Undecidability of $\{\cdot, 1, \lor\}$-equations in subvarieties of commutative residuated lattices.

Gavin St. John

Under the advisement of Nikolaos Galatos
University of Denver
Department of Mathematics

Topology, Algebra, and Categories in Logic 2017
Institute of Computer Science, Czech Academy of Sciences

27 June 2017
A (commutative) **residuated lattice** is a structure \(\mathbb{R} = (R, \cdot, \lor, \land, \setminus, /, 1) \), such that

- \((R, \lor, \land)\) is a lattice
- \((R, \cdot, 1)\) is a (commutative) monoid
- For all \(x, y, z \in R\)

\[
x \cdot y \leq z \iff y \leq x \setminus z \iff x \leq z / y,
\]

where \(\leq\) is the lattice order.

We denote the variety of (commutative) residuated lattices by \((CRL)\) RL.

If \((r)\) is a rule (axiom), then \((C)RL_r := (C)RL + (r)\).
Known results for Quasi-Equational Theory

\((k^m_n)\) represents the knotted rule \(x^n \leq x^m\)

<table>
<thead>
<tr>
<th>Undecidable Q.Eq. Theory</th>
<th>Decidable Q.Eq. Theory</th>
</tr>
</thead>
</table>

Gavin St. John

Undecidability of \{\cdot, 1, \lor\}-equations in subvarieties of commutative residuated lattices.
(k^n_m) represents the knotted rule \(x^n \leq x^m \)

<table>
<thead>
<tr>
<th>Undecidable Q.Eq. Theory</th>
<th>Decidable Q.Eq. Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL</td>
<td>CRL</td>
</tr>
</tbody>
</table>

Gavin St. John

Undecidability of \(\{\cdot, 1, \vee\}\)-equations in subvarieties of commutative residuated lattices.
(k^m_n) represents the knotted rule x^n \leq x^m

<table>
<thead>
<tr>
<th>Undecidable Q.Eq. Theory</th>
<th>Decidable Q.Eq. Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL</td>
<td></td>
</tr>
<tr>
<td>CRL</td>
<td></td>
</tr>
<tr>
<td>RL + (k^m_n), 1 \leq n < m</td>
<td></td>
</tr>
</tbody>
</table>
Known results for Quasi-Equational Theory

\((k^m_n)\) represents the knotted rule \(x^n \leq x^m\)

<table>
<thead>
<tr>
<th>Undecidable Q.Eq. Theory</th>
<th>Decidable Q.Eq. Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL</td>
<td>CRL + ((k^m_n)), 1 \leq n < m</td>
</tr>
<tr>
<td>CRL</td>
<td></td>
</tr>
<tr>
<td>RL + ((k^m_n)), 1 \leq n < m</td>
<td>CRL + ((k^m_n))</td>
</tr>
</tbody>
</table>
(\(k^n_m\)) represents the knotted rule \(x^n \leq x^m\)

<table>
<thead>
<tr>
<th>Undecidable Q.Eq. Theory</th>
<th>Decidable Q.Eq. Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{RL})</td>
<td>(\mathcal{CRL})</td>
</tr>
<tr>
<td>(\mathcal{CRL})</td>
<td>(\mathcal{CRL})</td>
</tr>
<tr>
<td>(\mathcal{RL} + (k^n_m), 1 \leq n < m)</td>
<td>(\mathcal{CRL} + (k^n_m))</td>
</tr>
<tr>
<td>(\mathcal{CRL} + (?))</td>
<td></td>
</tr>
</tbody>
</table>
Van Alten (2005) showed \(CRL \) in the presence of any knotted rule has the FEP.
Van Alten (2005) showed \mathcal{CRL} in the presence of any knotted rule has the FEP.

Consequently, extensions of \mathcal{CRL} in the signatures $\{\leq, \cdot, 1\}$ have been fully characterized.

We inspect (in)equations in the signature $\{\cdot, 1, \lor\}$.

Proof theoretically, such axioms correspond to inference rules, e.g.,

$$x \leq x_2 \lor 1 \iff X,Y,Y,Z \vdash C \quad X,Z \vdash C \quad X,Y,Z \vdash C$$

The work of Chvalovský & Horčík (2016) implies the undecidability for many such extensions in \mathcal{RL}.

So we restrict our investigation to the commutative case.
Van Alten (2005) showed \mathcal{CRL} in the presence of any knotted rule has the FEP.
○ Consequently, extensions of \mathcal{CRL} in the signatures $\{\leq, \cdot, 1\}$ have been fully characterized.

We inspect (in)equations in the signature $\{\cdot, 1, \forall\}$.
Van Alten (2005) showed CRL in the presence of any knotted rule has the FEP.

- Consequently, extensions of CRL in the signatures $\{\leq, \cdot, 1\}$ have been fully characterized.

We inspect (in)equations in the signature $\{\cdot, 1, \lor\}$.

- Proof theoretically, such axioms correspond to inference rules, e.g.,

$$x \leq x^2 \lor 1 \iff \frac{X, Y, Y, Z \vdash C}{X, Z \vdash C} \quad \frac{X, Z \vdash C}{X, Y, Z \vdash C}$$
Van Alten (2005) showed CRL in the presence of any knotted rule has the FEP.
- Consequently, extensions of CRL in the signatures $\{\leq, \cdot, 1\}$ have been fully characterized.

