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Residuated Lattices

A (commutative) residuated lattice is a structure

R=(R,-,V,A,\,/,1),such that
» (R,V,A)is a lattice

» (R,-, 1) is a (commutative) monoid

» Forallz,y,z € R
ry<z <= y<a\z < z<z/y,

where < is the lattice order.

We denote the variety of (commutative) residuated lattices by
(CRL)RL.
If (r) is a rule (axiom), then (C)RL, := (C)RL + (x).
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Known results for Quasi-Equational Theory

(k™) represents the knotted rule 2™ < 2™

Undecidable Q.Eq. Theory | Decidable Q.Eq. Theory
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Known results for Quasi-Equational Theory

(k™) represents the knotted rule 2™ < 2™

Undecidable Q.Eq. Theory | Decidable Q.Eq. Theory
RL
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> Van Alten (2005) showed CRL in the presence of any knotted
rule has the FEP.

Gavin St.John Undecidability of {-, 1, \VV }-equations in subvarieties of commutative residuated lattices.



> Van Alten (2005) showed CRL in the presence of any knotted
rule has the FEP.

o Consequently, extensions of CRL in the signatures {<,-, 1}
have been fully characterized.
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> Van Alten (2005) showed CRL in the presence of any knotted
rule has the FEP.

o Consequently, extensions of CRL in the signatures {<,-, 1}
have been fully characterized.

» We inspect (in)equations in the signature {-, 1, V}.
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> Van Alten (2005) showed CRL in the presence of any knotted
rule has the FEP.
o Consequently, extensions of CRL in the signatures {<,-, 1}
have been fully characterized.

» We inspect (in)equations in the signature {-, 1, V}.
o Proof theoretically, such axioms correspond to inference
rules, e.g.,

X, Y,Y,Z-C X,ZFC

r<z?V] < XY, Z+C
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> Van Alten (2005) showed CRL in the presence of any knotted
rule has the FEP.
o Consequently, extensions of CRL in the signatures {<,-, 1}
have been fully characterized.

» We inspect (in)equations in the signature {-, 1, V}.
o Proof theoretically, such axioms correspond to inference
rules, e.g.,

XYY, Z+-C X, Z+-C
r<z?V] < XY, Z+C

o The work of Chvalovsky & Hor¢ik (2016) implies the
undecidability for many such extensions in RL.
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> Van Alten (2005) showed CRL in the presence of any knotted
rule has the FEP.
o Consequently, extensions of CRL in the signatures {<,-, 1}
have been fully characterized.

» We inspect (in)equations in the signature {-, 1, V}.
o Proof theoretically, such axioms correspond to inference
rules, e.g.,

XYY, Z+-C X, Z+-C
r<z?V] < XY, Z+C

o The work of Chvalovsky & Hor¢ik (2016) implies the
undecidability for many such extensions in RL.
o So we restrict our investigation to the commutative case.
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Linearization

Any equation s = t in the signature {-, 1, V} is equivalent to some
conjunction of linear inequations we call “d-rules” of the form:

d;(1 d;
331]( ) --~xnj(n)
1

)

<<z

J

where d := {dy, ...,dp,} C N™.
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Linearization

Any equation s = t in the signature {-, 1, V} is equivalent to some
conjunction of linear inequations we call “d-rules” of the form:

(d) z1--ap < xilj(l)'”xzj'(n)

)

<<z

j=1

where d := {dy, ...,dn} C N™. Such conjoins can be determined by
the properties of CRL:

>y < xVy=y
> xVy<z < x<zandy <z

» linearization
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Linearization

Any equation s = t in the signature {-, 1, V} is equivalent to some
conjunction of linear inequations we call “d-rules” of the form:

d;(1 d;
331]( ) --~xnj(n)
1

)

<<z

j
where d := {dy, ...,dn} C N™. Such conjoins can be determined by
the properties of CRL:

rr<y <= aVy=y

> xVy<z < x<zandy <z

» linearization
E.g., the rule

(Vu) (Vo) u?v < ud V uv
is equivalent to, via the substitutions u = z V y and v = 2,
(V2)(Vy)(Vz) 2yz < 23V 22y vV ay? VB Vaz vV yz
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Conditions on d C N"

