Undecidability of $\{\cdot, 1, \vee\}$-equations in subvarieties of commutative residuated lattices.

Gavin St. John

Under the advisement of Nikolaos Galatos
University of Denver
Department of Mathematics
Topology, Algebra, and Categories in Logic 2017 Institute of Computer Science, Czech Academy of Sciences

27 June 2017

Residuated Lattices

Definition

A (commutative) residuated lattice is a structure
$\mathbf{R}=(R, \cdot, \vee, \wedge, \backslash, /, 1)$, such that

- (R, \vee, \wedge) is a lattice
- $(R, \cdot, 1)$ is a (commutative) monoid
- For all $x, y, z \in R$

$$
x \cdot y \leq z \Longleftrightarrow y \leq x \backslash z \Longleftrightarrow x \leq z / y
$$

where \leq is the lattice order.
We denote the variety of (commutative) residuated lattices by $(\mathcal{C R} \mathcal{L}) \mathcal{R} \mathcal{L}$.
If (r) is a rule (axiom), then $(\mathcal{C}) \mathcal{R} \mathcal{L}_{\mathrm{r}}:=(\mathcal{C}) \mathcal{R} \mathcal{L}+(\mathrm{r})$.

Known results for Quasi-Equational Theory

$\left(\mathrm{k}_{n}^{m}\right)$ represents the knotted rule $x^{n} \leq x^{m}$

Undecidable Q.Eq. Theory \mid Decidable Q.Eq. Theory

Known results for Quasi-Equational Theory

$\left(\mathrm{k}_{n}^{m}\right)$ represents the knotted rule $x^{n} \leq x^{m}$

Undecidable Q.Eq. Theory \mid Decidable Q.Eq. Theory
$\mathcal{R L}$
$\mathcal{C R} \mathcal{L}$

Known results for Quasi-Equational Theory

$\left(\mathrm{k}_{n}^{m}\right)$ represents the knotted rule $x^{n} \leq x^{m}$

Undecidable Q.Eq. Theory	Decidable Q.Eq. Theory
$\mathcal{R} \mathcal{L}$	
$\mathcal{C} \mathcal{R} \mathcal{L}$	
$\mathcal{R} \mathcal{L}+\left(\mathrm{k}_{n}^{m}\right), 1 \leq n<m$	

Known results for Quasi-Equational Theory

$\left(\mathrm{k}_{n}^{m}\right)$ represents the knotted rule $x^{n} \leq x^{m}$

Undecidable Q.Eq. Theory	Decidable Q.Eq. Theory
$\mathcal{R} \mathcal{L}$	
$\mathcal{C} \mathcal{R} \mathcal{L}$	
$\mathcal{R} \mathcal{L}+\left(\mathrm{k}_{n}^{m}\right), 1 \leq n<m$	$\mathcal{C} \mathcal{R} \mathcal{L}+\left(\mathrm{k}_{n}^{m}\right)$

Known results for Quasi-Equational Theory

$\left(\mathrm{k}_{n}^{m}\right)$ represents the knotted rule $x^{n} \leq x^{m}$

Undecidable Q.Eq. Theory	Decidable Q.Eq. Theory
$\mathcal{R} \mathcal{L}$	
$\mathcal{C} \mathcal{R} \mathcal{L}$	
$\mathcal{R} \mathcal{L}+\left(\mathrm{k}_{n}^{m}\right), 1 \leq n<m$	$\mathcal{C} \mathcal{R} \mathcal{L}+\left(\mathrm{k}_{n}^{m}\right)$
$\mathcal{C} \mathcal{R} \mathcal{L}+(?)$	

- Van Alten (2005) showed $\mathcal{C} \mathcal{R} \mathcal{L}$ in the presence of any knotted rule has the FEP.
- Van Alten (2005) showed $\mathcal{C} \mathcal{R} \mathcal{L}$ in the presence of any knotted rule has the FEP.
- Consequently, extensions of $\mathcal{C R} \mathcal{L}$ in the signatures $\{\leq, \cdot, 1\}$ have been fully characterized.
- Van Alten (2005) showed $\mathcal{C} \mathcal{R} \mathcal{L}$ in the presence of any knotted rule has the FEP.
- Consequently, extensions of $\mathcal{C R} \mathcal{L}$ in the signatures $\{\leq, \cdot, 1\}$ have been fully characterized.
- We inspect (in)equations in the signature $\{\cdot, 1, \vee\}$.
- Van Alten (2005) showed $\mathcal{C} \mathcal{R} \mathcal{L}$ in the presence of any knotted rule has the FEP.
- Consequently, extensions of $\mathcal{C R} \mathcal{L}$ in the signatures $\{\leq, \cdot, 1\}$ have been fully characterized.
- We inspect (in)equations in the signature $\{\cdot, 1, \vee\}$. - Proof theoretically, such axioms correspond to inference rules, e.g.,

$$
x \leq x^{2} \vee 1 \Longleftrightarrow \frac{X, Y, Y, Z \vdash C \quad X, Z \vdash C}{X, Y, Z \vdash C}
$$

- Van Alten (2005) showed $\mathcal{C} \mathcal{R} \mathcal{L}$ in the presence of any knotted rule has the FEP.
- Consequently, extensions of $\mathcal{C R} \mathcal{L}$ in the signatures $\{\leq, \cdot, 1\}$ have been fully characterized.
- We inspect (in)equations in the signature $\{\cdot, 1, \vee\}$. - Proof theoretically, such axioms correspond to inference rules, e.g.,

$$
x \leq x^{2} \vee 1 \Longleftrightarrow \frac{X, Y, Y, Z \vdash C \quad X, Z \vdash C}{X, Y, Z \vdash C}
$$

- The work of Chvalovský \& Horčík (2016) implies the undecidability for many such extensions in $\mathcal{R} \mathcal{L}$.
- Van Alten (2005) showed $\mathcal{C} \mathcal{R} \mathcal{L}$ in the presence of any knotted rule has the FEP.
- Consequently, extensions of $\mathcal{C R} \mathcal{L}$ in the signatures $\{\leq, \cdot, 1\}$ have been fully characterized.
- We inspect (in)equations in the signature $\{\cdot, 1, \vee\}$. - Proof theoretically, such axioms correspond to inference rules, e.g.,

$$
x \leq x^{2} \vee 1 \Longleftrightarrow \frac{X, Y, Y, Z \vdash C \quad X, Z \vdash C}{X, Y, Z \vdash C}
$$

- The work of Chvalovský \& Horčík (2016) implies the undecidability for many such extensions in $\mathcal{R} \mathcal{L}$.
- So we restrict our investigation to the commutative case.