We inspect (in)equations in the signature $\{\cdot, 1, \lor\}$.
- Proof theoretically, such axioms correspond to inference rules, e.g.,

$$x \leq x^2 \lor 1 \iff \frac{X, Y, Y, Z \vdash C}{X, Z \vdash C} \frac{X, Z \vdash C}{X, Y, Z \vdash C}$$

- The work of Chvalovský & Horčík (2016) implies the undecidability for many such extensions in RL.
Van Alten (2005) showed \mathcal{CRL} in the presence of any knotted rule has the FEP.

- Consequently, extensions of \mathcal{CRL} in the signatures $\{\leq, \cdot, 1\}$ have been fully characterized.

We inspect (in)equations in the signature $\{\cdot, 1, \lor\}$.

- Proof theoretically, such axioms correspond to inference rules, e.g.,

\[
x \leq x^2 \lor 1 \iff \frac{X, Y, Y, Z \vdash C}{X, Z \vdash C} \quad \frac{X, Y, Z \vdash C}{X, Y, Z \vdash C}
\]

- The work of Chvalovský & Horčík (2016) implies the undecidability for many such extensions in \mathcal{RL}.

- So we restrict our investigation to the commutative case.
Linearization

Any equation \(s = t \) in the signature \(\{\cdot, 1, \lor\} \) is equivalent to some conjunction of linear inequations we call “d-rules” of the form:

\[
(d) \quad x_1 \cdots x_n \leq \bigvee_{j=1}^{m} x_1^{d_j(1)} \cdots x_n^{d_j(n)},
\]

where \(d := \{d_1, \ldots, d_m\} \subset \mathbb{N}^n \).
Any equation \(s = t \) in the signature \(\{\cdot, 1, \lor\} \) is equivalent to some conjunction of linear inequalities we call "d-rules" of the form:

\[
(d) \quad x_1 \cdots x_n \leq \bigvee_{j=1}^{m} x_1^{d_j(1)} \cdots x_n^{d_j(n)},
\]

where \(d := \{d_1, \ldots, d_m\} \subset \mathbb{N}^n \). Such conjoins can be determined by the properties of \(\mathcal{CRL} \):

- \(x \leq y \iff x \lor y = y \)
- \(x \lor y \leq z \iff x \leq z \text{ and } y \leq z \)
- linearization
Linearization

Any equation $s = t$ in the signature $\{\cdot, 1, \lor\}$ is equivalent to some conjunction of linear inequalities we call “d-rules” of the form:

$$(d) \quad x_1 \cdots x_n \leq \bigvee_{j=1}^{m} x_1^{d_j(1)} \cdots x_n^{d_j(n)},$$

where $d := \{d_1, \ldots, d_m\} \subset \mathbb{N}^n$. Such conjunctions can be determined by the properties of \mathcal{CRL}:

- $x \leq y \iff x \lor y = y$
- $x \lor y \leq z \iff x \leq z \text{ and } y \leq z$
- **linearization**

 E.g., the rule

 $$(\forall u)(\forall v) \quad u^2v \leq u^3 \lor uv$$

 is equivalent to, via the substitutions $u = x \lor y$ and $v = z$,

 $$(\forall x)(\forall y)(\forall z) \quad xyz \leq x^3 \lor x^2y \lor xy^2 \lor y^3 \lor xz \lor yz$$
Conditions on $d \subset \mathbb{N}^n$

- If (d) implies a knotted rule, then $\mathcal{CRL} + (d)$ is decidable.
If \((d)\) implies a knotted rule, then \(\mathcal{CRL} + (d)\) is decidable.
E.g., if \((d)\) is \(xy \leq xy^2 \lor x^2y\), then
\[
\mathcal{CRL} + (d) \models x^2 \leq x^3.
\]
Conditions on $d \subset \mathbb{N}^n$

- If (d) implies a knotted rule, then $CRL + (d)$ is decidable. E.g., if (d) is $xy \leq xy^2 \lor x^2y$, then

 $CRL + (d) \models x^2 \leq x^3$.

- If $CRL + (d)$ is to be undecidable, $d \subset \mathbb{N}^n$ must refute certain conditions with respect to the set of vectors representing the exponents of the variables.
Conditions on $d \subseteq \mathbb{N}^n$

- If (d) implies a knotted rule, then $\mathcal{CRL} + (d)$ is decidable. E.g., if (d) is $xy \leq xy^2 \lor x^2y$, then
 \[\mathcal{CRL} + (d) \models x^2 \leq x^3. \]

- If $\mathcal{CRL} + (d)$ is to be undecidable, $d \subseteq \mathbb{N}^n$ must refute certain conditions with respect to the set of vectors representing the exponents of the variables.

- We view $d = \{d_j\}_{j=1}^m$ as a set of linear subspaces of \mathbb{R}^n.

Gavin St. John

Undecidability of $\{\cdot, 1, \lor\}$-equations in subvarieties of commutative residuated lattices.
Conditions on \(d \subset \mathbb{N}^n \)

- If \((d)\) implies a knotted rule, then \(\mathcal{CRL} + (d)\) is decidable. E.g., if \((d)\) is \(xy \leq xy^2 \lor x^2y\), then

\[
\mathcal{CRL} + (d) \models x^2 \leq x^3.
\]

- If \(\mathcal{CRL} + (d)\) is to be undecidable, \(d \subset \mathbb{N}^n\) must refute certain conditions with respect to the set of vectors representing the exponents of the variables.

- We view \(d = \{d_j\}_{j=1}^m\) as a set of linear subspaces of \(\mathbb{R}^n\).

