]

- Then define \(F \subseteq A^\flat \) as follows: \(F := A_1 \cup A_2 \).
- The pair \(\langle A^\flat, F \rangle \) is a finite reduced matrix of finite type, and thus an input for the Semantic Algebraization Problem!

Remark

Since the arity of the operations of \(A \) is bounded by 3, the matrix \(\langle A^\flat, F \rangle \) can be constructed in polynomial time.

Hardness result

There is a polynomial-time reduction of Gen-Clo_3^1 to the Semantic Algebraization Problem, i.e. given a finite algebra \(A \) of finite type, whose basic operations are at most ternary, and a unary map \(h: A \rightarrow A \), TFAE:

1. \(h \) belongs to the clone of \(A \).
2. The logic induced by the matrix \(\langle A^\flat, F \rangle \) is algebraizable.

Corollary

The Semantic Algebraization Problem is complete for EXPTIME.
Further questions

- A similar situation appears in the study of Mal'cev conditions:

Theorem (Freese and Valeriote)

The problem of determining whether a finite algebra A of finite type generates a congruence distributive (resp. modular) variety is complete for EXPTIME.

- However, the above problems become tractable when A is idempotent, i.e. when for every operation f of A and $a \in A$:

 $$f^A(a, \ldots, a) = a$$

Open Problem

Find tractability conditions for Semantic Algebraization Problem.

- **Remark**: idempotency will not work here, since no idempotent non-trivial matrix determines an algebraizable logic.

Finally...

...thank you for coming!