Linearization

Any equation $s=t$ in the signature $\{\cdot, 1, \vee\}$ is equivalent to some conjunction of linear inequations we call " d-rules" of the form:

$$
\text { (d) } x_{1} \cdots x_{n} \leq \bigvee_{j=1}^{m} x_{1}^{d_{j}(1)} \cdots x_{n}^{d_{j}(n)}
$$

where $\mathrm{d}:=\left\{d_{1}, \ldots, d_{m}\right\} \subset \mathbb{N}^{n}$.

Linearization

Any equation $s=t$ in the signature $\{\cdot, 1, \vee\}$ is equivalent to some conjunction of linear inequations we call " d-rules" of the form:

$$
\text { (d) } x_{1} \cdots x_{n} \leq \bigvee_{j=1}^{m} x_{1}^{d_{j}(1)} \cdots x_{n}^{d_{j}(n)}
$$

where $\mathrm{d}:=\left\{d_{1}, \ldots, d_{m}\right\} \subset \mathbb{N}^{n}$. Such conjoins can be determined by the properties of $\mathcal{C R} \mathcal{L}$:

- $x \leq y \Longleftrightarrow x \vee y=y$
- $x \vee y \leq z \Longleftrightarrow x \leq z$ and $y \leq z$
- linearization

Linearization

Any equation $s=t$ in the signature $\{\cdot, 1, \vee\}$ is equivalent to some conjunction of linear inequations we call " d-rules" of the form:

$$
\text { (d) } x_{1} \cdots x_{n} \leq \bigvee_{j=1}^{m} x_{1}^{d_{j}(1)} \cdots x_{n}^{d_{j}(n)}
$$

where $\mathrm{d}:=\left\{d_{1}, \ldots, d_{m}\right\} \subset \mathbb{N}^{n}$. Such conjoins can be determined by the properties of $\mathcal{C R} \mathcal{L}$:

- $x \leq y \Longleftrightarrow x \vee y=y$
- $x \vee y \leq z \Longleftrightarrow x \leq z$ and $y \leq z$
- linearization
E.g., the rule

$$
(\forall u)(\forall v) u^{2} v \leq u^{3} \vee u v
$$

is equivalent to, via the substitutions $u=x \vee y$ and $v=z$,

$$
(\forall x)(\forall y)(\forall z) x y z \leq x^{3} \vee x^{2} y \vee x y^{2} \vee y^{3} \vee x z \vee y z
$$

Conditions on $\mathrm{d} \subset \mathbb{N}^{n}$

- If (d) implies a knotted rule, then $\mathcal{C R} \mathcal{L}+(\mathrm{d})$ is decidable.

Conditions on $\mathrm{d} \subset \mathbb{N}^{n}$

- If (d) implies a knotted rule, then $\mathcal{C R} \mathcal{L}+(\mathrm{d})$ is decidable. E.g., if (d) is $x y \leq x y^{2} \vee x^{2} y$, then

$$
\mathcal{C R} \mathcal{L}+(\mathrm{d}) \models x^{2} \leq x^{3} .
$$

Conditions on $\mathrm{d} \subset \mathbb{N}^{n}$

- If (d) implies a knotted rule, then $\mathcal{C R} \mathcal{L}+(\mathrm{d})$ is decidable. E.g., if (d) is $x y \leq x y^{2} \vee x^{2} y$, then

$$
\mathcal{C} \mathcal{R} \mathcal{L}+(\mathrm{d}) \mid=x^{2} \leq x^{3} .
$$

- If $\mathcal{C R} \mathcal{L}+(\mathrm{d})$ is to be undecidable, $\mathrm{d} \subset \mathbb{N}^{n}$ must refute certain conditions with respect to the set of vectors representing the exponents of the variables.

Conditions on $\mathrm{d} \subset \mathbb{N}^{n}$

- If (d) implies a knotted rule, then $\mathcal{C R} \mathcal{L}+(\mathrm{d})$ is decidable. E.g., if (d) is $x y \leq x y^{2} \vee x^{2} y$, then

$$
\mathcal{C} \mathcal{R} \mathcal{L}+(\mathrm{d}) \models x^{2} \leq x^{3}
$$

- If $\mathcal{C R} \mathcal{L}+(\mathrm{d})$ is to be undecidable, $\mathrm{d} \subset \mathbb{N}^{n}$ must refute certain conditions with respect to the set of vectors representing the exponents of the variables.
- We view $\mathrm{d}=\left\{d_{j}\right\}_{j=1}^{m}$ as a set of linear subspaces of \mathbf{R}^{n}.

Conditions on $\mathrm{d} \subset \mathbb{N}^{n}$

- If (d) implies a knotted rule, then $\mathcal{C R} \mathcal{L}+(\mathrm{d})$ is decidable. E.g., if (d$)$ is $x y \leq x y^{2} \vee x^{2} y$, then

$$
\mathcal{C} \mathcal{R} \mathcal{L}+(\mathrm{d}) \models x^{2} \leq x^{3}
$$

- If $\mathcal{C R} \mathcal{L}+(\mathrm{d})$ is to be undecidable, $\mathrm{d} \subset \mathbb{N}^{n}$ must refute certain conditions with respect to the set of vectors representing the exponents of the variables.
- We view $\mathrm{d}=\left\{d_{j}\right\}_{j=1}^{m}$ as a set of linear subspaces of \mathbf{R}^{n}. (\star) Given any nonempty $A \subseteq\{1, \ldots, n\}$, and any nontrivial valuation of variables x_{1}, \ldots, x_{n} in \mathbb{N}, there exists $j \neq j^{\prime} \leq m$ such that the supports of d_{j} and $d_{j^{\prime}}$ intersect A, and

$$
\sum_{i=1}^{n} d_{j}(i) x_{i} \neq \sum_{i=1}^{n} d_{j^{\prime}}(i) x_{i}
$$

Conditions on $\mathrm{d} \subset \mathbb{N}^{n}$

- If (d) implies a knotted rule, then $\mathcal{C R} \mathcal{L}+(\mathrm{d})$ is decidable. E.g., if (d$)$ is $x y \leq x y^{2} \vee x^{2} y$, then

$$
\mathcal{C} \mathcal{R} \mathcal{L}+(\mathrm{d}) \models x^{2} \leq x^{3}
$$

- If $\mathcal{C R} \mathcal{L}+(\mathrm{d})$ is to be undecidable, $\mathrm{d} \subset \mathbb{N}^{n}$ must refute certain conditions with respect to the set of vectors representing the exponents of the variables.
- We view $\mathrm{d}=\left\{d_{j}\right\}_{j=1}^{m}$ as a set of linear subspaces of \mathbf{R}^{n}. (\star) Given any nonempty $A \subseteq\{1, \ldots, n\}$, and any nontrivial valuation of variables x_{1}, \ldots, x_{n} in \mathbb{N}, there exists $j \neq j^{\prime} \leq m$ such that the supports of d_{j} and $d_{j^{\prime}}$ intersect A, and