\((\star)\) Given any nonempty \(A \subseteq \{1, ..., n\}\), and any nontrivial valuation of variables \(x_1, ..., x_n\) in \(\mathbb{N}\), there exists \(j \neq j' \leq m\) such that the supports of \(d_j\) and \(d_{j'}\) intersect \(A\), and

\[
\sum_{i=1}^{n} d_j(i)x_i \neq \sum_{i=1}^{n} d_{j'}(i)x_i
\]
Conditions on $d \subseteq \mathbb{N}^n$

- If (d) implies a knotted rule, then $\mathcal{CRL} + (d)$ is decidable. E.g., if (d) is $xy \leq xy^2 \lor x^2y$, then
 $$\mathcal{CRL} + (d) \models x^2 \leq x^3.$$

- If $\mathcal{CRL} + (d)$ is to be undecidable, $d \subseteq \mathbb{N}^n$ must refute certain conditions with respect to the set of vectors representing the exponents of the variables.

- We view $d = \{d_j\}_{j=1}^m$ as a set of linear subspaces of \mathbb{R}^n.
 (\star) Given any nonempty $A \subseteq \{1, \ldots, n\}$, and any nontrivial valuation of variables x_1, \ldots, x_n in \mathbb{N}, there exists $j \neq j' \leq m$ such that the supports of d_j and $d_{j'}$ intersect A, and
 $$\sum_{i=1}^n d_j(i)x_i \neq \sum_{i=1}^n d_{j'}(i)x_i$$

 $(\star\star)$ For any valuation of the x_i's, there exists $j \leq m$ such that
 $$\sum_{i=1}^n x_i < \sum_{i=1}^n d_j(i)x_i$$
Examples and Non-examples of \((\ast)\) & \((\ast\ast)\)

<table>
<thead>
<tr>
<th>Rule</th>
<th>((\ast))</th>
<th>((\ast\ast))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \leq x^2)</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>(x \leq x^2 \lor 1)</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>(x \leq x^2 \lor x^3)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(xy \leq x^2 \lor y^2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(xy \leq x \lor x^2 y)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(xy \leq x \lor x^2 y \lor y^2)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(xyz \leq x^3 \lor x^2 y \lor y^3 \lor y^2 z \lor z^3 \lor z^2 x)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>(xyzw \leq x^2 yzw \lor x^3 y^2 z^2 w^2)</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Examples and Non-examples of (\star) & $(\star\star)$

<table>
<thead>
<tr>
<th>Rule</th>
<th>(\star)</th>
<th>$(\star\star)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq x^2$</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$x \leq x^2 \lor 1$</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$x \leq x^2 \lor x^3$</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$xy \leq x^2 \lor y^2$</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$xy \leq x \lor x^2y$</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$xy \leq x \lor x^2y \lor y^2$</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$xyz \leq x^3 \lor x^2y \lor y^3 \lor y^2z \lor z^3 \lor z^2x$</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$xyzw \leq x^2yzw \lor x^3y^2z^2w^2$</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Determining whether a given (d)-rule satisfies these conditions amounts to showing certain systems of equations do not have “non-trivial ” solutions in \mathbb{N}^n. This can be simplified by asking if there are positive solutions in \mathbb{R}^n.

Gavin St. John
Undecidability of $\{\cdot, 1, \lor\}$-equations in subvarieties of commutative residuated lattices. 7 / 28
An And-branching k-Counter Machine (k-ACM), (Linclon et. al. 1992) $M = (R_k, Q, P)$ is a type of non-deterministic parallel-computing counter machine that has
An And-branching k-Counter Machine (k-ACM), (Linclon et. al. 1992) $M = (R_k, Q, P)$ is a type of non-deterministic parallel-computing counter machine that has

- a set $R_k := \{r_1, \ldots, r_k\}$ of k registers (bins) that can each store a non-negative integer (tokens),
An And-branching k-Counter Machine (k-ACM), (Lincron et. al. 1992) $M = (R_k, Q, P)$ is a type of non-deterministic parallel-computing counter machine that has

- a set $R_k := \{r_1, \ldots, r_k\}$ of k registers (bins) that can each store a non-negative integer (tokens),

- a finite set Q of states with designated initial state q_I and final state q_f,
An And-branching k-Counter Machine (k-ACM), (Linclon et. al. 1992) $M = (R_k, Q, P)$ is a type of non-deterministic parallel-computing counter machine that has

- a set $R_k := \{r_1, \ldots, r_k\}$ of k registers (bins) that can each store a non-negative integer (tokens),
- a finite set Q of states with designated initial state q_I and final state q_f,
- and a finite set P of instructions p of the form:
 - Increment: $q \leq^p q' r$
 - Decrement: $q r \leq^p q'$
 - Fork: $q \leq^p q' \lor q''$

where $q, q', q'' \in Q$ and $r \in R_k$.
Instructions of an ACM act on configurations, which consist of a single state and a number register tokens

\[C = qr_1^{n_1}r_2^{n_2} \cdots r_k^{n_k}. \]
Instructions of an ACM act on **configurations**, which consist of a single state and a number register tokens

\[C = q r_1^{n_1} r_2^{n_2} \cdots r_k^{n_k}. \]

Forking instructions allow parallel computation. The status of a machine at a given time in a computation is called an **instantaneous description** (ID),

\[u = C_1 \lor C_2 \lor \cdots \lor C_n, \]

where \(C_1, \ldots, C_n \) are configurations.
Instructions of an ACM act on **configurations**, which consist of a single state and a number register tokens

\[C = qr_1 \uparrow r_2 \uparrow \cdots r_k. \]

Forking instructions allow parallel computation. The status of a machine at a given time in a computation is called an **instantaneous description** (ID),

\[u = C_1 \lor C_2 \lor \cdots \lor C_n, \]

where \(C_1, \ldots, C_n \) are configurations.