» If (d) implies a knotted rule, then CRL + (d) is decidable.
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Conditions on d C N"

» If (d) implies a knotted rule, then CRL + (d) is decidable.
E.g., if (d) is 7y < zy? V 2%y, then

CRL+ (d) | 22 < 23,
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Conditions on d C N"

» If (d) implies a knotted rule, then CRL + (d) is decidable.
E.g., if (d) is 7y < zy? V 2%y, then
CRL+ (d) | 22 < 23,
» If CRL + (d) is to be undecidable, d C N™ must refute certain

conditions with respect to the set of vectors representing the
exponents of the variables.
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Conditions on d C N"

» If (d) implies a knotted rule, then CRL + (d) is decidable.

E.g., if (d) is 7y < zy? V 2%y, then
CRL+ (d) | 22 < 23,

» If CRL + (d) is to be undecidable, d C N™ must refute certain
conditions with respect to the set of vectors representing the
exponents of the variables.

> We view d = {d;}7", as a set of linear subspaces of R".
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Conditions on d C N"

» If (d) implies a knotted rule, then CRL + (d) is decidable.

E.g., if (d) is 7y < zy? V 2%y, then
CRL+ (d) | 22 < 23,

» If CRL + (d) is to be undecidable, d C N™ must refute certain
conditions with respect to the set of vectors representing the
exponents of the variables.

> We view d = {d;}7", as a set of linear subspaces of R".

(%) Given any nonempty A C {1,...,n}, and any nontrivial
valuation of variables z1, ..., 7, in N, there exists j # j' <m
such that the supports of dj and d;: intersect A, and

Zd( xﬂézd ()i

Gavin St.John Undecidability of {-, 1, VV }-equations in subvarieties of commutative residuated lattices.



Conditions on d C N"

» If (d) implies a knotted rule, then CRL + (d) is decidable.

E.g., if (d) is 7y < zy? V 2%y, then
CRL+ (d) | 22 < 23,

» If CRL + (d) is to be undecidable, d C N™ must refute certain
conditions with respect to the set of vectors representing the
exponents of the variables.

> We view d = {d;}7", as a set of linear subspaces of R".

(%) Given any nonempty A C {1,...,n}, and any nontrivial
valuation of variables z1, ..., 7, in N, there exists j # j' <m
such that the supports of dj and d;: intersect A, and

Zd( xﬂézd ()i

(%%) For any valuatlon of the z;’s, there exists j < m such that

Z$Z<Zd()

=1
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Examples and Non-examples of (x) & (x*)

Rule (%) | (%%)
x < x? e
x<z*Vl1 v
x<axivVad ve v
Ty < 2V y2

zy <zV x2y

ry < xValyViy? v | v
zyz < a*ValyvyPvylzvvie | v
ryzw < 2?yzw V 23y’ 22w? v |V
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Examples and Non-examples of (x) & (*x)

Rule (%) | (%%)
x < x? e
x<z*Vl1 v
x<axivVad v v
Ty < 2V y2

zy <xV xzy

ry < xValyViy? v | v
zyz < a*ValyvyPvylzvvie | v
ryzw < 2?yzw V 23y’ 22w? v |V

Determining whether a given (d)-rule satisfies these conditions
amounts to showing certain systems of equations do not have
“non-trivial ” solutions in N™. This can be simplified by asking if
there are positive solutions in R™.
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And-branching Counter Machines

An And-branching k-Counter Machine (k-ACM), (Linclon et. al.
1992) M = (Ry, @, P) is a type of non-deterministic
parallel-computing counter machine that has
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And-branching Counter Machines

An And-branching k-Counter Machine (k-ACM), (Linclon et. al.
1992) M = (Ry, @, P) is a type of non-deterministic
parallel-computing counter machine that has
» aset Ry := {ry,...,r} of k registers (bins) that can each
store a non-negative integer (tokens),
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And-branching Counter Machines

