On the complexity of the equational theory of generalized residuated boolean algerbas

Zhe Lin and Minghui Ma
Institute of Logic and Cognition, Sun Yat-Sen University

TACL2017 Praha

R-algebras

A residuated Boolean algebra, or r-algebra,(B.Jónsson and Tsinakis) is an algebra $\mathbf{A}=\left(\mathrm{A}, \wedge, \vee,{ }^{\prime}, \top, \perp, \cdot, \backslash, /\right)$ where $\left(\mathrm{A}, \wedge, \vee,^{\prime}, \top, \perp\right)$ is a Boolean algebra, and \cdot, \backslash and / are binary operators on A satisfying the following residuation property: for any $a, b, c \in \mathrm{~A}$,

$$
a \cdot b \leq c \quad \text { iff } \quad b \leq a \backslash c \quad \text { iff } \quad a \leq c / b
$$

The operators \backslash and / are called right and left residuals of . respectively.

The left and right conjugates of • are binary operators on A defined by setting

$$
a \triangleright c=\left(a \backslash c^{\prime}\right)^{\prime} \text { and } c \triangleright b=\left(c^{\prime} / b\right)^{\prime} .
$$

The following conjugation property holds for any $a, b, c \in \mathrm{~A}$:

$$
a \cdot b \leq c^{\prime} \quad \text { iff } \quad a \triangleright c \leq b^{\prime} \quad \text { iff } \quad c \triangleleft b \leq a^{\prime}
$$

Let \mathbb{K} be any class of algebras. The equational theory of \mathbb{K}, denoted by $E q(\mathbb{K})$, is the set of all equations of the form $s=t$ that are valid in \mathbb{K}. The universal theory of \mathbb{K} is the set of all first-order universal sentences that are valid in \mathbb{K} denoted by $\operatorname{Ueq}(\mathbb{K})$,

- $E q(\mathbb{N A})$ is decidable (Németi 1987)
- $E q(\mathbb{U} \mathbb{R})$ is decidable. (Jipsen 1992)
- $\operatorname{Ueq}(\mathbb{U} \mathbb{R})$ and $\operatorname{Ueq}(\mathbb{R} \mathbb{A})$ are decidable (Buszkowski 2011)
- $E q(\mathbb{A} \mathbb{R} \mathbb{A})$ is undecidable (Kurucz, Nemeti, Sain and Simon 1993)

Generalized residuated Boolean algebra

Generalized residuated algebras admit a finite number of finitary operations o. With each n-ary operation $\left(o_{i}\right)(1 \leq i \leq m)$ there are associated n residual operations $\left(o_{i} / j\right)(1 \leq j \leq n)$ which satisfy the following generalized residuation law:

$$
\left(o_{i}\right)\left(\alpha_{1}, \ldots, \alpha_{n}\right) \leq \beta \quad \text { iff } \quad \alpha_{j} \leq\left(o_{i} / j\right)\left(\alpha_{1}, \ldots, \alpha_{j-1}, \beta, \alpha_{j+1}, \ldots, \alpha_{n}\right)
$$

A generalized residuated Boolean algebra is a Boolean algebra with generalized residual operations. A generalized residuated distributive lattice and lattice are defined naturally. The logics are denoted by RBL, RDLL, RLL respectively.

Figure: Outline of Proof

Zhe Lin and Minghui Malnstitute of Logic and Cognition, Sun $Y \hat{c}<$ On the complexity of the equational theory of generalized residua

Sequent Calculus

$$
\begin{gathered}
\text { (Id) } A \Rightarrow A, \quad(\mathrm{D}) A \wedge(B \vee C) \Rightarrow(A \wedge B) \vee(A \wedge C), \\
(\perp) \Gamma[\perp] \Rightarrow A, \quad(\top) \Gamma \Rightarrow \top, \\
(\neg 1) A \wedge \neg A \Rightarrow \perp, \quad(\neg 2) \top \Rightarrow A \vee \neg A, \\
(\wedge \mathrm{~L}) \frac{\Gamma\left[A_{i}\right] \Rightarrow B}{\Gamma\left[A_{1} \wedge A_{2}\right] \Rightarrow B}, \quad(\wedge \mathrm{R}) \frac{\Gamma \Rightarrow A \quad \Gamma \Rightarrow B}{\Gamma \Rightarrow A \wedge B}, \\
(\vee \mathrm{~L}) \frac{\Gamma\left[A_{1}\right] \Rightarrow B \quad \Gamma\left[A_{2}\right] \Rightarrow B}{\Gamma\left[A_{1} \vee A_{2}\right] \Rightarrow B}, \quad(\vee \mathrm{R}) \frac{\Gamma \Rightarrow A_{i}}{\Gamma \Rightarrow A_{1} \vee A_{2}} \\
(\mathrm{Cut}) \frac{\Delta \Rightarrow A ; \quad \Gamma[A] \Rightarrow B}{\Gamma[\Delta] \Rightarrow B}
\end{gathered}
$$