An instruction \(p \) acts on a single configuration of an ID \(u \) to create a new configuration \(u' \).
We view computations as order relations on the free commutative idempotent semiring $A_M = (A_M, \lor, \cdot, \bot, 1)$ generated by $Q \cup R_k$, where $M = (R_k, Q, P)$ is a k-ACM and
We view computations as order relations on the free commutative idempotent semiring $A_M = (A_M, \lor, \cdot, \bot, 1)$ generated by $Q \cup R_k$, where $M = (R_k, Q, P)$ is a k-ACM and

(1) (A_M, \lor, \bot) is a \lor-semilattice with bottom element $\bot := \lor \emptyset$, and
Commutations

We view computations as order relations on the free commutative idempotent semiring $A_M = (A_M, \lor, \cdot, \bot, 1)$ generated by $Q \cup R_k$, where $M = (R_k, Q, P)$ is a k-ACM and

- (A_M, \lor, \bot) is a \lor-semilattice with bottom element $\bot := \lor \emptyset$, and

- $(A_M, \cdot, 1)$ is a commutative monoid with identity 1, and multiplication distributes over join.
We view computations as order relations on the free commutative idempotent semiring $A_M = (A_M, \lor, \cdot, \bot, 1)$ generated by $Q \cup R_k$, where $M = (R_k, Q, P)$ is a k-ACM and

- (A_M, \lor, \bot) is a \lor-semilattice with bottom element $\bot := \lor \emptyset$, and

- $(A_M, \cdot, 1)$ is a commutative monoid with identity 1, and multiplication distributes over join.

Each instruction $p \in P$ defines a relation \leq^p closed under

$$\frac{u \leq^p v}{ux \leq^p vx} \quad [\cdot] \quad \text{and} \quad \frac{u \leq^p v}{u \lor w \leq^p v \lor w} \quad [\lor],$$

for $u, v, w \in \text{ID}(M)$ and $x \in R_k^*$, where R_k^* is the free commutative monoid generated by R_k.

Computations

We view computations as order relations on the free commutative idempotent semiring $A_M = (A_M, \lor, \cdot, \perp, 1)$ generated by $Q \cup R_k$, where $M = (R_k, Q, P)$ is a k-ACM and

- (A_M, \lor, \perp) is a \lor-semilattice with bottom element $\perp := \lor \emptyset$, and
- $(A_M, \cdot, 1)$ is a commutative monoid with identity 1, and multiplication distributes over join.

Each instruction $p \in P$ defines a relation \leq^p closed under

\[
\frac{u \leq^p v}{ux \leq^p vx} \quad [\cdot] \quad \text{and} \quad \frac{u \leq^p v}{u \lor w \leq^p v \lor w} \quad [\lor],
\]

for $u, v, w \in \text{ID}(M)$ and $x \in R_k^*$, where R_k^* is the free commutative monoid generated by R_k.

We define the computation relation \leq_M to be the smallest preorder containing $\bigcup_{p \in P} \leq^p$.
We say a machine M terminates on an ID u if $u \leq_M q_f$.

Example Machine

Let $M = M_{\text{even}} := (\{r\}, \{q_0, q_1, q_f\}, \{p_1, p_2, p_3\})$, with instructions

$q_0 r \leq p_1 q_1$;
$q_1 r \leq p_2 q_0$;
$q_0 \leq p_3 q_f$.
We say a machine M terminates on an ID u if $u \leq_M q_f$.

- If $u = C_1 \lor \cdots \lor C_n$, then $u \leq_M q_f$ iff $C_i \leq_M q_f$, $\forall i \leq n$.

Example Machine

Let $M = M_{\text{even}} := (\{r\}, \{q_0, q_1, q_f\}, \{p_1, p_2, p_3\})$, with instructions

$q_0 \rightarrow r \leq p_1 q_1$;
$q_1 \rightarrow r \leq p_2 q_0$;
$q_0 \leq p_3 q_f$.

Note that $q_0 \rightarrow r_n \leq M q_f$ iff n is even.
We say a machine M terminates on an ID u if $u \leq_M q_f$.

- If $u = C_1 \lor \cdots \lor C_n$, then $u \leq_M q_f$ iff $C_i \leq_M q_f$, $\forall i \leq n$.
- If $u \leq_M q_f$, then there exists $p_1, \ldots, p_n \in P$ and $u_0, \ldots, u_n \in \text{ID}(M)$, such that
 $$u = u_0 \leq^{p_1} u_1 \leq^{p_2} \cdots \leq^{p_n} u_n = q_f.$$
We say a machine M terminates on an ID u if $u \leq_M q_f$.

- If $u = C_1 \lor \cdots \lor C_n$, then $u \leq_M q_f$ iff $C_i \leq_M q_f$, $\forall i \leq n$.
- If $u \leq_M q_f$, then there exists $p_1, \ldots, p_n \in P$ and
 $u_0, \ldots, u_n \in ID(M)$, such that
 $$u = u_0 \leq^{p_1} u_1 \leq^{p_2} \cdots \leq^{p_n} u_n = q_f.$$

Example Machine

Let $M = M_{\text{even}} := (\{ r \}, \{ q_0, q_1, q_f \}, \{ p_1, p_2, p_3 \})$, with instructions

$$q_0r \leq^{p_1} q_1; \quad q_1r \leq^{p_2} q_0; \quad q_0 \leq^{p_3} q_f.$$
We say a machine M **terminates on an ID** u if $u \leq_M q_f$.