An And-branching k-Counter Machine (k-ACM), (Linclon et. al.
1992) M = (Ry, @, P) is a type of non-deterministic
parallel-computing counter machine that has
» aset Ry := {ry,...,r} of k registers (bins) that can each
store a non-negative integer (tokens),

> afinite set () of states with designated initial state ¢; and
final state ¢y,
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And-branching Counter Machines

An And-branching k-Counter Machine (k-ACM), (Linclon et. al.
1992) M = (Ry, @, P) is a type of non-deterministic
parallel-computing counter machine that has

» aset Ry := {ry,...,r} of k registers (bins) that can each
store a non-negative integer (tokens),

> afinite set () of states with designated initial state ¢; and
final state ¢y,
» and a finite set P of instructions p of the form:

o Increment: ¢ <P ¢'r
o Decrement: gqr <P ¢
o Fork: qg <P ¢ Vv,

where ¢,¢',¢" € Q and r € Ry.
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ACM’s continued

> Instructions of an ACM act on configurations, which consist
of a single state and a number register tokens

— M1, ng
C=qri'ry®---r.r.
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ACM’s continued

> Instructions of an ACM act on configurations, which consist
of a single state and a number register tokens

C=qri'ry?---rp*.
» Forking instructions allow parallel computation. The status of a

machine at a given time in a computation is called an
instantaneous description (ID),

u=CyVvVCyV---V(Cy,

where C1, ..., C), are configurations.
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ACM’s continued

> Instructions of an ACM act on configurations, which consist
of a single state and a number register tokens

C=qri'ry?---rp*.
» Forking instructions allow parallel computation. The status of a

machine at a given time in a computation is called an
instantaneous description (ID),

u=CyVvVCyV---V(Cy,
where C1, ..., C), are configurations.

> An instruction p acts on a single configuration of an ID u to
create a new configuration u/'.
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Computations

We view computations as order relations on the free commutative
idempotent semiring Ajr = (Aar, V, -, L, 1) generated by Q U Ry,
where M = (Rg, Q, P) is a k-ACM and
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Computations

We view computations as order relations on the free commutative
idempotent semiring Ajr = (Aar, V, -, L, 1) generated by Q U Ry,
where M = (Rg, Q, P) is a k-ACM and
» (Ap, V, 1) is a V-semilattice with bottom element L :=\/{),
and
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Computations

We view computations as order relations on the free commutative
idempotent semiring Ajr = (Aar, V, -, L, 1) generated by Q U Ry,
where M = (Rg, Q, P) is a k-ACM and
» (Ap, V, 1) is a V-semilattice with bottom element L :=\/{),
and
» (Apg, -, 1) is a commutative monoid with identity 1, and
multiplication distributes over join.
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Computations

We view computations as order relations on the free commutative
idempotent semiring Ajr = (Aar, V, -, L, 1) generated by Q U Ry,
where M = (Rg, Q, P) is a k-ACM and
» (Ap, V, 1) is a V-semilattice with bottom element L :=\/{),
and

» (Apg, -, 1) is a commutative monoid with identity 1, and
multiplication distributes over join.
Each instruction p € P defines a relation <P closed under
s
ur <P yx

b V]
and uVw<PuVw ,

for u,v,w € ID(M) and x € R}, where R; is the free commutative
monoid generated by Ry.
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Computations

We view computations as order relations on the free commutative
idempotent semiring Ajr = (Aar, V, -, L, 1) generated by Q U Ry,
where M = (Rg, Q, P) is a k-ACM and

» (Ap, V, 1) is a V-semilattice with bottom element L :=\/{),
and

» (Apg, -, 1) is a commutative monoid with identity 1, and
multiplication distributes over join.
Each instruction p € P defines a relation <P closed under
s
ur <P yx

L]
and uVw<PuyVw

)

for u,v,w € ID(M) and x € R}, where R; is the free commutative
monoid generated by Ry.
We define the computation relation <, to be the smallest

preorder containing |J <P.
peEP

Gavin St.John Undecidability of {-, 1, \V }-equations in subvarieties of commutative residuated lattices.



Computations cont.

We say a machine M terminates on an ID u if u <j/ q;.
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Computations cont.

