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Residuated La�ices

Definition
A (commutative) residuated la�ice is a structure
R = (R, ·,∨,∧, \, /, 1), such that

I (R,∨,∧) is a la�ice
I (R, ·, 1) is a (commutative) monoid
I For all x, y, z ∈ R

x · y ≤ z ⇐⇒ y ≤ x\z ⇐⇒ x ≤ z/y,

where ≤ is the la�ice order.

We denote the variety of (commutative) residuated la�ices by
(CRL)RL.
If (r) is a rule (axiom), then (C)RLr := (C)RL+ (r).
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Known results for �asi-Equational Theory

(kmn ) represents the kno�ed rule xn ≤ xm

Undecidable Q.Eq. Theory Decidable Q.Eq. Theory

RL
CRL
RL+ (kmn ), 1 ≤ n < m

CRL+ (kmn )
CRL+ (?)
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I Van Alten (2005) showed CRL in the presence of any kno�ed
rule has the FEP.

◦ Consequently, extensions of CRL in the signatures {≤, ·, 1}
have been fully characterized.

I We inspect (in)equations in the signature {·, 1,∨}.
◦ Proof theoretically, such axioms correspond to inference
rules, e.g.,

x ≤ x2 ∨ 1 ⇐⇒
X,Y, Y, Z ` C X,Z ` C

X, Y, Z ` C

◦ The work of Chvalovský & Horčík (2016) implies the
undecidability for many such extensions inRL.
◦ So we restrict our investigation to the commutative case.
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Linearization

Any equation s = t in the signature {·, 1,∨} is equivalent to some
conjunction of linear inequations we call “d-rules” of the form:

(d) x1 · · ·xn ≤
m∨
j=1

x
dj(1)
1 · · ·xdj(n)n ,

where d := {d1, ..., dm} ⊂ Nn.

Such conjoins can be determined by
the properties of CRL:

I x ≤ y ⇐⇒ x ∨ y = y

I x ∨ y ≤ z ⇐⇒ x ≤ z and y ≤ z
I linearization

E.g., the rule

(∀u)(∀v) u2v ≤ u3 ∨ uv
is equivalent to, via the substitutions u = x ∨ y and v = z,

(∀x)(∀y)(∀z) xyz ≤ x3 ∨ x2y ∨ xy2 ∨ y3 ∨ xz ∨ yz
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Conditions on d ⊂ Nn

I If (d) implies a kno�ed rule, then CRL+ (d) is decidable.

E.g., if (d) is xy ≤ xy2 ∨ x2y, then

CRL+ (d) |= x2 ≤ x3.
I If CRL+ (d) is to be undecidable, d ⊂ Nn must refute certain

conditions with respect to the set of vectors representing the
exponents of the variables.

I We view d = {dj}mj=1 as a set of linear subspaces of Rn.
(?) Given any nonempty A ⊆ {1, ..., n}, and any nontrivial
valuation of variables x1, ..., xn in N, there exists j 6= j′ ≤ m
such that the supports of dj and dj′ intersect A, and

n∑
i=1

dj(i)xi 6=
n∑
i=1

dj′(i)xi

(??) For any valuation of the xi’s, there exists j ≤ m such that
n∑
i=1

xi <
n∑
i=1

dj(i)xi
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Examples and Non-examples of (?) & (??)

Rule (?) (??)

x ≤ x2 X
x ≤ x2 ∨ 1 X
x ≤ x2 ∨ x3 X X
xy ≤ x2 ∨ y2
xy ≤ x ∨ x2y
xy ≤ x ∨ x2y ∨ y2 X X
xyz ≤ x3 ∨ x2y ∨ y3 ∨ y2z ∨ z3 ∨ z2x X
xyzw ≤ x2yzw ∨ x3y2z2w2 X X

Determining whether a given (d)-rule satisfies these conditions
amounts to showing certain systems of equations do not have
“non-trivial ” solutions in Nn. This can be simplified by asking if
there are positive solutions in Rn.
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And-branching Counter Machines

An And-branching k-Counter Machine (k-ACM), (Linclon et. al.
1992) M = (Rk, Q, P ) is a type of non-deterministic
parallel-computing counter machine that has

I a set Rk := {r1, ..., rk} of k registers (bins) that can each
store a non-negative integer (tokens),

I a finite set Q of states with designated initial state qI and
final state qf ,

I and a finite set P of instructions p of the form:
◦ Increment: q ≤p q′r
◦ Decrement: qr ≤p q′

◦ Fork: q ≤p q′ ∨ q′′,
where q, q′, q′′ ∈ Q and r ∈ Rk.
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ACM’s continued

I Instructions of an ACM act on configurations, which consist
of a single state and a number register tokens

C = qrn1
1 rn2

2 · · · r
nk
k .