$$
\begin{gathered}
\frac{\Gamma\left[\left(\varphi_{1}, \ldots, \varphi_{n}\right)_{o_{i}}\right] \Rightarrow \alpha}{\Gamma\left[\left(o_{i}\right)\left(\varphi_{1}, \ldots, \varphi_{n}\right)\right] \Rightarrow \alpha}\left(o_{i} L\right) \quad \frac{\Gamma_{1} \Rightarrow \varphi_{1} ; \ldots ; \Gamma_{n} \Rightarrow \varphi_{n}}{\left(\Gamma_{1}, \ldots, \Gamma_{n}\right)_{o_{i}} \Rightarrow \alpha}\left(o_{i} R\right) \\
\frac{\Gamma\left[\varphi_{j}\right] \Rightarrow \alpha, ; \Gamma_{1} \Rightarrow \varphi_{1} ; \ldots ; \Gamma_{n} \Rightarrow \varphi_{n}}{\Gamma\left[\left(\Gamma_{1}, \ldots,\left(o_{i} / j\right)\left(\varphi_{1}, \ldots, \varphi_{n}\right), \ldots, \Gamma_{n}\right)_{o_{i}}\right] \Rightarrow \alpha}\left(\left(o_{i} / j\right) L\right) \\
\frac{\left(\varphi_{1}, \ldots, \Gamma, \ldots, \varphi\right)_{o_{i}} \Rightarrow \alpha}{\Gamma \Rightarrow\left(o_{i} / j\right)\left(\varphi_{1}, \ldots, \Gamma, \ldots, \varphi\right)}\left(\left(o_{i} / j\right) R\right)
\end{gathered}
$$

Remark

All above rules are invertible.

Frame semantics

A frame is a pair $\mathfrak{F}=(W, R)$ where $W \neq \emptyset$ and $R \subseteq W^{n+1}$ is an $n+1$-ary relation on W. A model is a triple $\mathfrak{M}=(W, R, V)$ where (W, R) is a frame and $V: \mathcal{P} \rightarrow \wp(W)$ is a valuation from the set of propositional variables \mathcal{P} to the powerset of W.

The satisfaction relation $\mathfrak{M}, w \models \varphi$ between a model \mathfrak{M} with a point w and a formula φ is defined inductively as follows:
(1) $\mathfrak{M}, w \models p$ iff $w \in V(p)$.
(2) $\mathfrak{M}, w \not \vDash \perp$.
(3) $\mathfrak{M}, w \models \varphi \supset \psi$ iff $\mathfrak{M}, w \not \models \varphi$ or $\mathfrak{M}, w \models \psi$.
(9) $\mathfrak{M}, w \models o\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ iff there are points $u_{1}, \ldots, u_{n} \in W$ such that $R w u_{1} \ldots u_{n}$ and $\mathfrak{M}, u_{i}=\varphi_{i}$ for $1 \leq i \leq n$.
(3) $\mathfrak{M}, w \models(o / i)\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ iff for all $u_{1}, \ldots, u_{n} \in W$, if $R u_{i} u_{1} \ldots w \ldots u_{n}$ and $\mathfrak{M}, u_{j} \models \varphi_{j}$ for all $1 \leq j \leq n$ and $j \neq i$, then $\mathfrak{M}, u_{i} \models \varphi_{i}$.

Unary case:
(1) $\mathfrak{M}, w \models \diamond A$ iff there exists $u \in W$ with $R(w, u)$ and $\mathfrak{M}, u \neq A$.
(2) $\mathfrak{M}, w \models \square^{\downarrow} A$ iff for every $u \in W$, if $R(u, w)$, then $\mathfrak{M}, u \models A$. Binary case:
(1) $\mathfrak{J}, u \models A / B$ iff for all $v, w \in W$ with $S(w, u, v)$, if $\mathfrak{J}, v \vDash B$, then $\mathfrak{J}, w \models A$
(2) $\mathfrak{J}, u \models A \backslash B$ iff for all $v, w \in W$ with $S(v, w, u)$, if $\mathfrak{J}, w \equiv A$, then $\mathfrak{J}, v \models B$.