We say a machine M terminates on an ID u if u <j/ q;.
> fu=C1V---V Oy thenu <y qp iff C; <pr qp, Vi < n.
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Computations cont.

We say a machine M terminates on an ID u if u <j/ q;.
> fu=C1V---V Oy thenu <y qp iff C; <pr qp, Vi < n.
> If u <ps gy, then there exists p1, ..., p, € P and

UQy vy Up, € ID(M), such that
U = Ug Spl Ul §p2 Spn un:qf
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Computations cont.

We say a machine M terminates on an ID u if u <j/ q;.
> fu=C1V---V Oy thenu <y qp iff C; <pr qp, Vi < n.
> If u <ps gy, then there exists p1, ..., p, € P and

UQy vy Up, € ID(M), such that
U = Ug Spl Ul SPQ Spn un:qf

Example Machine

Let M = Meven := ({7}, {90, 91, qr}, {p1, P2, p3}), with instructions

qor <Pt q1;  qr <P? qo; qo <P* qy.
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Computations cont.

We say a machine M terminates on an ID u if u <j/ q;.
> fu=C1V---V Oy thenu <y qp iff C; <pr qp, Vi < n.
> If u <ps gy, then there exists p1, ..., p, € P and

UQy vy Up, € ID(M), such that
U = Ug Spl Ul SPQ Spn un:qf

Example Machine

Let M = Meven := ({7}, {90, 91, qr}, {p1, P2, p3}), with instructions

qor <Pt q1;  qr <P? qo; qo <P* qy.

» Note that gor™ <js gy iff n is even.
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Computations cont.

We say a machine M terminates on an ID u if u <j/ q;.
> fu=C1V---V Oy thenu <y qp iff C; <pr qp, Vi < n.
> If u <ps gy, then there exists p1, ..., p, € P and

UQy vy Up, € ID(M), such that
U = Ug Spl Ul SPQ Spn un:qf

Example Machine

Let M = Meven := ({7}, {90, 91, qr}, {p1, P2, p3}), with instructions

qor <Pt q1;  qr <P? qo; qo <P* qy.

» Note that gor™ <js gy iff n is even.

qor? <Pt qurd <P2 gor? <Pt gyr <P2 gg <P3 qr
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Computations cont.

We say a machine M terminates on an ID u if u <j/ q;.
> fu=C1V---V Oy thenu <y qp iff C; <pr qp, Vi < n.
> If u <ps gy, then there exists p1, ..., p, € P and

UQy vy Up, € ID(M), such that
U = Ug Spl Ul SPQ Spn un:qf

Example Machine

Let M = Meven := ({7}, {90, 91, qr}, {p1, P2, p3}), with instructions

qor <Pt q1;  qr <P? qo; qo <P* qy.

» Note that gor™ <js gy iff n is even.

qor? <Pt qurd <P2 gor? <Pt gyr <P2 gg <P3 qr

qor® <Pt qur? <P? qor <P3 gy
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Undecidable Problem

Theorem [Lincoln et. al.,, 1992]

There exists a 2-ACM M such that membership of the set

{u € ID(M) : u <37 qy} is undecidable. Furthermore, it is
undecidable whether ¢; <7 gy.
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Undecidable Problem

Theorem [Lincoln et. al.,, 1992]

There exists a 2-ACM M such that membership of the set

{u € ID(M) : u <37 qy} is undecidable. Furthermore, it is
undecidable whether ¢; <7 gy.

» Given an ACM M we define the theory of M Th(M) to be
the conjunction of all syntactic instructions in P, i.e.,

Th(M) := &{C’ <wu:(C<Pu)e P}
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Undecidable Problem

Theorem [Lincoln et. al.,, 1992]

There exists a 2-ACM M such that membership of the set

{u € ID(M) : u <37 qy} is undecidable. Furthermore, it is
undecidable whether ¢; <7 gy.