- If $u = C_1 \lor \cdots \lor C_n$, then $u \leq_M q_f$ iff $C_i \leq_M q_f$, $\forall i \leq n$.
- If $u \leq_M q_f$, then there exists $p_1, \ldots, p_n \in P$ and $u_0, \ldots, u_n \in \text{ID}(M)$, such that

 $$u = u_0 \leq^{p_1} u_1 \leq^{p_2} \cdots \leq^{p_n} u_n = q_f.$$

Example Machine

Let $M = M_{\text{even}} := (\{r\}, \{q_0, q_1, q_f\}, \{p_1, p_2, p_3\})$, with instructions

$$q_0r \leq^{p_1} q_1; \quad q_1r \leq^{p_2} q_0; \quad q_0 \leq^{p_3} q_f.$$

- Note that $q_0r^n \leq_M q_f$ iff n is even.
We say a machine M terminates on an ID u if $u \leq_M q_f$.

- If $u = C_1 \lor \cdots \lor C_n$, then $u \leq_M q_f$ iff $C_i \leq_M q_f$, $\forall i \leq n$.
- If $u \leq_M q_f$, then there exists $p_1, \ldots, p_n \in P$ and $u_0, \ldots, u_n \in \text{ID}(M)$, such that

$$u = u_0 \leq^{p_1} u_1 \leq^{p_2} \cdots \leq^{p_n} u_n = q_f.$$

Example Machine

Let $M = M_{\text{even}} := (\{r\}, \{q_0, q_1, q_f\}, \{p_1, p_2, p_3\})$, with instructions

$$q_0 r \leq^{p_1} q_1; \quad q_1 r \leq^{p_2} q_0; \quad q_0 \leq^{p_3} q_f.$$

- Note that $q_0 r^n \leq_M q_f$ iff n is even.

$$q_0 r^4 \leq^{p_1} q_1 r^3 \leq^{p_2} q_0 r^2 \leq^{p_1} q_1 r \leq^{p_2} q_0 \leq^{p_3} q_f$$
We say a machine M **terminates on an ID** u if $u \leq_M q_f$.

- If $u = C_1 \lor \cdots \lor C_n$, then $u \leq_M q_f$ iff $C_i \leq_M q_f$, $\forall i \leq n$.
- If $u \leq_M q_f$, then there exists $p_1, \ldots, p_n \in P$ and $u_0, \ldots, u_n \in \text{ID}(M)$, such that

$$u = u_0 \leq_{p_1} u_1 \leq_{p_2} \cdots \leq_{p_n} u_n = q_f.$$

Example Machine

Let $M = M_{\text{even}} := (\{r\}, \{q_0, q_1, q_f\}, \{p_1, p_2, p_3\})$, with instructions

$$q_0 r \leq_{p_1} q_1; \quad q_1 r \leq_{p_2} q_0; \quad q_0 \leq_{p_3} q_f.$$

- Note that $q_0 r^n \leq_M q_f$ iff n is even.

\[
q_0 r^4 \leq_{p_1} q_1 r^3 \leq_{p_2} q_0 r^2 \leq_{p_1} q_1 r \leq_{p_2} q_0 \leq_{p_3} q_f \\
q_0 r^3 \leq_{p_1} q_1 r^2 \leq_{p_2} q_0 r \leq_{p_3} q_f r
\]
Theorem [Lincoln et. al., 1992]

There exists a 2-ACM \tilde{M} such that membership of the set $\{u \in \text{ID}(\tilde{M}) : u \leq_{\tilde{M}} q_f\}$ is undecidable. Furthermore, it is undecidable whether $q_I \leq_{\tilde{M}} q_f$.
Theorem [Lincoln et. al., 1992]

There exists a 2-ACM \tilde{M} such that membership of the set
\[\{ u \in \text{ID}(\tilde{M}) : u \leq_{\tilde{M}} q_f \} \]
is undecidable. Furthermore, it is undecidable whether $q_I \leq_{\tilde{M}} q_f$.

- Given an ACM M we define the theory of M $\text{Th}(M)$ to be
 the conjunction of all syntactic instructions in P, i.e.,
 \[
 \text{Th}(M) := \bigwedge \{ C \leq u : (C \leq^p u) \in P \}.
 \]
Theorem [Lincoln et. al., 1992]

There exists a 2-ACM \widetilde{M} such that membership of the set
$\{ u \in ID(\widetilde{M}) : u \leq_{\widetilde{M}} q_f \}$ is undecidable. Furthermore, it is
undecidable whether $q_I \leq_{\widetilde{M}} q_f$.

- Given an ACM M we define the theory of M $Th(M)$ to be the conjunction of all syntactic instructions in P, i.e.,
 $$Th(M) := \& \{ C \leq u : (C \leq^p u) \in P \}.$$

- Given an ID u, we define the quasi-equation $Halt_M(u)$ to be
 $$Th(M) \implies u \leq q_f.$$
Given a d-rule, e.g. $[d]$ is given by $x \leq x^2 \lor x^4$, we add “ambient” instructions of the form

$$qxy \leq^d qxy^2 \lor qxy^4,$$

for each $q \in Q$ and any $x, y \in R^*_k$.

\[d\text{-rules and the relation } \leq_d(M)\]
Given a d-rule, e.g. $[d]$ is given by $x \leq x^2 \lor x^4$, we add “ambient” instructions of the form

$$qxy \leq_d qxy^2 \lor qxy^4,$$

for each $q \in Q$ and any $x, y \in R^*_k$.

As with the instructions in P, we close \leq_d under the inference rules $[\cdot]$ and $[\lor]$, and we define the relation $\leq_d(M)$ to be the smallest preorder generated by $\leq_d \cup \leq_M$.

d-rules and the relation $\leq_d(M)$
Clearly, if $u \leq_M q_f$ then $u \leq_{d(M)} q_f$ since $\leq_M \subseteq \leq_{d(M)}$.
Clearly, if $u \leq_M q_f$ then $u \leq d(M) q_f$ since $\leq_M \subseteq \leq d(M)$.