$$
\sum_{i=1}^{n} d_{j}(i) x_{i} \neq \sum_{i=1}^{n} d_{j^{\prime}}(i) x_{i}
$$

$(\star \star)$ For any valuation of the x_{i} 's, there exists $j \leq m$ such that

$$
\sum_{i=1}^{n} x_{i}<\sum_{i=1}^{n} d_{j}(i) x_{i}
$$

Examples and Non-examples of $(\star) \&(\star \star)$

Rule	(\star)	$(\star \star)$
$x \leq x^{2}$		\checkmark
$x \leq x^{2} \vee 1$		\checkmark
$x \leq x^{2} \vee x^{3}$	\checkmark	\checkmark
$x y \leq x^{2} \vee y^{2}$		
$x y \leq x \vee x^{2} y$		
$x y \leq x \vee x^{2} y \vee y^{2}$	\checkmark	\checkmark
$x y z \leq x^{3} \vee x^{2} y \vee y^{3} \vee y^{2} z \vee z^{3} \vee z^{2} x$	\checkmark	
$x y z w \leq x^{2} y z w \vee x^{3} y^{2} z^{2} w^{2}$	\checkmark	\checkmark

Examples and Non-examples of $(\star) \&(\star \star)$

Rule	(\star)	$(\star \star)$
$x \leq x^{2}$		\checkmark
$x \leq x^{2} \vee 1$		\checkmark
$x \leq x^{2} \vee x^{3}$	\checkmark	\checkmark
$x y \leq x^{2} \vee y^{2}$		
$x y \leq x \vee x^{2} y$		
$x y \leq x \vee x^{2} y \vee y^{2}$	\checkmark	\checkmark
$x y z \leq x^{3} \vee x^{2} y \vee y^{3} \vee y^{2} z \vee z^{3} \vee z^{2} x$	\checkmark	
$x y z w \leq x^{2} y z w \vee x^{3} y^{2} z^{2} w^{2}$	\checkmark	\checkmark

Determining whether a given (d)-rule satisfies these conditions amounts to showing certain systems of equations do not have "non-trivial" solutions in \mathbb{N}^{n}. This can be simplified by asking if there are positive solutions in \mathbb{R}^{n}.

And-branching Counter Machines

An And-branching k-Counter Machine (k-ACM), (Linclon et. al. 1992) $M=\left(R_{k}, Q, P\right)$ is a type of non-deterministic parallel-computing counter machine that has

And-branching Counter Machines

An And-branching k-Counter Machine (k-ACM), (Linclon et. al. 1992) $M=\left(R_{k}, Q, P\right)$ is a type of non-deterministic parallel-computing counter machine that has

- a set $R_{k}:=\left\{r_{1}, \ldots, r_{k}\right\}$ of k registers (bins) that can each store a non-negative integer (tokens),

And-branching Counter Machines

An And-branching k-Counter Machine (k-ACM), (Linclon et. al. 1992) $M=\left(R_{k}, Q, P\right)$ is a type of non-deterministic parallel-computing counter machine that has

- a set $R_{k}:=\left\{r_{1}, \ldots, r_{k}\right\}$ of k registers (bins) that can each store a non-negative integer (tokens),
- a finite set Q of states with designated initial state q_{I} and final state q_{f},

And-branching Counter Machines

An And-branching k-Counter Machine (k-ACM), (Linclon et. al. 1992) $M=\left(R_{k}, Q, P\right)$ is a type of non-deterministic parallel-computing counter machine that has

- a set $R_{k}:=\left\{r_{1}, \ldots, r_{k}\right\}$ of k registers (bins) that can each store a non-negative integer (tokens),
- a finite set Q of states with designated initial state q_{I} and final state q_{f},
- and a finite set P of instructions p of the form:
- Increment: $q \leq^{p} q^{\prime} r$
- Decrement: $q r \leq^{p} q^{\prime}$
- Fork: $\quad q \leq^{p} \quad q^{\prime} \vee q^{\prime \prime}$,
where $q, q^{\prime}, q^{\prime \prime} \in Q$ and $r \in R_{k}$.

ACM's continued

- Instructions of an ACM act on configurations, which consist of a single state and a number register tokens

$$
C=q r_{1}^{n_{1}} r_{2}^{n_{2}} \cdots r_{k}^{n_{k}} .
$$

ACM's continued

- Instructions of an ACM act on configurations, which consist of a single state and a number register tokens

$$
C=q r_{1}^{n_{1}} r_{2}^{n_{2}} \cdots r_{k}^{n_{k}} .
$$

- Forking instructions allow parallel computation. The status of a machine at a given time in a computation is called an instantaneous description (ID),

$$
u=C_{1} \vee C_{2} \vee \cdots \vee C_{n}
$$

where C_{1}, \ldots, C_{n} are configurations.

ACM's continued

- Instructions of an ACM act on configurations, which consist of a single state and a number register tokens

$$
C=q r_{1}^{n_{1}} r_{2}^{n_{2}} \cdots r_{k}^{n_{k}}
$$

- Forking instructions allow parallel computation. The status of a machine at a given time in a computation is called an instantaneous description (ID),

$$
u=C_{1} \vee C_{2} \vee \cdots \vee C_{n}
$$

where C_{1}, \ldots, C_{n} are configurations.

- An instruction p acts on a single configuration of an ID u to create a new configuration u^{\prime}.

Computations

We view computations as order relations on the free commutative idempotent semiring $\mathbf{A}_{M}=\left(A_{M}, \vee, \cdot, \perp, 1\right)$ generated by $Q \cup R_{k}$, where $M=\left(R_{k}, Q, P\right)$ is a k-ACM and

Computations

We view computations as order relations on the free commutative idempotent semiring $\mathbf{A}_{M}=\left(A_{M}, \vee, \cdot, \perp, 1\right)$ generated by $Q \cup R_{k}$, where $M=\left(R_{k}, Q, P\right)$ is a k-ACM and

- $\left(A_{M}, \vee, \perp\right)$ is a \vee-semilattice with bottom element $\perp:=\bigvee \emptyset$, and

Computations

We view computations as order relations on the free commutative idempotent semiring $\mathbf{A}_{M}=\left(A_{M}, \vee, \cdot, \perp, 1\right)$ generated by $Q \cup R_{k}$, where $M=\left(R_{k}, Q, P\right)$ is a k-ACM and

- $\left(A_{M}, \vee, \perp\right)$ is a \vee-semilattice with bottom element $\perp:=\bigvee \emptyset$, and
- $\left(A_{M}, \cdot, 1\right)$ is a commutative monoid with identity 1 , and multiplication distributes over join.