I Forking instructions allow parallel computation. The status of a
machine at a given time in a computation is called an
instantaneous description (ID),

u = C1 ∨ C2 ∨ · · · ∨ Cn,
where C1, ..., Cn are configurations.

I An instruction p acts on a single configuration of an ID u to
create a new configuration u′.
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Computations

We view computations as order relations on the free commutative
idempotent semiring AM = (AM ,∨, ·,⊥, 1) generated by Q ∪Rk,
where M = (Rk, Q, P ) is a k-ACM and

I (AM ,∨,⊥) is a ∨-semila�ice with bo�om element ⊥ :=
∨
∅,

and
I (AM , ·, 1) is a commutative monoid with identity 1, and

multiplication distributes over join.

Each instruction p ∈ P defines a relation ≤p closed under

u ≤p v
ux ≤p vx [·]

and
u ≤p v

u ∨ w ≤p v ∨ w [∨]
,

for u, v, w ∈ ID(M) and x ∈ R∗k, where R∗k is the free commutative
monoid generated by Rk.
We define the computation relation ≤M to be the smallest
preorder containing

⋃
p∈P
≤p.
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preorder containing

⋃
p∈P
≤p.
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Computations cont.

We say a machine M terminates on an ID u if u ≤M qf .

I If u = C1 ∨ · · · ∨ Cn, then u ≤M qf i� Ci ≤M qf , ∀i ≤ n.
I If u ≤M qf , then there exists p1, ..., pn ∈ P and
u0, ..., un ∈ ID(M), such that

u = u0 ≤p1 u1 ≤p2 · · · ≤pn un = qf .

Example Machine

Let M =Meven := ({r}, {q0, q1, qf}, {p1, p2, p3}), with instructions

q0r ≤p1 q1; q1r ≤p2 q0; q0 ≤p3 qf .

I Note that q0rn ≤M qf i� n is even.

q0r
4 ≤p1 q1r3 ≤p2 q0r2 ≤p1 q1r ≤p2 q0 ≤p3 qf

q0r
3 ≤p1 q1r2 ≤p2 q0r ≤p3 qfr

Gavin St. John Undecidability of {·, 1,∨}-equations in subvarieties of commutative residuated la�ices. 11 / 28



Computations cont.

We say a machine M terminates on an ID u if u ≤M qf .
I If u = C1 ∨ · · · ∨ Cn, then u ≤M qf i� Ci ≤M qf , ∀i ≤ n.

I If u ≤M qf , then there exists p1, ..., pn ∈ P and
u0, ..., un ∈ ID(M), such that

u = u0 ≤p1 u1 ≤p2 · · · ≤pn un = qf .

Example Machine

Let M =Meven := ({r}, {q0, q1, qf}, {p1, p2, p3}), with instructions

q0r ≤p1 q1; q1r ≤p2 q0; q0 ≤p3 qf .

I Note that q0rn ≤M qf i� n is even.

q0r
4 ≤p1 q1r3 ≤p2 q0r2 ≤p1 q1r ≤p2 q0 ≤p3 qf

q0r
3 ≤p1 q1r2 ≤p2 q0r ≤p3 qfr

Gavin St. John Undecidability of {·, 1,∨}-equations in subvarieties of commutative residuated la�ices. 11 / 28



Computations cont.

We say a machine M terminates on an ID u if u ≤M qf .
I If u = C1 ∨ · · · ∨ Cn, then u ≤M qf i� Ci ≤M qf , ∀i ≤ n.
I If u ≤M qf , then there exists p1, ..., pn ∈ P and
u0, ..., un ∈ ID(M), such that

u = u0 ≤p1 u1 ≤p2 · · · ≤pn un = qf .

Example Machine

Let M =Meven := ({r}, {q0, q1, qf}, {p1, p2, p3}), with instructions

q0r ≤p1 q1; q1r ≤p2 q0; q0 ≤p3 qf .

