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Background

The Basic Motivation

In algebraic logic
I Peter Jipsen and Nick Galatos’ talks yesterday refered to

the idea of weakening relations on a poset.
I The same idea works in Priestley spaces – the duals of

distributive lattices.
I So it should be possible to study relations on ditributive

lattices via Priestley weakening relations.
I Generally, we seek to understand the general setting in

which relation lifting carries over in natural dualities.
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Ordered Algebras
A class of algebras for a given signature is ordered if

I The category is concrete over Pos – there is a forgetful
functor to Pos (and there are free algebras over posets);
and

I All operations in the signature are monotonic.

Examples

I Distributive lattices
I Meet semilattices
I Frames (signature is infinitary)
I Complemented distributive algebras.

Non-examples

I Heyting algebras
I Boolean algebras
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Priestley Structures

Analogous definitions work for expansions of Priestley spaces.

I Operations are continuous and monotonic
I Relations are topologically closed, and weakening closed

(a subtlety here for relations of arity > 2 that won’t concern
us today).

Example

I Priestley distributive lattices. These are the duals of posets
(Banaschewski).

4 / 13
Duality for Relations on Ordered Algebras

N



Background

Relations Three Ways

In the following “poset” means either poset simpliciter or
Priestley space (poset with discrete topology versus with a
Priestley sepatated Stone topology)

Spans
For posets X and Y , a span from X to Y is a pair of monontic
functions

X
p←− P

q−→ Y

Span(X ,Y ) is the category of spans from X to Y .

A morphism from X
p←− R

q−→ Y to X
p′
←− R′ q′

−→ Y is a
monotonic function f :R → R′ making the obvious triangles
commute.

5 / 13
Duality for Relations on Ordered Algebras

N



Background

Relations Three ways

Cospans
For posets X and Y , a cospan rom X to Y is a pair of
morphisms

X
j−→ C k←− Y

Cospan(X ,Y ) is the category of cospans from X to Y .

A morphism from X
j−→ C k←− Y to X

j ′−→ C′ k ′
←− Y is a

monotonic function f :C → C′ making the obvious triangles
commute.
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Relations

Weakening relations
For posets X and Y , a weakening relation is monotonic map
R : X ∂ × Y → 2. Equivalently, identifying with the cokernel
R = {(x , y) | R(x , y) = 1}:

x ≤X x ′ x ′ R y ′ y ′ ≤X y
x R y

WRel(X ,Y ) is the poset (regarded as a category) of weakening
relations order pointwise.
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How these are related?
Weakening relations, spans and cospans are related via
adjunctions.

I R ∈WRel, determines
I a span graph(R) by restricting projections
I a cospan collage(R) by taking the least order on X ] Y

containing ≤X , ≤Y and R

I X
p←− R

q−→ Y determines
I a weakening relation rels(p,q) by (x , y) iff ∃r ∈ R, x ≤ p(r)

and q(r) ≤ y
I a cospan cocomma(p,q) by taking the cocomma of (p,q) –

the order analogue of a push out.

I X
j−→ C k←− Y determines

I a weakening relation relc(j , k) by (x , y) iff j(x) ≤ k(y)
I a span comma(j , k) by taking the comma of (j , k) – the

order analogue of a pull back.
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How are these related?

All three are 2-categories.
We already described the hom categories: mathsfSpan(X ,Y ),
mathsfCospan(X ,Y ) and WRel(X ,Y ).

I Composition of spans is defined by a comma
I Composition of cospans is defined by a cocomma
I Composition of weakening relations is defined by relational

product: R;S(x , y) =
∨

y∈Y R(x , y) ∧ S(y , z).
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How are these related?

So rels, relc , graph, etc., are two functors and
I rels a graph and graph ◦ rels = Id
I relc a collage iand collage ◦ relcf = Id.
I cocomma a comma
I comma ∼= graph ◦ relc .
I cocomma ∼= collage ◦ rels.

All these facts hold analogously in PoSpace, the category of
topological spaces with closed partial orders. Definitions are
with respect to continuous montonic functions.
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The bottom line

We also characterize those spans and cospans that arise as
graphs and collages of weakening relations.

These are the same as those that are fixed by
comma ◦ cocomma or cocomma ◦ comma.
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Extending to algebras and topological structures

Suppose A is a class of ordered algebras.
Let A denote the category of A-algebras spans in A with
weakening poset reducts.

For example, DLat is the category of bounded distributive
lattices with morphisms that are relations satisfying:

I x ≤ x ′ R y ′ ≤ y implies x R y
I 0 R y y
I x R 1
I x R y0 and x y1 implies x R y0 ∧ y1

I x0 R y and x1 R y implies x0 ∨ x1 R y .
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Bringing it home

Theorem
I DL is (co)dually equivalent to Priestley.
I Pos is (co)dually equivalent to Stone(DLat)

Proof idea: A span X
p←− R

q−→ Y in DLat dualizes to
2X 2p
−→ 2R 2q

←− 2Y in Priestley.

But this transfer preserves the weakening property.

The correspondence of spans and cospans allows this cospan
in Priestley to be turned into a span.

The second claim comes from swapping the Stone topology
and discrete topology in the first claim.
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