Computations

We view computations as order relations on the free commutative idempotent semiring $\mathbf{A}_{M}=\left(A_{M}, \vee, \cdot, \perp, 1\right)$ generated by $Q \cup R_{k}$, where $M=\left(R_{k}, Q, P\right)$ is a k-ACM and

- $\left(A_{M}, \vee, \perp\right)$ is a \vee-semilattice with bottom element $\perp:=\bigvee \emptyset$, and
- $\left(A_{M}, \cdot, 1\right)$ is a commutative monoid with identity 1 , and multiplication distributes over join.
Each instruction $p \in P$ defines a relation \leq^{p} closed under

$$
\frac{u \leq^{p} v}{u x \leq^{p} v x}[\cdot] \quad \text { and } \quad \frac{u \leq^{p} v}{u \vee w \leq^{p} v \vee w}[\vee]
$$

for $u, v, w \in \operatorname{ID}(M)$ and $x \in R_{k}^{*}$, where R_{k}^{*} is the free commutative monoid generated by R_{k}.

Computations

We view computations as order relations on the free commutative idempotent semiring $\mathbf{A}_{M}=\left(A_{M}, \vee, \cdot, \perp, 1\right)$ generated by $Q \cup R_{k}$, where $M=\left(R_{k}, Q, P\right)$ is a k-ACM and

- $\left(A_{M}, \vee, \perp\right)$ is a \vee-semilattice with bottom element $\perp:=\bigvee \emptyset$, and
- $\left(A_{M}, \cdot, 1\right)$ is a commutative monoid with identity 1 , and multiplication distributes over join.
Each instruction $p \in P$ defines a relation \leq^{p} closed under

$$
\frac{u \leq^{p} v}{u x \leq^{p} v x}[\cdot] \quad \text { and } \quad \frac{u \leq^{p} v}{u \vee w \leq^{p} v \vee w}[\vee]
$$

for $u, v, w \in \operatorname{ID}(M)$ and $x \in R_{k}^{*}$, where R_{k}^{*} is the free commutative monoid generated by R_{k}.
We define the computation relation \leq_{M} to be the smallest preorder containing $\bigcup_{p \in P} \leq^{p}$.

Computations cont.

We say a machine M terminates on an ID u if $u \leq_{M} q_{f}$.

Computations cont.

We say a machine M terminates on an ID u if $u \leq_{M} q_{f}$.

- If $u=C_{1} \vee \cdots \vee C_{n}$, then $u \leq_{M} q_{f}$ iff $C_{i} \leq_{M} q_{f}, \forall i \leq n$.

Computations cont.

We say a machine M terminates on an ID u if $u \leq_{M} q_{f}$.

- If $u=C_{1} \vee \cdots \vee C_{n}$, then $u \leq_{M} q_{f}$ iff $C_{i} \leq_{M} q_{f}, \forall i \leq n$.
- If $u \leq_{M} q_{f}$, then there exists $p_{1}, \ldots, p_{n} \in P$ and $u_{0}, \ldots, u_{n} \in \operatorname{ID}(M)$, such that

$$
u=u_{0} \leq^{p_{1}} u_{1} \leq^{p_{2}} \cdots \leq^{p_{n}} u_{n}=q_{f} .
$$

Computations cont.

We say a machine M terminates on an ID u if $u \leq_{M} q_{f}$.

- If $u=C_{1} \vee \cdots \vee C_{n}$, then $u \leq_{M} q_{f}$ iff $C_{i} \leq_{M} q_{f}, \forall i \leq n$.
- If $u \leq_{M} q_{f}$, then there exists $p_{1}, \ldots, p_{n} \in P$ and $u_{0}, \ldots, u_{n} \in \operatorname{ID}(M)$, such that

$$
u=u_{0} \leq^{p_{1}} u_{1} \leq^{p_{2}} \cdots \leq^{p_{n}} u_{n}=q_{f}
$$

Example Machine

Let $M=M_{\text {even }}:=\left(\{r\},\left\{q_{0}, q_{1}, q_{f}\right\},\left\{p_{1}, p_{2}, p_{3}\right\}\right)$, with instructions

$$
q_{0} r \leq^{p_{1}} q_{1} ; \quad q_{1} r \leq^{p_{2}} q_{0} ; \quad q_{0} \leq^{p_{3}} q_{f}
$$

Computations cont.

We say a machine M terminates on an ID u if $u \leq_{M} q_{f}$.

- If $u=C_{1} \vee \cdots \vee C_{n}$, then $u \leq_{M} q_{f}$ iff $C_{i} \leq_{M} q_{f}, \forall i \leq n$.
- If $u \leq_{M} q_{f}$, then there exists $p_{1}, \ldots, p_{n} \in P$ and $u_{0}, \ldots, u_{n} \in \operatorname{ID}(M)$, such that

$$
u=u_{0} \leq^{p_{1}} u_{1} \leq^{p_{2}} \cdots \leq^{p_{n}} u_{n}=q_{f}
$$

Example Machine

Let $M=M_{\text {even }}:=\left(\{r\},\left\{q_{0}, q_{1}, q_{f}\right\},\left\{p_{1}, p_{2}, p_{3}\right\}\right)$, with instructions

$$
q_{0} r \leq^{p_{1}} q_{1} ; \quad q_{1} r \leq^{p_{2}} q_{0} ; \quad q_{0} \leq^{p_{3}} q_{f} .
$$

- Note that $q_{0} r^{n} \leq_{M} q_{f}$ iff n is even.

Computations cont.

We say a machine M terminates on an ID u if $u \leq_{M} q_{f}$.

- If $u=C_{1} \vee \cdots \vee C_{n}$, then $u \leq_{M} q_{f}$ iff $C_{i} \leq_{M} q_{f}, \forall i \leq n$.
- If $u \leq_{M} q_{f}$, then there exists $p_{1}, \ldots, p_{n} \in P$ and $u_{0}, \ldots, u_{n} \in \operatorname{ID}(M)$, such that

$$
u=u_{0} \leq^{p_{1}} u_{1} \leq^{p_{2}} \cdots \leq^{p_{n}} u_{n}=q_{f}
$$

Example Machine

Let $M=M_{\text {even }}:=\left(\{r\},\left\{q_{0}, q_{1}, q_{f}\right\},\left\{p_{1}, p_{2}, p_{3}\right\}\right)$, with instructions

$$
q_{0} r \leq^{p_{1}} q_{1} ; \quad q_{1} r \leq \leq^{p_{2}} q_{0} ; \quad q_{0} \leq^{p_{3}} q_{f} .
$$

- Note that $q_{0} r^{n} \leq_{M} q_{f}$ iff n is even.

$$
q_{0} r^{4} \leq^{p_{1}} q_{1} r^{3} \leq^{p_{2}} q_{0} r^{2} \leq^{p_{1}} q_{1} r \leq^{p_{2}} q_{0} \leq^{p_{3}} q_{f}
$$

Computations cont.

