The computational complexity of the Leibniz hierarchy

Tommaso Moraschini

Institute of Computer Science of the Czech Academy of Sciences

June 28, 2017

1/14

Relative equational consequence

Definition

Let K be a class of similar algebras. Given a set of equations $\Theta \cup \{\varphi \thickapprox \psi\},$ we define

$$\begin{aligned} \boldsymbol{\varTheta} \vDash_{\mathsf{K}} \varphi &\approx \psi \iff \text{for every } \boldsymbol{A} \in \mathsf{K} \text{ and } \vec{a} \in A, \\ & \text{if } \epsilon^{\boldsymbol{A}}(\vec{a}) = \delta^{\boldsymbol{A}}(\vec{a}) \text{ for all } \epsilon \approx \delta \in \Theta, \\ & \text{then } \varphi^{\boldsymbol{A}}(\vec{a}) = \psi^{\boldsymbol{A}}(\vec{a}). \end{aligned}$$

The relation \vDash_{K} is the equational consequence relative to K.

Example: If K is the variety of Heyting algebras, then

$$\varphi \approx 1, \varphi \to \psi \approx 1 \vDash_{\mathsf{K}} \psi \approx 1.$$

Logics

Definition

A logic \vdash is a consequence relation over the set of formulas Fm of an algebraic language, which is substitution invariant in the sense that

if
$$\Gamma \vdash \varphi$$
, then $\sigma(\Gamma) \vdash \sigma(\varphi)$

for all substitutions $\sigma \colon \mathbf{Fm} \to \mathbf{Fm}$.

- Logics are consequence relations (as opposed to sets of valid formulas).
- Example: IPC is the logic defined as follows:

$$\Gamma \vdash_{\mathsf{IPC}} \varphi \iff \text{for every Heyting algebra } \boldsymbol{A} \text{ and } \vec{a} \in A,$$

if $\Gamma^{\boldsymbol{A}}(\vec{a}) = 1$, then $\varphi^{\boldsymbol{A}}(\vec{a}) = 1$.

2/14

Algebraizable logics

Example: Consider

 $\label{eq:IPC} \textbf{IPC} = \textbf{intuitionistic propositional logic}$

HA = variety of Heyting algebras

Pick the translations between formulas and equations:

$$\varphi \longmapsto \varphi \approx 1$$
$$\alpha \approx \beta \longmapsto \{\alpha \leftrightarrow \beta\}$$

▶ These translations allow to equi-interpret \vdash_{IPC} and \vdash_{HA} :

$$\begin{split} & \Gamma \vdash_{\mathsf{IPC}} \varphi \Longleftrightarrow \{ \gamma \approx 1 : \gamma \in \Gamma \} \vDash_{\mathsf{HA}} \varphi \approx 1 \\ & \Theta \vDash_{\mathsf{HA}} \varphi \approx \psi \Longleftrightarrow \{ \alpha \leftrightarrow \beta : \alpha \approx \beta \in \Theta \} \vdash_{\mathsf{IPC}} \{ \varphi \leftrightarrow \psi \}. \end{split}$$

• Moreover, the translations are one inverse to the other:

 $\varphi \approx \psi \rightleftharpoons \models_{\mathsf{HA}} \varphi \leftrightarrow \psi \approx 1 \text{ and } \varphi \dashv \vdash_{\mathsf{IPC}} \varphi \leftrightarrow 1.$

• Hence \vdash_{IPC} and \vDash_{HA} are essentially the same.

Intuitive idea: a logic ⊢ is algebraizable when it can be essentially identified with a relative equational consequence ⊨_K.

Definition

A logic \vdash is algebraizable when there exists:

- 1. A class of algebras K (of the same type as \vdash);
- 2. A set of equations $\tau(x)$ in one variable x;
- 3. A set of formulas $\rho(x, y)$ in two variables x and y such that τ and ρ equi-interpret \vdash and \vDash_{K} :

$$\begin{split} \Gamma \vdash \varphi & \Longleftrightarrow \tau(\Gamma) \vDash_{\mathsf{K}} \tau(\varphi) \\ \Theta \vDash_{\mathsf{K}} \varphi &\approx \psi & \Longleftrightarrow \rho(\Theta) \vdash \rho(\varphi, \psi) \end{split}$$

and the two interpretations are one inverse to the other:

 $\varphi \approx \psi = \models_{\mathsf{K}} \tau \rho(\varphi, \psi) \text{ and } \varphi \dashv \vdash \rho \tau(\varphi).$

5/14

Semantic Algebraization Problem

Given a finite reduced logical matrix $\langle A, F \rangle$ of finite type, determine whether its induced logic is algebraizable or not.

► There is an easy decision procedure for this problem because:

Theorem

Let $\langle \mathbf{A}, F \rangle$ be a finite reduced matrix and \vdash its induced logic. \vdash is algebraizable iff there is a finite set of equations $\tau(x)$ and a finite set of formulas $\rho(x, y)$ such that

 $a = b \Longleftrightarrow
ho(a, b) \subseteq F$ $a \in F \iff A \vDash au(a).$

- Since finitely generated free algebras over $\mathbb{V}(\mathbf{A})$ are finite, we can just check the existence of the sets $\rho(x, y)$ and $\tau(x)$.
- Hence the Semantic Algebraization Problem is in EXPTIME.