» Given an ACM M we define the theory of M Th(M) to be
the conjunction of all syntactic instructions in P, i.e.,

Th(M) := &{C’ <wu:(C<Pu)e P}
» Given an ID u, we define the quasi-equation Halt;(u) to be
Th(M) = u < qy.
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d-rules and the relation <y,

Given a d-rule, e.g. [d] is given by x < 22 V 2%, we add “ambient”
instructions of the form

qry <4 qry® Vv qry?,

foreach g € Q and any 2,y € R;.
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d-rules and the relation <y,

Given a d-rule, e.g. [d] is given by x < 22 V 2%, we add “ambient”
instructions of the form

qry <4 qry® Vv qry?,

foreach g € Q and any 2,y € R;.

As with the instructions in P, we close <¢ under the inference rules
[] and [V], and we define the relation <,(;/) to be the smallest
preorder generated by <4 U <.
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> Clearly, if u <ps gy thenu <da(m) 45 since <y C<q(nr)-
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> Clearly, if u <ps gy thenu <da(m) 45 since <y C<q(nr)-
» However, for some ACM’s M, it’s possible that u <4(ns) gy but
U SYRTS
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> Clearly, if u <ps gy thenu <da(m) 45 since <y C<q(nr)-
» However, for some ACM’s M, it’s possible that u <4(ns) gy but
U SYRTS

Consider M = Meyen and (d) given by z < 22 v 2%,
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> Clearly, if u <ps gy thenu <da(m) 45 since <y C<q(nr)-
» However, for some ACM’s M, it’s possible that u <4(ns) gy but
U SYRTS

Consider M = Meyen and (d) given by z < 22 v 2%,
> qor® Lur qr since 3 is odd.
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> Clearly, if u <ps gy thenu <da(m) 45 since <y C<q(nr)-
» However, for some ACM’s M, it’s possible that u <a(m) 4f but
U SYRTS

Consider M = Meyen and (d) given by z < 22 v 2%,
> qor® Lur qr since 3 is odd.

» However, qor> <d4(m) 4f, Witnessed by
qor® = qor®r <4 qor®r? v qor?r* = qor* V qor® Sam) 4fs
since q0r4 <M 4y and CJOTG <wm qf.
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Goal

Given an ACM M and a d-rule, is it possible to construct a new
ACM M’ such that

u <pr qy if and only if 0(u) <q(rr) qFs

(where 6 : ID(M) — ID(M') is computable and g is the final state
of M) and if so, under what conditions?
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Then Mk machine

Let M = (R2,Q, P) be a 2-ACM and let K > 1 be given. We define
the 3-ACM Mg = (Rg, Qk, PK) such that
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Then Mgk machine

Let M = (R2,Q, P) be a 2-ACM and let K > 1 be given. We define
the 3-ACM Mg = (Rg, Qk, PK) such that

> () C Qg with gp the final state of Mg and instruction
(qrrire < qp) € Pk,
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Then Mgk machine

Let M = (R2,Q, P) be a 2-ACM and let K > 1 be given. We define
the 3-ACM Mg = (Rg, Qk, PK) such that

> () C Qg with gp the final state of Mg and instruction
(qrrire < qp) € Pk,

» each forking instruction in P is contained in Py,
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Then Mgk machine

Let M = (R2,Q, P) be a 2-ACM and let K > 1 be given. We define
the 3-ACM Mg = (Rg, Qk, PK) such that

> () C Qg with gp the final state of Mg and instruction
(qrrire < qp) € Pk,

» each forking instruction in P is contained in Py,

> each increment and decrement instruction of P is replaced by
multiply and divide by K programs, i.e.
q <P ¢r eP = q@'CP¢r®Y C Py
gr <P ¢ €eP = qgVCP¢rE\V cPyg -
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Then Mgk machine

Let M = (R2,Q, P) be a 2-ACM and let K > 1 be given. We define
the 3-ACM Mg = (Rg, Qk, PK) such that
> () C Qg with gp the final state of Mg and instruction
(qrrire < qp) € Pk,
» each forking instruction in P is contained in Py,
> each increment and decrement instruction of P is replaced by
multiply and divide by K programs, i.e.
q <P ¢r eP = q@'CP¢r®Y C Py
qr <P ¢ €P = q@VCP¢rE\VY c Py
» We obtain, for each ¢ € Q,