We say a machine M terminates on an ID u if $u \leq_{M} q_{f}$.

- If $u=C_{1} \vee \cdots \vee C_{n}$, then $u \leq_{M} q_{f}$ iff $C_{i} \leq_{M} q_{f}, \forall i \leq n$.
- If $u \leq_{M} q_{f}$, then there exists $p_{1}, \ldots, p_{n} \in P$ and $u_{0}, \ldots, u_{n} \in \operatorname{ID}(M)$, such that

$$
u=u_{0} \leq^{p_{1}} u_{1} \leq^{p_{2}} \cdots \leq^{p_{n}} u_{n}=q_{f}
$$

Example Machine

Let $M=M_{\text {even }}:=\left(\{r\},\left\{q_{0}, q_{1}, q_{f}\right\},\left\{p_{1}, p_{2}, p_{3}\right\}\right)$, with instructions

$$
q_{0} r \leq^{p_{1}} q_{1} ; \quad q_{1} r \leq^{p_{2}} q_{0} ; \quad q_{0} \leq^{p_{3}} q_{f} .
$$

- Note that $q_{0} r^{n} \leq_{M} q_{f}$ iff n is even.

$$
\begin{gathered}
q_{0} r^{4} \leq^{p_{1}} q_{1} r^{3} \leq^{p_{2}} q_{0} r^{2} \leq^{p_{1}} q_{1} r \leq^{p_{2}} q_{0} \leq^{p_{3}} q_{f} \\
q_{0} r^{3} \leq^{p_{1}} q_{1} r^{2} \leq{ }^{p_{2}} q_{0} r \leq{ }^{p_{3}} q_{f} r
\end{gathered}
$$

Undecidable Problem

Theorem [Lincoln et. al., 1992]

There exists a $2-\mathrm{ACM} \widetilde{M}$ such that membership of the set $\left\{u \in \operatorname{ID}(\widetilde{M}): u \leq_{\widetilde{M}} q_{f}\right\}$ is undecidable. Furthermore, it is undecidable whether $q_{I} \leq_{\widetilde{M}} q_{f}$.

Undecidable Problem

Theorem [Lincoln et. al., 1992]

There exists a 2 -ACM \widetilde{M} such that membership of the set $\left\{u \in \operatorname{ID}(\widetilde{M}): u \leq_{\widetilde{M}} q_{f}\right\}$ is undecidable. Furthermore, it is undecidable whether $q_{I} \leq_{\widetilde{M}} q_{f}$.

- Given an ACM M we define the theory of $M \operatorname{Th}(M)$ to be the conjunction of all syntactic instructions in P, i.e.,

$$
\operatorname{Th}(M):=\&\left\{C \leq u:\left(C \leq^{p} u\right) \in P\right\}
$$

Undecidable Problem

Theorem [Lincoln et. al., 1992]

There exists a 2 -ACM \widetilde{M} such that membership of the set $\left\{u \in \operatorname{ID}(\widetilde{M}): u \leq_{\widetilde{M}} q_{f}\right\}$ is undecidable. Furthermore, it is undecidable whether $q_{I} \leq_{\widetilde{M}} q_{f}$.

- Given an ACM M we define the theory of $M \operatorname{Th}(M)$ to be the conjunction of all syntactic instructions in P, i.e.,

$$
\operatorname{Th}(M):=\&\left\{C \leq u:\left(C \leq^{p} u\right) \in P\right\}
$$

- Given an ID u, we define the quasi-equation $\operatorname{Halt}_{M}(u)$ to be

$$
\operatorname{Th}(M) \Longrightarrow u \leq q_{f}
$$

d-rules and the relation $\leq_{\mathrm{d}(M)}$

Given a d-rule, e.g. [d] is given by $x \leq x^{2} \vee x^{4}$, we add "ambient" instructions of the form

$$
q x y \leq^{\mathrm{d}} q x y^{2} \vee q x y^{4}
$$

for each $q \in Q$ and any $x, y \in R_{k}^{*}$.

d-rules and the relation $\leq_{\mathrm{d}(M)}$

Given a d-rule, e.g. [d] is given by $x \leq x^{2} \vee x^{4}$, we add "ambient" instructions of the form

$$
q x y \leq^{\mathrm{d}} q x y^{2} \vee q x y^{4}
$$

for each $q \in Q$ and any $x, y \in R_{k}^{*}$.
As with the instructions in P, we close $\leq{ }^{\mathrm{d}}$ under the inference rules [.] and [V], and we define the relation $\leq_{\mathrm{d}(M)}$ to be the smallest preorder generated by $\leq^{\mathrm{d}} \cup \leq_{M}$.

- Clearly, if $u \leq_{M} q_{f}$ then $u \leq_{\mathrm{d}(M)} q_{f}$ since $\leq_{M} \subset \leq_{\mathrm{d}(M)}$.
- Clearly, if $u \leq_{M} q_{f}$ then $u \leq_{\mathrm{d}(M)} q_{f}$ since $\leq_{M} \subset \leq_{\mathrm{d}(M)}$.
- However, for some ACM's M, it's possible that $u \leq_{\mathrm{d}(M)} q_{f}$ but $u \not Z_{M} q_{f}$.
- Clearly, if $u \leq_{M} q_{f}$ then $u \leq_{\mathrm{d}(M)} q_{f}$ since $\leq_{M} \subset \leq_{\mathrm{d}(M)}$.
- However, for some ACM's M, it's possible that $u \leq_{\mathrm{d}(M)} q_{f}$ but $u \not Z_{M} q_{f}$.

Example

Consider $M=M_{\text {even }}$ and (d) given by $x \leq x^{2} \vee x^{4}$.

- Clearly, if $u \leq_{M} q_{f}$ then $u \leq_{\mathrm{d}(M)} q_{f}$ since $\leq_{M} \subset \leq_{\mathrm{d}(M)}$.
- However, for some ACM's M, it's possible that $u \leq_{\mathrm{d}(M)} q_{f}$ but $u \not z_{M} q_{f}$.

Example

Consider $M=M_{\text {even }}$ and (d) given by $x \leq x^{2} \vee x^{4}$.

- $q_{0} r^{3} \not \leq_{M} q_{f}$ since 3 is odd.
- Clearly, if $u \leq_{M} q_{f}$ then $u \leq_{\mathrm{d}(M)} q_{f}$ since $\leq_{M} \subset \leq_{\mathrm{d}(M)}$.
- However, for some ACM's M, it's possible that $u \leq_{\mathrm{d}(M)} q_{f}$ but $u \not Z_{M} q_{f}$.