However, for some ACM’s M, it’s possible that $u \leq d(M) q_f$ but $u \nleq_M q_f$.
Clearly, if $u \leq_M q_f$ then $u \leq_{d(M)} q_f$ since $\leq_M \subseteq \leq_{d(M)}$.

However, for some ACM’s M, it’s possible that $u \leq_{d(M)} q_f$ but $u \not\leq_M q_f$.

Example

Consider $M = M_{\text{even}}$ and (d) given by $x \leq x^2 \lor x^4$.
Clearly, if \(u \leq_M q_f \) then \(u \leq_{d(M)} q_f \) since \(\leq_M \subseteq \leq_{d(M)} \).

However, for some ACM’s \(M \), it’s possible that \(u \leq_{d(M)} q_f \) but \(u \not\leq_M q_f \).

Example

Consider \(M = M_{\text{even}} \) and \((d)\) given by \(x \leq x^2 \lor x^4 \).

- \(q_0 r^3 \not\leq_M q_f \) since 3 is odd.
Clearly, if $u \leq_M q_f$ then $u \leq_{d(M)} q_f$ since $\leq_M \subseteq \leq_{d(M)}$.

However, for some ACM’s M, it’s possible that $u \leq_{d(M)} q_f$ but $u \not\leq_M q_f$.

Example

Consider $M = M_{\text{even}}$ and (d) given by $x \leq x^2 \lor x^4$.

- $q_0 r^3 \not\leq_M q_f$ since 3 is odd.
- However, $q_0 r^3 \leq_{d(M)} q_f$, witnessed by

$$q_0 r^3 = q_0 r^2 r \leq_d q_0 r^2 r^2 \lor q_0 r^2 r^4 = q_0 r^4 \lor q_0 r^6 \leq_{d(M)} q_f,$$

since $q_0 r^4 \leq_M q_f$ and $q_0 r^6 \leq_M q_f$.
Given an ACM M and a d-rule, is it possible to construct a new ACM M' such that

$$u \leq_M q_f \text{ if and only if } \theta(u) \leq_{d(M')} q_F,$$

(where $\theta: \text{ID}(M) \rightarrow \text{ID}(M')$ is computable and q_F is the final state of M') and if so, under what conditions?
Then M_K machine

Let $M = (R_2, Q, P)$ be a 2-ACM and let $K > 1$ be given. We define the 3-ACM $M_K = (R_3, Q_K, P_K)$ such that
Then M_K machine

Let $M = (R_2, Q, P)$ be a 2-ACM and let $K > 1$ be given. We define the 3-ACM $M_K = (R_3, Q_K, P_K)$ such that

- $Q \subset Q_K$ with q_F the final state of M_K and instruction $(q_f r_1 r_2 \leq^F q_F) \in P_K$, where
Let $M = (R_2, Q, P)$ be a 2-ACM and let $K > 1$ be given. We define the 3-ACM $M_K = (R_3, Q_K, P_K)$ such that

- $Q \subset Q_K$ with q_F the final state of M_K and instruction $(q_f r_1 r_2 \leq^F q_F) \in P_K$,
- each forking instruction in P is contained in P_K,

Then M_K machine
Let $M = (R_2, Q, P)$ be a 2-ACM and let $K > 1$ be given. We define the 3-ACM $M_K = (R_3, Q_K, P_K)$ such that

- $Q \subset Q_K$ with q_F the final state of M_K and instruction $(q_f r_1 r_2 \leq^F q_F) \in P_K$,
- each forking instruction in P is contained in P_K,
- each increment and decrement instruction of P is replaced by multiply and divide by K programs, i.e.

$$
\begin{align*}
q & \leq^p q' r \in P \implies q r \sqcup^p q' r K \sqcup & \subset P_K \\
q r & \leq^p q' \in P \implies q r \sqcup^p q' r K \sqcup & \subset P_K.
\end{align*}
$$
Let $M = (R_2, Q, P)$ be a 2-ACM and let $K > 1$ be given. We define the 3-ACM $M_K = (R_3, Q_K, P_K)$ such that

- $Q \subset Q_K$ with q_F the final state of M_K and instruction $(q_f r_1 r_2 \leq_F q_F) \in P_K$,
- each forking instruction in P is contained in P_K,
- each increment and decrement instruction of P is replaced by multiply and divide by K programs, i.e.

 $$q \leq^p q' r \in P \implies qr \sqsupset^p q' r_K \sqsupset^p q' r_K' \in P_K,$$
 $$qr \leq^p q' \in P \implies qr \sqsupset^p q' r_K \sqsupset^p q' r_K' \in P_K.$$
- We obtain, for each $q \in Q$,

 $$qr_{1}^{n_1} r_{2}^{n_2} \leq_M q_f \iff qr_{1}^{K^{n_1}} r_{2}^{K^{n_2}} \leq_{M_K} q_F.$$
Detecting applications of \leq^d

Observation

Consider a configuration where the contents of some register r is $n = s + t$, whereafter \leq^d is applied to t-many tokens, i.e.,

$$qr^n = qr^s r^t \leq^d qr^s (r^{2t} \lor r^{4t}) = qr^{s+2t} \lor qr^{s+4t}$$
Observation