Algebraization Problem

▶ We study the computational aspects of the following problem:

Algebraization Problem

Given a logic \vdash , determine whether \vdash is algebraizable or not.

Logic can be presented (at least) in two ways:

syntactically = by means of Hilbert calculi
semantically = by means of collections of logical matrices.

Theorem (M. 2015)

The Algebraization Problem for logics presented by finite consistent Hilbert calculi is undecidable.

6/14

A useful **EXPTIME**-complete problem

- We want to prove that the Semantic Algebraization Problem is complete for EXPTIME.
- We need to construct a polynomial-time reduction to such a complete problem.

The Problem Gen-Clo

Given a finite algebra **A** of finite type and a function $h: A^n \to A$, determine whether h belongs to the clone of **A** or not.

Gen-Clo¹₃ is the same problem, restricted to the case where h is unary and the operations of A are at most ternary.

Theorem (Bergman, Juedes, and Slutzki)

Both Gen-Clo and Gen-Clo $_3^1$ are complete for **EXPTIME**.

We will construct a polynomial reduction of Gen-Clo¹₃ to the Semantic Algebraization Problem.

Reduction

Pick an input $\langle \mathbf{A}, h \rangle$ for Gen-Clo¹₃. We define a new algebra \mathbf{A}^{\flat} as:

The universe of A^b is eight disjoint copies A₁,..., A₈ of A: An arbitrary finite set of elements in A^b can be denote as

 $\{a_1^{m_1},\ldots,a_n^{m_n}\}$

for some $a_1, \ldots, a_n \in A$ and $m_1, \ldots, m_n \leq 8$.

- The basic operation of \mathbf{A}^{\flat} are as follows:
- 1. For every *n*-ary basic *f* of **A**, we add an operation \hat{f} on A^{\flat} as

$$\hat{f}(a_1^{m_1}\ldots,a_n^{m_n})\coloneqq f^{\boldsymbol{A}}(a_1,\ldots,a_n)^5$$

2. Then we add to \mathbf{A}^{\flat} the following operation \Box :

$$\Box(a^m) := \begin{cases} a^m & \text{if } m = 1 \text{ or } m = 2\\ a^{m-1} & \text{if } m \text{ is even and } m \ge 3\\ a^{m+1} & \text{if } m \text{ is odd and } m \ge 3. \end{cases}$$

9/14

Hardness result

Theorem

There is a polynomial-time reduction of Gen-Clo¹/₃ to the Semantic Algebraization Problem, i.e. given a finite algebra A of finite type, whose basic operations are at most ternary, and a unary map $h: A \rightarrow A$, TFAE:

- 1. h belongs to the clone of A.
- 2. The logic induced by the matrix $\langle \mathbf{A}^{\flat}, F \rangle$ is algebraizable.

Corollary

The Semantic Algebraization Problem is complete for EXPTIME.

3. Finally we add to \mathbf{A}^{\flat} the following operation \heartsuit :

$$\heartsuit(a^{m}, b^{n}, c^{k}) := \begin{cases} a^{1} & \text{if } a^{m} = c^{k} \text{ and } h(a)^{5} = b^{n} \\ & \text{and } m \in \{1, 3, 4\} \\ a^{2} & \text{if } a^{m} = c^{k} \\ & \text{and } h(a)^{5} = b^{n} \text{ and } m \in \{2, 5, 6, 7, 8\} \\ a^{4} & \text{if } m, k \in \{1, 3, 4\} \\ & \text{and (either } a^{m} \neq c^{k} \text{ or } h(a)^{5} \neq b^{n}) \\ a^{7} & \text{if } \{m, k\} \cap \{2, 5, 6, 7, 8\} \neq \emptyset \text{ and} \\ & (\text{either } a^{m} \neq c^{k} \text{ or } h(a)^{5} \neq b^{n}). \end{cases}$$

• Then define $F \subseteq A^{\flat}$ as follows: $F := A_1 \cup A_2$.

The pair (A^b, F) is a finite reduced matrix of finite type, and thus an input for the Semantic Algebraization Problem!

Remark

Since the arity of the operations of **A** is bounded by 3, the matrix $\langle \mathbf{A}^{\flat}, F \rangle$ can be constructed in polynomial time.

10/14

▶ Variants of the construction $A \mapsto \langle A^{\flat}, F \rangle$ can be used to show that

Theorem

The problem of determining whether the logic of a finite reduced matrix of finite type belongs to any of the following classes

algebraizable logics protoalgebraic logics equivalential logics truth-equational logics order algebraizable logics,

is hard for EXPTIME.

 For all the above classes of logics (except the one of truth-equational logics), the problem is complete for EXPTIME.

Further questions

• A similar situation appears in the study of Malsetv conditions:

Theorem (Freese and Valeriote)

The problem of determining whether a finite algebra \boldsymbol{A} of finite type generates a congruence distributive (resp. modular) variety is complete for **EXPTIME**.

► However, the above problems become tractable when A is idempotent, i.e when for every operation f of A and a ∈ A

$$f^{\mathbf{A}}(a,\ldots,a)=a$$

Open Problem

Find tractability conditions for Semantic Algebraization Problem.

Remark: idempotency will not work here, since no idempotent non-trivial matrix determines an algebraizable logic.

13/14

Finally...

...thank you for coming!