Example

Consider $M=M_{\text {even }}$ and (d) given by $x \leq x^{2} \vee x^{4}$.

- $q_{0} r^{3} \not Z_{M} q_{f}$ since 3 is odd.
- However, $q_{0} r^{3} \leq_{\mathrm{d}(M)} q_{f}$, witnessed by

$$
\begin{aligned}
& \quad q_{0} r^{3}=q_{0} r^{2} r \leq^{\mathrm{d}} q_{0} r^{2} r^{2} \vee q_{0} r^{2} r^{4}=q_{0} r^{4} \vee q_{0} r^{6} \leq_{\mathrm{d}(M)} q_{f}, \\
& \text { since } q_{0} r^{4} \leq_{M} q_{f} \text { and } q_{0} r^{6} \leq_{M} q_{f} .
\end{aligned}
$$

Goal

Given an ACM M and a d-rule, is it possible to construct a new ACM M^{\prime} such that

$$
u \leq_{M} q_{f} \text { if and only if } \theta(u) \leq_{\mathrm{d}\left(M^{\prime}\right)} q_{F}
$$

(where $\theta: \mathrm{ID}(M) \rightarrow \mathrm{ID}\left(M^{\prime}\right)$ is computable and q_{F} is the final state of M^{\prime}) and if so, under what conditions?

Then M_{K} machine

Let $M=\left(R_{2}, Q, P\right)$ be a 2-ACM and let $K>1$ be given. We define the $3-\mathrm{ACM} M_{K}=\left(R_{3}, Q_{K}, P_{K}\right)$ such that

Then M_{K} machine

Let $M=\left(R_{2}, Q, P\right)$ be a 2-ACM and let $K>1$ be given. We define the 3 -ACM $M_{K}=\left(R_{3}, Q_{K}, P_{K}\right)$ such that

- $Q \subset Q_{K}$ with q_{F} the final state of M_{K} and instruction $\left(q_{f} r_{1} r_{2} \leq^{F} q_{F}\right) \in P_{K}$,

Then M_{K} machine

Let $M=\left(R_{2}, Q, P\right)$ be a 2-ACM and let $K>1$ be given. We define the 3-ACM $M_{K}=\left(R_{3}, Q_{K}, P_{K}\right)$ such that

- $Q \subset Q_{K}$ with q_{F} the final state of M_{K} and instruction $\left(q_{f} r_{1} r_{2} \leq^{F} q_{F}\right) \in P_{K}$,
- each forking instruction in P is contained in P_{K},

Then M_{K} machine

Let $M=\left(R_{2}, Q, P\right)$ be a 2-ACM and let $K>1$ be given. We define the 3 -ACM $M_{K}=\left(R_{3}, Q_{K}, P_{K}\right)$ such that

- $Q \subset Q_{K}$ with q_{F} the final state of M_{K} and instruction $\left(q_{f} r_{1} r_{2} \leq^{F} q_{F}\right) \in P_{K}$,
- each forking instruction in P is contained in P_{K},
- each increment and decrement instruction of P is replaced by multiply and divide by K programs, i.e.

$$
\begin{array}{llllll}
q & \leq^{p} & q^{\prime} r & \in P & \Longrightarrow & q r^{\forall} \sqsubseteq^{p} q^{\prime} r^{K \cdot \forall}
\end{array} \subset P_{K} . .
$$

Then M_{K} machine

Let $M=\left(R_{2}, Q, P\right)$ be a 2-ACM and let $K>1$ be given. We define the 3 -ACM $M_{K}=\left(R_{3}, Q_{K}, P_{K}\right)$ such that

- $Q \subset Q_{K}$ with q_{F} the final state of M_{K} and instruction $\left(q_{f} r_{1} r_{2} \leq^{F} q_{F}\right) \in P_{K}$,
- each forking instruction in P is contained in P_{K},
- each increment and decrement instruction of P is replaced by multiply and divide by K programs, i.e.

$$
\begin{array}{llllll}
q & \leq^{p} & q^{\prime} r & \in P & \Longrightarrow & q r^{\forall} \sqsubseteq^{p} q^{\prime} r^{K \cdot \forall}
\end{array} \subset P_{K} . .
$$

- We obtain, for each $q \in Q$,

$$
q r_{1}^{n_{1}} r_{2}^{n_{2}} \leq_{M} q_{f} \Longleftrightarrow q r_{1}^{K^{n_{1}}} r_{2}^{K^{n_{2}}} \leq_{M_{K}} q_{F}
$$

Detecting applications of \leq d

Observation

Consider a configuration where the contents of some register r is $n=s+t$, whereafter \leq^{d} is applied to t-many tokens, i.e.,

$$
q r^{n}=q r^{s} r^{t} \leq^{\mathrm{d}} q r^{s}\left(r^{2 t} \vee r^{4 t}\right)=q r^{s+2 t} \vee q r^{s+4 t}
$$

Detecting applications of $\leq{ }^{\mathrm{d}}$

Observation

Consider a configuration where the contents of some register r is $n=s+t$, whereafter \leq^{d} is applied to t-many tokens, i.e.,

$$
q r^{n}=q r^{s} r^{t} \leq^{\mathrm{d}} q r^{s}\left(r^{2 t} \vee r^{4 t}\right)=q r^{s+2 t} \vee q r^{s+4 t}
$$

Fact

For d : $x \leq x^{2} \vee x^{4}$, if $K \geq(4-2)+1=3$, it is impossible for $s+2 t$ and $s+4 t$ to both be powers of K.

Detecting applications of $\leq \mathrm{d}$

Observation

Consider a configuration where the contents of some register r is $n=s+t$, whereafter \leq^{d} is applied to t-many tokens, i.e.,

$$
q r^{n}=q r^{s} r^{t} \leq^{\mathrm{d}} q r^{s}\left(r^{2 t} \vee r^{4 t}\right)=q r^{s+2 t} \vee q r^{s+4 t}
$$

Fact

For d : $x \leq x^{2} \vee x^{4}$, if $K \geq(4-2)+1=3$, it is impossible for $s+2 t$ and $s+4 t$ to both be powers of K.

- Such a K will exist for any rule satisfying (\star).
- Consequently, $q r^{n} \leq_{\mathrm{d}\left(M_{K}\right)} q_{f}$ iff $q r^{n} \leq_{M_{K}} q_{F}$.
- For rules in more than one variable, satisfying $(\star \star)$ is sufficient to guarantee "detection."

$\leq_{\mathrm{d}\left(M_{K}\right)}$

Let $M=\widetilde{M}=\left(R_{2}, Q, P\right)$ be the $2-\mathrm{ACM}$ such that it is undecidable whether $q_{I} \leq_{M} q_{f}$. Consider the rule (d) be given by $x \leq x^{2} \vee x^{4}$. We construct $M_{K}=\left(R_{3}, Q_{K}, P_{K}\right)$ for $K=3$.