I Note that q0rn ≤M qf i� n is even.

q0r
4 ≤p1 q1r3 ≤p2 q0r2 ≤p1 q1r ≤p2 q0 ≤p3 qf

q0r
3 ≤p1 q1r2 ≤p2 q0r ≤p3 qfr

Gavin St. John Undecidability of {·, 1,∨}-equations in subvarieties of commutative residuated la�ices. 11 / 28



Computations cont.

We say a machine M terminates on an ID u if u ≤M qf .
I If u = C1 ∨ · · · ∨ Cn, then u ≤M qf i� Ci ≤M qf , ∀i ≤ n.
I If u ≤M qf , then there exists p1, ..., pn ∈ P and
u0, ..., un ∈ ID(M), such that

u = u0 ≤p1 u1 ≤p2 · · · ≤pn un = qf .

Example Machine

Let M =Meven := ({r}, {q0, q1, qf}, {p1, p2, p3}), with instructions

q0r ≤p1 q1; q1r ≤p2 q0; q0 ≤p3 qf .

I Note that q0rn ≤M qf i� n is even.

q0r
4 ≤p1 q1r3 ≤p2 q0r2 ≤p1 q1r ≤p2 q0 ≤p3 qf

q0r
3 ≤p1 q1r2 ≤p2 q0r ≤p3 qfr

Gavin St. John Undecidability of {·, 1,∨}-equations in subvarieties of commutative residuated la�ices. 11 / 28



Computations cont.

We say a machine M terminates on an ID u if u ≤M qf .
I If u = C1 ∨ · · · ∨ Cn, then u ≤M qf i� Ci ≤M qf , ∀i ≤ n.
I If u ≤M qf , then there exists p1, ..., pn ∈ P and
u0, ..., un ∈ ID(M), such that

u = u0 ≤p1 u1 ≤p2 · · · ≤pn un = qf .

Example Machine

Let M =Meven := ({r}, {q0, q1, qf}, {p1, p2, p3}), with instructions

q0r ≤p1 q1; q1r ≤p2 q0; q0 ≤p3 qf .

I Note that q0rn ≤M qf i� n is even.

q0r
4 ≤p1 q1r3 ≤p2 q0r2 ≤p1 q1r ≤p2 q0 ≤p3 qf

q0r
3 ≤p1 q1r2 ≤p2 q0r ≤p3 qfr

Gavin St. John Undecidability of {·, 1,∨}-equations in subvarieties of commutative residuated la�ices. 11 / 28



Computations cont.

We say a machine M terminates on an ID u if u ≤M qf .
I If u = C1 ∨ · · · ∨ Cn, then u ≤M qf i� Ci ≤M qf , ∀i ≤ n.
I If u ≤M qf , then there exists p1, ..., pn ∈ P and
u0, ..., un ∈ ID(M), such that

u = u0 ≤p1 u1 ≤p2 · · · ≤pn un = qf .

Example Machine

Let M =Meven := ({r}, {q0, q1, qf}, {p1, p2, p3}), with instructions

q0r ≤p1 q1; q1r ≤p2 q0; q0 ≤p3 qf .

I Note that q0rn ≤M qf i� n is even.

q0r
4 ≤p1 q1r3 ≤p2 q0r2 ≤p1 q1r ≤p2 q0 ≤p3 qf

q0r
3 ≤p1 q1r2 ≤p2 q0r ≤p3 qfr

Gavin St. John Undecidability of {·, 1,∨}-equations in subvarieties of commutative residuated la�ices. 11 / 28



Computations cont.

We say a machine M terminates on an ID u if u ≤M qf .
I If u = C1 ∨ · · · ∨ Cn, then u ≤M qf i� Ci ≤M qf , ∀i ≤ n.
I If u ≤M qf , then there exists p1, ..., pn ∈ P and
u0, ..., un ∈ ID(M), such that

u = u0 ≤p1 u1 ≤p2 · · · ≤pn un = qf .

Example Machine

Let M =Meven := ({r}, {q0, q1, qf}, {p1, p2, p3}), with instructions

q0r ≤p1 q1; q1r ≤p2 q0; q0 ≤p3 qf .