Consider a configuration where the contents of some register \(r \) is \(n = s + t \), whereafter \(\leq^d \) is applied to \(t \)-many tokens, i.e.,

\[
q_r n = q_r s r^t \leq^d q_r s (r^{2t} \lor r^{4t}) = q_r s^{+2t} \lor q_r s^{+4t}
\]

Fact

For \(d : x \leq x^2 \lor x^4 \), if \(K \geq (4 - 2) + 1 = 3 \), it is impossible for \(s + 2t \) and \(s + 4t \) to both be powers of \(K \).
Detecting applications of \leq^d

Observation

Consider a configuration where the contents of some register r is $n = s + t$, whereafter \leq^d is applied to t-many tokens, i.e.,

$$qr^n = qr^s r^t \leq^d qr^s (r^{2t} \lor r^{4t}) = qr^{s+2t} \lor qr^{s+4t}$$

Fact

For $d : x \leq x^2 \lor x^4$, if $K \geq (4 - 2) + 1 = 3$, it is **impossible** for $s + 2t$ and $s + 4t$ to both be powers of K.

- Such a K will exist for any rule satisfying (\star).
- Consequently, $qr^n \leq_d (M_K) qf$ iff $qr^n \leq_{M_K} qF$.
- For rules in more than one variable, satisfying $(\star\star)$ is sufficient to guarantee “detection.”
Let \(M = \overline{M} = (R_2, Q, P) \) be the 2-ACM such that it is undecidable whether \(q_I \leq_M q_f \). Consider the rule (d) be given by \(x \leq x^2 \lor x^4 \).
We construct \(M_K = (R_3, Q_K, P_K) \) for \(K = 3 \).
Let $M = \widetilde{M} = (R_2, Q, P)$ be the 2-ACM such that it is undecidable whether $q_I \leq_M q_f$. Consider the rule (d) be given by $x \leq x^2 \lor x^4$. We construct $M_K = (R_3, Q_K, P_K)$ for $K = 3$. By the observation, for any $q' \in Q_3$,

$$q' r_1^{n_1} r_2^{n_2} r_3^{n_3} \leq_{M_3} q_F \iff q' r_1^{n_1} r_2^{n_2} r_3^{n_3} \leq_{d(M_3)} q_F.$$
Let $M = \tilde{M} = (R_2, Q, P)$ be the 2-ACM such that it is undecidable whether $q_I \leq_M q_f$. Consider the rule (d) be given by $x \leq x^2 \lor x^4$. We construct $M_K = (R_3, Q_K, P_K)$ for $K = 3$. By the observation, for any $q' \in Q_3$,

$$q'r_1^{n_1}r_2^{n_2}r_3^{n_3} \leq_M q_f \iff q'r_1^{n_1}r_2^{n_2}r_3^{n_3} \leq d(M_3) q_f.$$

Hence, for any $q \in Q$,

$$qr_1^{n_1}r_2^{n_2} \leq_M q_f \iff qr_1^{3n_1}r_2^{3n_2} \leq d(M_3) q_f,$$

so it is undecidable whether $q_I r_1 r_2 \leq d(M_3) q_f$.

Gavin St. John

Undecidability of $\{\cdot, 1, \lor\}$-equations in subvarieties of commutative residuated lattices.
Let $\mathcal{V} \subseteq CRL$ be a variety. We can show \mathcal{V} has an undecidable word problem (and hence quasi-equational theory) if we can demonstrate

$$\mathcal{V} \models \text{Halt}_{d(M_K)}(qIr_1r_2) \iff qIr_1r_2 \leq_M q_f.$$

- If $\mathcal{V} \subseteq CRL$ then (\iff) is immediate.
- We use the theory of **Residuated Frames** (Galatos & Jipsen 2013) for a completeness of encoding to provide a model and valuation proving the contrapositive of (\Rightarrow), for varieties \mathcal{V} satisfying certain conditions.
A **residuated frame** is a structure $\mathbf{W} = (W, W', N, \circ, \|, \|, 1)$, s.t.

- $(W, \circ, 1)$ is a monoid and W' is a set.
- $N \subseteq W \times W'$, called the *Galois relation*, and
- $\| : W \times W' \to W'$ and $\| : W' \times W \to W'$ such that
- N is a **nuclear**, i.e. for all $u, v \in W$ and $w \in W'$,
 $$(u \circ v) \ N \ w \iff u \ N \ (w \ \| \ v) \iff v \ N \ (u \ \| \ w).$$
A residuated frame is a structure $W = (W, W', N, \circ, \|, \|, 1)$, s.t.

- $(W, \circ, 1)$ is a monoid and W' is a set.
- $N \subseteq W \times W'$, called the Galois relation, and
- $\| : W \times W' \to W'$ and $\| : W' \times W \to W'$ such that
- N is a nuclear, i.e. for all $u, v \in W$ and $w \in W'$,
 $$(u \circ v) \ N w \text{ iff } u \ N (w \| v) \text{ iff } v \ N (u \| w).$$

Define $\triangledown : \mathcal{P}(W) \to \mathcal{P}(W')$ and $\triangleleft : \mathcal{P}(W') \to \mathcal{P}(W)$ via
$$X^\triangledown = \{ y \in W' : \forall x \in X, xNy \}$$ and
$$Y^\triangleleft = \{ x \in W : \forall y \in Y, xNy \},$$ for each $X \subseteq W$ and $Y \subseteq W'$.

Then $(\triangledown, \triangleleft)$ is a Galois connection.