$\leq_{\mathrm{d}\left(M_{K}\right)}$

Let $M=\widetilde{M}=\left(R_{2}, Q, P\right)$ be the $2-\mathrm{ACM}$ such that it is undecidable whether $q_{I} \leq_{M} q_{f}$. Consider the rule (d) be given by $x \leq x^{2} \vee x^{4}$. We construct $M_{K}=\left(R_{3}, Q_{K}, P_{K}\right)$ for $K=3$. By the observation, for any $q^{\prime} \in Q_{3}$,

$$
q^{\prime} r_{1}^{n_{1}} r_{2}^{n_{2}} r_{3}^{n_{3}} \leq_{M_{3}} q_{F} \Longleftrightarrow q^{\prime} r_{1}^{n_{1}} r_{2}^{n_{2}} r_{3}^{n_{3}} \leq_{\mathrm{d}\left(M_{3}\right)} q_{F}
$$

$\leq_{\mathrm{d}\left(M_{K}\right)}$

Let $M=\widetilde{M}=\left(R_{2}, Q, P\right)$ be the $2-A C M$ such that it is undecidable whether $q_{I} \leq_{M} q_{f}$. Consider the rule (d) be given by $x \leq x^{2} \vee x^{4}$. We construct $M_{K}=\left(R_{3}, Q_{K}, P_{K}\right)$ for $K=3$. By the observation, for any $q^{\prime} \in Q_{3}$,

$$
q^{\prime} r_{1}^{n_{1}} r_{2}^{n_{2}} r_{3}^{n_{3}} \leq_{M_{3}} q_{F} \Longleftrightarrow q^{\prime} r_{1}^{n_{1}} r_{2}^{n_{2}} r_{3}^{n_{3}} \leq_{\mathrm{d}\left(M_{3}\right)} q_{F}
$$

Hence, for any $q \in Q$,

$$
q r_{1}^{n_{1}} r_{2}^{n_{2}} \leq_{M} q_{f} \Longleftrightarrow q r_{1}^{3^{n_{1}}} r_{2}^{3^{n_{2}}} \leq_{\mathrm{d}\left(M_{3}\right)} q_{F}
$$

so it is undecidable whether $q_{I} r_{1} r_{2} \leq_{\mathrm{d}\left(M_{3}\right)} q_{F}$.

Undecidable word problem

Let $\mathcal{V} \subseteq \mathcal{C} \mathcal{R} \mathcal{L}$ be a variety. We can show \mathcal{V} has an undecidable word problem (and hence quasi-equational theory) if we can demonstrate

$$
\mathcal{V} \models \operatorname{Halt}_{\mathrm{d}\left(M_{K}\right)}\left(q_{I} r_{1} r_{2}\right) \Longleftrightarrow q_{I} r_{1} r_{2} \leq_{M} q_{f}
$$

- If $\mathcal{V} \subseteq \mathcal{C} \mathcal{R} \mathcal{L}$ then (\Leftarrow) is immediate.
- We use the theory of Residuated Frames (Galatos \& Jipsen 2013) for a completeness of encoding to provide a model and valuation proving the contrapositive of (\Rightarrow), for varieties \mathcal{V} satisfying certain conditions.

Residuated frames

Definition [Galatos \& Jipsen 2013]

A residuated frame is a structure $\mathbf{W}=\left(W, W^{\prime}, N, \circ, \|, / /, 1\right)$, s.t.

- $(W, \circ, 1)$ is a monoid and W^{\prime} is a set.
- $N \subseteq W \times W^{\prime}$, called the Galois relation, and
- $\|: W \times W^{\prime} \rightarrow W^{\prime}$ and $/ /: W^{\prime} \times W \rightarrow W^{\prime}$ such that
- N is a nuclear, i.e. for all $u, v \in W$ and $w \in W^{\prime}$, $(u \circ v) N w$ iff $u N(w / / v)$ iff $v N(u \backslash w)$.

Residuated frames

Definition [Galatos \& Jipsen 2013]

A residuated frame is a structure $\mathbf{W}=\left(W, W^{\prime}, N, \circ, \|, / /, 1\right)$, s.t.

- $(W, \circ, 1)$ is a monoid and W^{\prime} is a set.
- $N \subseteq W \times W^{\prime}$, called the Galois relation, and
- $\|: W \times W^{\prime} \rightarrow W^{\prime}$ and $/ /: W^{\prime} \times W \rightarrow W^{\prime}$ such that
- N is a nuclear, i.e. for all $u, v \in W$ and $w \in W^{\prime}$, $(u \circ v) N w$ iff $u N(w / / v)$ iff $v N(u \backslash w)$.

Define ${ }^{\triangleright}: \mathcal{P}(W) \rightarrow \mathcal{P}\left(W^{\prime}\right)$ and ${ }^{\triangleleft}: \mathcal{P}\left(W^{\prime}\right) \rightarrow \mathcal{P}(W)$ via $X^{\triangleright}=\left\{y \in W^{\prime}: \forall x \in X, x N y\right\}$ and $Y^{\triangleleft}=\{x \in W: \forall y \in Y, x N y\}$, for each $X \subseteq W$ and $Y \subseteq W^{\prime}$.
Then $(\triangleright, \triangleleft)$ is a Galois connection.
So $X \xrightarrow{\gamma_{N}} X^{\triangleright \triangleleft}$ is a closure operator on $\mathcal{P}(W)$.

Residuated frames cont.

Theorem [Galatos \& Jipsen 2013]

$$
\begin{aligned}
\mathbf{W}^{+}:= & \left(\gamma_{N}[\mathcal{P}(W)], \cup_{\gamma_{N}}, \cap, \circ_{\gamma_{N}}, \backslash, / /, \gamma_{N}(\{1\})\right), \\
& X \cup_{\gamma_{N}} Y=\gamma_{N}(X \cup Y) \text { and } X \circ_{\gamma_{N}} Y=\gamma_{N}(X \circ Y),
\end{aligned}
$$

is a residuated lattice.
Proposition [Galatos \& Jipsen 2013]
All simple rules are preserved by $(-)^{+}$.

Termination as a nuclear relation

Let $M=\left(R_{k}, Q, P\right)$ be a k-ACM and $W:=\left(Q \cup R_{k}\right)^{*}$ be the free commutative monoid generated by $Q \cup R_{k}$.

Termination as a nuclear relation

Let $M=\left(R_{k}, Q, P\right)$ be a k-ACM and $W:=\left(Q \cup R_{k}\right)^{*}$ be the free commutative monoid generated by $Q \cup R_{k}$.