From RBL to MRBNL

The translation (.) ${ }^{\#}: \mathcal{L}_{\mathrm{RBL}}$ (Prop) $\rightarrow \mathcal{L}_{\mathrm{MRBNL}}$ (Prop) is defined as below:

- $\left.\left.o_{i}\left(\alpha_{1}, \ldots \alpha_{n}\right)^{\ddagger}=\left(\ldots\left(\alpha_{1} ; \alpha_{2}\right) \ldots\right) \cdot ; \alpha_{n}\right) \ldots\right)$
- $\left(o_{i} / j\right)\left(\alpha_{1}, \ldots, \alpha_{n}\right)=$
$\left.\left(\ldots\left(\alpha_{1} \cdot i \alpha_{2}\right) \ldots\right) \cdot i \alpha_{j-1}\right) \backslash i\left(\ldots\left(\alpha_{j} / i \alpha_{n}\right) \ldots / i \alpha_{j+1}\right)$
- $\left.\left.\left(\left(\Gamma_{1}, \ldots, \Gamma_{n}\right)_{o_{i}}\right)^{\ddagger}=\left(\ldots\left(\Gamma_{1} \circ_{i} \Gamma_{2}\right) \ldots\right) \circ_{i} \Gamma_{n}\right) \ldots\right)$

Theorem

For any $\mathcal{L}_{\text {RBL }}$-sequent $\Gamma \Rightarrow \alpha, \vdash_{\mathrm{RBL}} \Gamma \Rightarrow \alpha$ if and only if $\vdash_{\text {MRBNL }}((\Gamma))^{\dagger} \supset \alpha^{\dagger}$.

From MRBNL to MK_{t}

The translation (.) ${ }^{\#}: \mathcal{L}_{\text {MBFNL }}$ (Prop) $\rightarrow \mathcal{L}_{\mathrm{MK}_{\mathrm{t}}}$ (Prop) is defined as below:

$$
\begin{aligned}
p^{\#} & =p, & \top^{\#} & =\top, \quad \perp \#=\perp, \\
(\neg \alpha)^{\#} & =\neg \alpha^{\#}, & (\alpha \wedge \beta)^{\#} & =\alpha^{\#} \wedge \beta^{\#}, \\
(\alpha \vee \beta)^{\#} & =\alpha^{\#} \vee \beta^{\#}, & \left(\alpha \cdot{ }_{i} \beta\right)^{\#} & =\diamond_{i 1}\left(\diamond_{i 1} \alpha^{\#} \wedge \diamond_{i 2} \beta^{\#}\right), \\
\left(\alpha \backslash_{i} \beta\right)^{\#} & =\square_{i 2}^{\downarrow}\left(\diamond_{i 1} \alpha^{\#} \supset \square_{i 1}^{\downarrow} \beta^{\#}\right), & (\alpha / i \beta)^{\#} & =\square_{i 1}^{\downarrow}\left(\diamond_{i 2} \beta^{\#} \supset \square_{i 1}^{\downarrow} \alpha^{\#}\right) .
\end{aligned}
$$

Theorem

For any $\mathcal{L}_{\mathrm{MBFNL}}$-sequent $\Gamma \Rightarrow \alpha, \vdash_{\mathrm{MBFNL}} \Gamma \Rightarrow \alpha$ if and only if $\vdash_{M_{\mathrm{t}}}(f(\Gamma))^{\#} \supset \alpha^{\#}$.

Figure: Translation \#

From MK_{t} to K_{t}

Let $\mathrm{P} \subseteq \operatorname{Prop}$ and $\left\{x, q_{1}, \ldots, q_{n}\right\} \nsubseteq \mathrm{P}$ be a distinguished

 propositional variable. Define a translation$(.)^{*}: \mathcal{L}_{\mathrm{K}_{12}^{\mathrm{t}}}(\mathrm{P}) \rightarrow \mathcal{L}_{\mathrm{K} . \mathrm{t}}\left(\mathrm{P} \cup\left\{x, q_{1}, \ldots, q_{n}\right\}\right)$ recursively as follows:

$$
\begin{aligned}
p^{*} & =p, \perp^{*}=\perp \\
(A \supset B)^{*} & =A^{*} \supset B^{*} \\
\left(\diamond_{i} A\right)^{*} & =\neg x \wedge \diamond\left(q_{i} \wedge A^{*}\right), \\
\left(\square_{i}^{\downarrow} A\right)^{*} & =\neg x \supset \square^{\downarrow}\left(q_{i} \supset A^{*}\right),
\end{aligned}
$$

Theorem

For any $\mathcal{L}_{\mathrm{MK}_{\mathrm{t}}}$-sequent $\Gamma \Rightarrow \alpha, \vdash_{\mathrm{MK}_{\mathrm{t}}} \Gamma \Rightarrow \alpha$ if and only if $\vdash_{\mathrm{K}_{\mathrm{t}}}(f(\Gamma))^{*} \supset \alpha^{*}$.