So $X \xrightarrow{\gamma_N} X^{\triangledown \triangleleft}$ is a closure operator on $\mathcal{P}(W)$.
Theorem [Galatos & Jipsen 2013]

\[W^+ := (\gamma_N[\mathcal{P}(W)], \cup_{\gamma_N}, \cap, \circ_{\gamma_N}, \setminus, \parallel, \gamma_N(\{1\})) , \]

\[X \cup_{\gamma_N} Y = \gamma_N(X \cup Y) \text{ and } X \circ_{\gamma_N} Y = \gamma_N(X \circ Y), \]

is a residuated lattice.

Proposition [Galatos & Jipsen 2013]

All simple rules are preserved by \((-)^+\).
Termination as a nuclear relation

Let $M = (R_k, Q, P)$ be a k-ACM and $W := (Q \cup R_k)^*$ be the free commutative monoid generated by $Q \cup R_k$.

Gavin St. John

Undecidability of $\{\cdot, 1, \lor\}$-equations in subvarieties of commutative residuated lattices.
Termination as a nuclear relation

Let \(M = (R_k, Q, P) \) be a \(k \)-ACM and \(W := (Q \cup R_k)^* \) be the free commutative monoid generated by \(Q \cup R_k \).

The frame \(W_M \)

Similar to Chvalovský & Horčík (2016), we let \(W' := W \) and define the relation \(N_M \subseteq W \times W' \) via

\[
x \ N_M \ z \ \iff \ xz \leq_M q_f,
\]

for all \(x, z \in W \). Observe that, for any \(x, y, z \in W \),

\[
xy \ N_M \ z \ \iff \ xyz \leq_M q_f \iff x \ N_M yz.
\]

Since \(W \) is commutative it follows that \(N_M \) is nuclear.
Let $M = (R_k, Q, P)$ be a k-ACM and $W := (Q \cup R_k)^*$ be the free commutative monoid generated by $Q \cup R_k$.

The frame W_M

Similar to Chvalovský & Horčík (2016), we let $W' := W$ and define the relation $N_M \subseteq W \times W'$ via

$$x \mathrel{N_M} z \iff xz \leq_M q_f,$$

for all $x, z \in W$. Observe that, for any $x, y, z \in W$,

$$xy \mathrel{N_M} z \iff xyz \leq_M q_f \iff x \mathrel{N_M} yz.$$

Since W is commutative it follows that N_M is nuclear.

Lemma

$W_M := (W, W', N_M)$ is a residuated frame, $W^+ \in CR\mathcal{L}$, and there exists a valuation $\nu : Fm \to W^+$ such that $W^+, \nu \models \text{Th}(M)$.
Lemma

Let \((d)\) be any rule satisfying \(\ast\). Define \(W_{d(M)} := (W, W', N_{d(M)})\). Then \(W_{d(M)}^+ \in CR\mathcal{L}_d\).
Lemma

Let \((d)\) be any rule satisfying \((\star)\). Define \(W_{d(M)} := (W, W', N_{d(M)})\). Then \(W_{d(M)}^+ \in CRL_d\).

Fix \(M = \tilde{M}\) be the 2-ACM such that it is undecidable whether \(q_I \leq_M q_f\).

Theorem

Let \((d)\) be a rule satisfying \((\star)\) and \((\star\star)\), and let \(K \geq 2\) be sufficiently large. Then it is undecidable whether \(W_{d(M_K)}^+ \models \text{Halt}_{\tilde{M}_K}(q_I r_1 r_2)\).
Lemma

Let (d) be any rule satisfying (\(\star\)). Define \(W_{d(M)} := (W, W', N_{d(M)})\). Then \(W_{d(M)}^+ \in \mathcal{CRL}_d\).

Fix \(M = \tilde{M}\) be the 2-ACM such that it is undecidable whether \(q_I \leq_M q_f\).

Theorem

Let (d) be a rule satisfying (\(\star\)) and (\(\star\)\(\star\)), and let \(K \geq 2\) be sufficiently large. Then it is undecidable whether \(W_{d(M_K)}^+ \models \text{Halt}_{M_K}(q_I r_1 r_2)\).

Corollary

For any variety \(\mathcal{V} \subseteq \mathcal{CRL}\), if

\[
W_{d(M_K)}^+ \in \mathcal{V},
\]

then \(\mathcal{V}\) has an undecidable word problem, and hence an undecidable quasi-equational theory.
(k^m_n) represents the knotted rule x^n \leq x^m

<table>
<thead>
<tr>
<th>Undecidable Eq. Theory</th>
<th>Decidable Eq. Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL + (k^m_n), 1 \leq n < m</td>
<td>RL</td>
</tr>
<tr>
<td>CRL + (?)</td>
<td>CRL + (k^m_n)</td>
</tr>
</tbody>
</table>
We can encode the instructions of an ACM $M = (R_k, Q, P)$ as a single term θ_M using the full signature of of \mathcal{CRL} via

$$\theta_M := 1 \land \bigwedge_{(C \leq_M u) \in P} C \rightarrow u.$$

Let (d) be given such that there exists $n \geq 1$ and $k, c_1, \ldots, c_n \geq 1$ such that

$$\mathcal{CRL}_d \models x^k \leq \bigvee_{i=1}^{n} x^{k+c_i}, \quad (\star \star \star)$$

then (d) can be used to “bootstrap” the undecidability of the quasi-equation theory of \mathcal{CRL}_d to the equational theory.
Corollary

Let \((d)\) be a rule satisfying \((\star)\), \((\star\star)\), \((\star\star\star)\) and let \(K \geq 2\) be sufficiently large. Then it is undecidable whether

\[
\text{CRL}_d \models \theta_{MK} \rightarrow (qIr_1r_2 \rightarrow q_F),
\]

and therefore \(\text{CRL}_d\) has an undecidable equational theory.
Thank You!