I Note that q0rn ≤M qf i� n is even.

q0r
4 ≤p1 q1r3 ≤p2 q0r2 ≤p1 q1r ≤p2 q0 ≤p3 qf

q0r
3 ≤p1 q1r2 ≤p2 q0r ≤p3 qfr

Gavin St. John Undecidability of {·, 1,∨}-equations in subvarieties of commutative residuated la�ices. 11 / 28



Undecidable Problem

Theorem [Lincoln et. al., 1992]

There exists a 2-ACM M̃ such that membership of the set
{u ∈ ID(M̃) : u ≤

M̃
qf} is undecidable. Furthermore, it is

undecidable whether qI ≤M̃ qf .

I Given an ACM M we define the theory of M Th(M) to be
the conjunction of all syntactic instructions in P , i.e.,

Th(M) :=&{C ≤ u : (C ≤p u) ∈ P}.
I Given an ID u, we define the quasi-equation HaltM (u) to be

Th(M) =⇒ u ≤ qf .
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d-rules and the relation ≤d(M)

Given a d-rule, e.g. [d] is given by x ≤ x2 ∨ x4, we add “ambient”
instructions of the form

qxy ≤d qxy2 ∨ qxy4,

for each q ∈ Q and any x, y ∈ R∗k.

As with the instructions in P , we close ≤d under the inference rules
[·] and [∨], and we define the relation ≤d(M) to be the smallest
preorder generated by ≤d ∪ ≤M .
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I Clearly, if u ≤M qf then u ≤d(M) qf since ≤M⊂≤d(M).

I However, for some ACM’s M , it’s possible that u ≤d(M) qf but
u 6≤M qf .

Example

Consider M =Meven and (d) given by x ≤ x2 ∨ x4.
I q0r

3 6≤M qf since 3 is odd.
I However, q0r3 ≤d(M) qf , witnessed by

q0r
3 = q0r

2r ≤d q0r
2r2 ∨ q0r2r4 = q0r

4 ∨ q0r6 ≤d(M) qf ,

since q0r4 ≤M qf and q0r6 ≤M qf .
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Goal

Given an ACM M and a d-rule, is it possible to construct a new
ACM M ′ such that

u ≤M qf if and only if θ(u) ≤d(M ′) qF ,

(where θ : ID(M)→ ID(M ′) is computable and qF is the final state
of M ′) and if so, under what conditions?
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Then MK machine

Let M = (R2, Q, P ) be a 2-ACM and let K > 1 be given. We define
the 3-ACM MK = (R3, QK , PK) such that

I Q ⊂ QK with qF the final state of MK and instruction
(qfr1r2 ≤F qF ) ∈ PK ,

I each forking instruction in P is contained in PK ,
I each increment and decrement instruction of P is replaced by

multiply and divide by K programs, i.e.

q ≤p q′r ∈ P =⇒ qr∀ vp q′rK·∀ ⊂ PK
qr ≤p q′ ∈ P =⇒ qr∀ vp q′rK\∀ ⊂ PK

.

I We obtain, for each q ∈ Q,

qrn1
1 rn2

2 ≤M qf ⇐⇒ qrK
n1

1 rK
n2

2 ≤MK
qF .
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Detecting applications of ≤d

Observation
Consider a configuration where the contents of some register r is
n = s+ t, wherea�er ≤d is applied to t-many tokens, i.e.,

qrn = qrsrt ≤d qrs(r2t ∨ r4t) = qrs+2t ∨ qrs+4t

Fact
For d : x ≤ x2 ∨ x4, if K ≥ (4− 2) + 1 = 3, it is impossible for
s+ 2t and s+ 4t to both be powers of K .

I Such a K will exist for any rule satisfying (?).
I Consequently, qrn ≤d(MK) qf i� qrn ≤MK

qF .
I For rules in more than one variable, satisfying (??) is su�icient

to guarantee “detection.”
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≤d(MK)

Let M = M̃ = (R2, Q, P ) be the 2-ACM such that it is undecidable
whether qI ≤M qf . Consider the rule (d) be given by x ≤ x2 ∨ x4.
We construct MK = (R3, QK , PK) for K = 3.

By the observation, for any q′ ∈ Q3,

q′rn1
1 rn2

2 rn3
3 ≤M3 qF ⇐⇒ q′rn1

1 rn2
2 rn3

3 ≤d(M3) qF .