Kn1, K2
qri'ry? <mqp = qrit Ty <y qF-
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Detecting applications of <4

Consider a configuration where the contents of some register r is
n = s + t, whereafter <4 is applied to t-many tokens, i.e.,

qrn — qrsrt Sd qrs(r2t v 7,42&) — q7“3+2t v qrs+4t
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Detecting applications of <4

Consider a configuration where the contents of some register r is
n = s + t, whereafter <4 is applied to t-many tokens, i.e.,

qrn — QTSTt Sd QTS(T2t v 7,47&) — q7“3+2t v q7’S+4t

Fact

Ford: x <az?Vvat if K > (4 —2) +1 =3, it is impossible for
5+ 2t and s + 4t to both be powers of K.
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Detecting applications of <4

Consider a configuration where the contents of some register r is
n = s + t, whereafter <4 is applied to t-many tokens, i.e.,

qrn — QTSTt Sd QTS(T2t v 7,47&) — qrs+2t v q,rs+4t

Fact

Ford: x <az?Vvat if K > (4 —2) +1 =3, it is impossible for
5+ 2t and s + 4t to both be powers of K.

» Such a K will exist for any rule satisfying ().

» Consequently, gr™ <d(My) 4f iff gr"™ <1 qr.

» For rules in more than one variable, satisfying (%) is sufficient
to guarantee “detection.”
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Sd(MK)

Let M = M = (R, Q, P) be the 2-ACM such that it is undecidable
whether g; <js gy. Consider the rule (d) be given by z < 2% v z*.
We construct M = (R3,Qk, Pr) for K = 3.
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Sd(MK)

Let M = M = (R, Q, P) be the 2-ACM such that it is undecidable
whether g; <js gy. Consider the rule (d) be given by z < 2% v z*.
We construct M = (R3,Qk, Pr) for K = 3.

By the observation, for any ¢’ € Qs,

ni,.n2,.n3 /..Mn1,.n2 N,

qlrl ry°ry® S qF == q'ry'ry’ry? <d(Ms) qF-
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Sd(MK)

Let M = M = (R, Q, P) be the 2-ACM such that it is undecidable
whether g; <js gy. Consider the rule (d) be given by z < 2% v z*.
We construct M = (R3,Qk, Pr) for K = 3.

By the observation, for any ¢’ € Qs,

gt ryry® < qr = ¢ri'ry?ry® <qu) 4F-
Hence, for any ¢ € Q,
ny ng
gri'ry® <amgp = iy <aou) 9F

so it is undecidable whether grrirsy <d(Mz) qF-
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Undecidable word problem

Let V C CRL be a variety. We can show V has an undecidable word
problem (and hence quasi-equational theory) if we can demonstrate

VE Haltd(MK)(anrz) < qrrir2 <um qf-

» If V C CRL then (<) is immediate.

> We use the theory of Residuated Frames (Galatos & Jipsen
2013) for a completeness of encoding to provide a model and
valuation proving the contrapositive of (=), for varieties V
satisfying certain conditions.
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Residuated frames

Definition [Galatos & Jipsen 2013]

A residuated frame is a structure W = (W, W' N, o,\, /, 1), s.t.
» (W, 0,1) is a monoid and W' is a set.
» N CW x W', called the Galois relation, and
» \:W x W — W' and J : W x W — W' such that

» N is a nuclear, i.e. for all u,v € W and w € W/,
(uov) Nwiffu N (w /) v)iffv N (u\ w).

Gavin St.John Undecidability of {-, 1, \VV }-equations in subvarieties of commutative residuated lattices.



Residuated frames

Definition [Galatos & Jipsen 2013]

A residuated frame is a structure W = (W, W' N, o,\, /, 1), s.t.
» (W, 0,1) is a monoid and W' is a set.
» N CW x W', called the Galois relation, and
» \:W x W — W' and J : W x W — W' such that

» N is a nuclear, i.e. for all u,v € W and w € W/,
(uov) Nwiffu N (w /) v)iffv N (u\ w).