The frame $\mathbf{W}_{\mathbf{M}}$

Similar to Chvalovský \& Horčík (2016), we let $W^{\prime}:=W$ and define the relation $N_{M} \subseteq W \times W^{\prime}$ via

$$
x N_{M} z \text { iff } x z \leq_{M} q_{f},
$$

for all $x, z \in W$. Observe that, for any $x, y, z \in W$,

$$
x y N_{M} z \Longleftrightarrow x y z \leq_{M} q_{f} \Longleftrightarrow x N_{M} y z
$$

Since W is commutive it follows that N_{M} is nuclear.

Termination as a nuclear relation

Let $M=\left(R_{k}, Q, P\right)$ be a k-ACM and $W:=\left(Q \cup R_{k}\right)^{*}$ be the free commutative monoid generated by $Q \cup R_{k}$.

The frame $\mathbf{W}_{\mathbf{M}}$

Similar to Chvalovský \& Horčík (2016), we let $W^{\prime}:=W$ and define the relation $N_{M} \subseteq W \times W^{\prime}$ via

$$
x N_{M} z \text { iff } x z \leq_{M} q_{f},
$$

for all $x, z \in W$. Observe that, for any $x, y, z \in W$,

$$
x y N_{M} z \Longleftrightarrow x y z \leq_{M} q_{f} \Longleftrightarrow x N_{M} y z
$$

Since W is commutive it follows that N_{M} is nuclear.

Lemma

$\mathbf{W}_{\mathbf{M}}:=\left(W, W^{\prime}, N_{M}\right)$ is a residuated frame, $\mathbf{W}^{+} \in \mathcal{C} \mathcal{R} \mathcal{L}$, and there exists a valuation $\nu: \mathrm{Fm} \rightarrow W^{+}$such that $\mathbf{W}^{+}, \nu \models \mathrm{Th}(M)$.

Lemma

Let (d) be any rule satisfying (\star). Define $\mathbf{W}_{\mathrm{d}(\mathrm{M})}:=\left(W, W^{\prime}, N_{\mathrm{d}(M)}\right)$. Then $\mathbf{W}_{\mathrm{d}(M)}^{+} \in \mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{d}}$.

Lemma

Let (d) be any rule satisfying (\star). Define $\mathbf{W}_{\mathrm{d}(\mathrm{M})}:=\left(W, W^{\prime}, N_{\mathrm{d}(M)}\right)$. Then $\mathbf{W}_{\mathrm{d}(M)}^{+} \in \mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{d}}$.

Fix $M=\widetilde{M}$ be the $2-\mathrm{ACM}$ such that it is undecidable whether $q_{I} \leq_{M} q_{f}$.

Theorem

Let (d) be a rule satisfying (\star) and ($* *$), and let $K \geq 2$ be sufficiently large. Then it is undecidable whether $\mathbf{W}_{\mathrm{d}\left(M_{K}\right)}^{+} \vDash \operatorname{Halt}_{\widetilde{M}_{K}}\left(q_{I} r_{1} r_{2}\right)$.

Lemma

Let (d) be any rule satisfying (\star). Define $\mathbf{W}_{\mathrm{d}(\mathrm{M})}:=\left(W, W^{\prime}, N_{\mathrm{d}(M)}\right)$. Then $\mathbf{W}_{\mathrm{d}(M)}^{+} \in \mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{d}}$.

Fix $M=\widetilde{M}$ be the 2-ACM such that it is undecidable whether $q_{I} \leq_{M} q_{f}$.

Theorem

Let (d) be a rule satisfying (\star) and ($\star \star$), and let $K \geq 2$ be sufficiently large. Then it is undecidable whether $\mathbf{W}_{\mathrm{d}\left(M_{K}\right)}^{+} \vDash \operatorname{Halt}_{\widetilde{M}_{K}}\left(q_{I} r_{1} r_{2}\right)$.

Corollary

For any variety $\mathcal{V} \subseteq \mathcal{C} \mathcal{R} \mathcal{L}$, if

$$
\mathbf{W}_{\mathrm{d}\left(M_{K}\right)}^{+} \in \mathcal{V}
$$

then \mathcal{V} has an undecidable word problem, and hence an undecidable quasi-equational theory.

Known results for Equational Theory

$\left(\mathrm{k}_{n}^{m}\right)$ represents the knotted rule $x^{n} \leq x^{m}$

Undecidable Eq. Theory	Decidable Eq. Theory
	$\mathcal{R} \mathcal{L}$
$\mathcal{R} \mathcal{L}+\left(\mathrm{k}_{n}^{m}\right), 1 \leq n<m$	$\mathcal{C} \mathcal{L}$
$\mathcal{C} \mathcal{R} \mathcal{L}+(?)$	$\mathcal{C} \mathcal{R} \mathcal{L}+\left(\mathrm{k}_{n}^{m}\right)$

We can encode the instructions of an $\mathrm{ACM} M=\left(R_{k}, Q, P\right)$ as a single term θ_{M} using the full signature of of $\mathcal{C} \mathcal{R} \mathcal{L}$ via

$$
\theta_{M}:=1 \wedge \bigwedge_{\left(C \leq{ }_{M} u\right) \in P} C \rightarrow u
$$

Let (d) be given such that there exists $n \geq 1$ and $k, c_{1}, \ldots, c_{n} \geq 1$ such that

$$
\mathbf{C R L}_{\mathrm{d}} \models x^{k} \leq \bigvee_{i=1}^{n} x^{k+c_{i}}
$$

then (d) can be used to "bootstrap" the undeciablity of the quasi-equation theory of $\mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{d}}$ to the equational theory.

Undecidable equational theory

Corollary

Let (d) be a rule satisfying (*), (**), ($* * *)$ and let $K \geq 2$ be sufficiently large. Then it is undecidable whether

$$
\mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{d}} \models \theta_{M_{K}} \rightarrow\left(q_{I} r_{1} r_{2} \rightarrow q_{F}\right)
$$

and therefore $\mathcal{C R} \mathcal{L}_{\mathrm{d}}$ has an undecidable equational theory.

Thank You!

References

（R．J．van Alten，The finite model property for knotted extensions of propositional linear logic．J．Symbolic Logic 70 （2005），no．1， 84－98．
睲 K．Chvalovský，R．Horčík，Full Lambek calculus with contraction is undecidable．J．Symbolic Logic 81 （2016），no．2，524－540．

葍 P．Lincoln，J．Mitchell，A．Scedrov，N．Shankar，Decision problems for proposition linear logic．Annals of Pure and Applied Logic 56 （1992），239－311
A．Urquhart，The complexity of decision procedures in relevance logic．II，J．Symbolic Logic 64 （1999），no．4，1774－1802．
圊 N．Galatos，P．Jipsen，Residuated frames with applications to decidability．Trans．Amer．Math．Soc． 365 （2013），no．3，1219－1249．