Hence, for any q ∈ Q,

qrn1
1 rn2

2 ≤M qf ⇐⇒ qr3
n1

1 r3
n2

2 ≤d(M3) qF ,

so it is undecidable whether qIr1r2 ≤d(M3) qF .
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Undecidable word problem

Let V ⊆ CRL be a variety. We can show V has an undecidable word
problem (and hence quasi-equational theory) if we can demonstrate

V |= Haltd(MK)(qIr1r2) ⇐⇒ qIr1r2 ≤M qf .

I If V ⊆ CRL then (⇐) is immediate.
I We use the theory of Residuated Frames (Galatos & Jipsen

2013) for a completeness of encoding to provide a model and
valuation proving the contrapositive of (⇒), for varieties V
satisfying certain conditions.
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Residuated frames

Definition [Galatos & Jipsen 2013]

A residuated frame is a structure W = (W,W ′, N, ◦,
,�, 1), s.t.
I (W, ◦, 1) is a monoid and W ′ is a set.
I N ⊆W ×W ′, called the Galois relation, and
I 
 :W ×W ′ →W ′ and � :W ′ ×W →W ′ such that
I N is a nuclear, i.e. for all u, v ∈W and w ∈W ′,

(u ◦ v) N w i� u N (w � v) i� v N (u 
 w).

Define . : P(W )→ P(W ′) and / : P(W ′)→ P(W ) via
X. = {y ∈W ′ : ∀x ∈ X, xNy} and
Y / = {x ∈W : ∀y ∈ Y, xNy}, for each X ⊆W and Y ⊆W ′.
Then (., /) is a Galois connection.
So X

γN7−−→ X./ is a closure operator on P(W ).
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Residuated frames cont.

Theorem [Galatos & Jipsen 2013]

W+ := (γN [P(W )],∪γN ,∩, ◦γN ,
,�, γN ({1})),

X ∪γN Y = γN (X ∪ Y ) and X ◦γN Y = γN (X ◦ Y ),

is a residuated la�ice.

Proposition [Galatos & Jipsen 2013]

All simple rules are preserved by (−)+.
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Termination as a nuclear relation

Let M = (Rk, Q, P ) be a k-ACM and W := (Q ∪Rk)∗ be the free
commutative monoid generated by Q ∪Rk.

The frame WM

Similar to Chvalovský & Horčík (2016) , we let W ′ :=W and define
the relation NM ⊆W ×W ′ via

x NM z i� xz ≤M qf ,

for all x, z ∈W . Observe that, for any x, y, z ∈W ,

xy NM z ⇐⇒ xyz ≤M qf ⇐⇒ x NM yz.

Since W is commutive it follows that NM is nuclear.

Lemma
WM := (W,W ′, NM ) is a residuated frame, W+ ∈ CRL, and there
exists a valuation ν : Fm→W+ such that W+, ν |= Th(M).
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Lemma
Let (d) be any rule satisfying (?). Define Wd(M) := (W,W ′, Nd(M)).
Then W+

d(M) ∈ CRLd.

Fix M = M̃ be the 2-ACM such that it is undecidable whether
qI ≤M qf .

Theorem
Let (d) be a rule satisfying (?) and (??), and let K ≥ 2 be su�iciently
large. Then it is undecidable whether W+

d(MK) |= Halt
M̃K

(qIr1r2).

Corollary

For any variety V ⊆ CRL, if

W+
d(MK) ∈ V ,

then V has an undecidable word problem, and hence an undecidable
quasi-equational theory.
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Known results for Equational Theory

(kmn ) represents the kno�ed rule xn ≤ xm

Undecidable Eq. Theory Decidable Eq. Theory
RL
CRL

RL+ (kmn ), 1 ≤ n < m
CRL+ (kmn )

CRL+ (?)
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We can encode the instructions of an ACM M = (Rk, Q, P ) as a
single term θM using the full signature of of CRL via

θM := 1 ∧
∧

(C≤Mu)∈P

C → u.

Let (d) be given such that there exists n ≥ 1 and k, c1, ..., cn ≥ 1
such that

CRLd |= xk ≤
n∨
i=1

xk+ci , (? ? ?)

then (d) can be used to “bootstrap” the undeciablity of the
quasi-equation theory of CRLd to the equational theory.
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Undecidable equational theory

Corollary

Let (d) be a rule satisfying (?), (??), (? ? ?) and let K ≥ 2 be
su�iciently large. Then it is undecidable whether

CRLd |= θMK
→ (qIr1r2 → qF ),

and therefore CRLd has an undecidable equational theory.
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Thank You!
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