Define > : P(W) — P(W') and ¥ : P(W') — P(W) via

Xt ={ye W' :Vaxe X, Ny} and

Yi={xeW:VyeY, Ny}, foreach X CWandY C W',
Then (*, ) is a Galois connection.

So X =¥ X® s a closure operator on P(W).
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Residuated frames cont.

Theorem [Galatos & Jipsen 2013]
W= (VN[P(W)]vu’YN? ) 71\17\\ // VN({l}))

XUy Y=9nv(XUY)and X oy, Y =n(X oY),

is a residuated lattice.

Proposition [Galatos & Jipsen 2013]

All simple rules are preserved by (—)*.
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Termination as a nuclear relation

Let M = (R, @, P) be a k-ACM and W := (Q U Ry)* be the free
commutative monoid generated by QQ U Ry.

Gavin St.John Undecidability of {-, 1, \V }-equations in subvarieties of commutative residuated lattices.



Termination as a nuclear relation

Let M = (R, @, P) be a k-ACM and W := (Q U Ry)* be the free
commutative monoid generated by QQ U Ry.

The frame Wy

Similar to Chvalovsky & Hor¢ik (2016) , we let W’ := W and define
the relation Nyy C W x W' via

x Ny z iff xz <pr gy,
for all z,z € W. Observe that, for any z,y,z € W,
zy Ny 2z <= zyz <y qp < o Npyz.

Since W is commutive it follows that Ny, is nuclear.
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Termination as a nuclear relation
Let M = (R, @, P) be a k-ACM and W := (Q U Ry)* be the free
commutative monoid generated by QQ U Ry.
The frame Wy

Similar to Chvalovsky & Hor¢ik (2016) , we let W’ := W and define
the relation Nyy C W x W' via

x Ny z iff xz <pr gy,
for all z,z € W. Observe that, for any z,y,z € W,
zy Ny 2z <= zyz <y qp < o Npyz.

Since W is commutive it follows that Ny, is nuclear.

Lemma

Wt := (W, W', Nyy) is a residuated frame, W+ € CRL, and there
exists a valuation v : Fm — W™ such that W+, v = Th(M).
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Lemma

Let (d) be any rule satisfying (x). Define W qinpy := (W, W', Ngar)).

Then le_(M) € CRLy.
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Lemma
Let (d) be any rule satisfying (x). Define W qinpy := (W, W', Ngar)).
Then le_(M) € CRLy.

Fix M = M be the 2-ACM such that it is undecidable whether
qr <wm qs-
Theorem

Let (d) be a rule satisfying (x) and (%), and let K > 2 be sufficiently
large. Then it is undecidable whether WI( M) = Halt M (qrrire).
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Lemma
Let (d) be any rule satisfying (x). Define W qinpy := (W, W', Ngar)).
Then Wji_(M) € CRLy.

Fix M = M be the 2-ACM such that it is undecidable whether
qr <wm qs-
Theorem

Let (d) be a rule satisfying (x) and (%), and let K > 2 be sufficiently
large. Then it is undecidable whether W:{( M) = Halt M (qrrire).

Corollary
For any variety V C CRL, if

W-‘r

d(Mk) €V,

then V has an undecidable word problem, and hence an undecidable
quasi-equational theory.
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Known results for Equational Theory

(k™) represents the knotted rule 2™ < 2™

Undecidable Eq. Theory | Decidable Eq. Theory
RL
CRL
RL+ kM), 1<n<m
CRL+ (k")
CRL+(?)
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We can encode the instructions of an ACM M = (R, @, P) as a
single term 6 using the full signature of of CRL via

Oy :=1A /\ C — u.
(C<mu)eP

Let (d) be given such that there exists n > 1 and k, 1, ...,¢;, > 1
such that

n
CRLy = 2* < \/ e, (% * %)
i=1
then (d) can be used to “bootstrap” the undeciablity of the
quasi-equation theory of CRL4 to the equational theory.
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Undecidable equational theory

Corollary

Let (d) be a rule satisfying (x), (xx), (x x x) and let K > 2 be
sufficiently large. Then it is undecidable whether

CRL4 = Onye — (qrrire = qF),

and therefore CRLq has an undecidable equational theory.
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Thank You!
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