Figure: Translation *

$$
\text { (Id) } \quad A \Rightarrow A
$$

and inference rules

$$
\begin{gathered}
(\cdot \mathrm{L}) \quad \frac{\Gamma[A \circ B] \Rightarrow C}{\Gamma[A \cdot B] \Rightarrow C}, \quad(\cdot \mathrm{R}) \quad \frac{\Gamma \Rightarrow A \quad \Delta \Rightarrow B}{\Gamma \circ \Delta \Rightarrow A \cdot B}, \\
(\mathrm{Cut}) \quad \frac{\Delta \Rightarrow A ; \quad \Gamma[A] \Rightarrow B}{\Gamma[\Delta] \Rightarrow B} \\
(\wedge \mathrm{~L}) \frac{\Gamma\left[A_{i}\right] \Rightarrow B}{\Gamma\left[A_{1} \wedge A_{2}\right] \Rightarrow B}, \quad(\wedge \mathrm{R}) \frac{\Gamma \Rightarrow A \quad \Gamma \Rightarrow B}{\Gamma \Rightarrow A \wedge B}, \\
(\vee \mathrm{~L}) \frac{\Gamma\left[A_{1}\right] \Rightarrow B \quad \Gamma\left[A_{2}\right] \Rightarrow B}{\Gamma\left[A_{1} \vee A_{2}\right] \Rightarrow B}, \quad(\vee \mathrm{R}) \frac{\Gamma \Rightarrow A_{i}}{\Gamma \Rightarrow A_{1} \vee A_{2}}
\end{gathered}
$$

$(\cdot \mathrm{L}),(\cdot \mathrm{R}),(\wedge R)$ and $(\vee L)$ are invertible.

PSPACE-hard

Lemma

$I f \vdash_{L G} \Gamma[A \wedge B] \Rightarrow C$ and all formulae in $\Gamma[A \wedge B]$ are \vee-free and C is \wedge-free, then $\Gamma[A] \Rightarrow C$ or $\Gamma[B] \Rightarrow C$.

Lemma
If $\vdash_{L G} \Gamma \Rightarrow A \vee B$ and all formulae in Γ are \vee-free, then $\Gamma \Rightarrow A$ or $\Gamma[B] \Rightarrow B$.

By $\sigma(e)$ we denote a formula structure $z_{1} \circ\left(z_{2} \cdots\left(z_{n-1} \circ z_{n}\right) \cdots\right)$ such that

$$
z_{j}=\left\{\begin{array}{lll}
x_{j} & \text { if } & e\left(x_{j}\right)=1 \\
\overline{x_{j}} & \text { if } & e\left(x_{j}\right)=0
\end{array}\right.
$$

$\sigma(A)=\sigma\left(D_{1}\right) \vee \ldots \vee \sigma\left(D_{m}\right)$ and
$\sigma\left(D_{i}\right)=y_{1} \cdot\left(y_{2} \cdots\left(y_{n-1} \cdot y_{n}\right) \cdots\right)$ such that

$$
y_{j}=\left\{\begin{array}{lll}
x_{j} & \text { if } & x_{j} \in D_{i} \\
\overline{x_{j}} & \text { if } & \neg x_{j} \in D_{i} \\
x_{j} \vee \overline{x_{j}} & \text { o.w. }
\end{array}\right.
$$

Lemma
 $e(A)=1 i f f \vdash_{\llcorner G} \sigma(e) \Rightarrow \sigma(A)$

Zhe Lin and Minghui Malnstitute of Logic and Cognition, Sun $Y_{\hat{c}}$ On the complexity of the equational theory of generalized residua

Let us consider a quantified Boolean formula ϕ in DNF form i.e. $\phi=Q_{k} x_{k} \cdots Q_{1} x_{1} A$ where $Q_{i} \in\{\forall, \exists\}$ and A is a propositional formulae in DNF form. We extended the translation of $e(\phi)$ into a sequent in LG as follows: $\sigma(e)$ we denote a formula structure $z_{1} \circ\left(z_{2} \cdots\left(z_{n-1} \circ z_{n}\right) \cdots\right)$ such that for any $1 \leq j \leq k$

$$
z_{j}=\left\{\begin{array}{lll}
x_{j} \wedge \overline{x_{j}} & \text { if } & Q_{j}=\exists \\
x_{j} \vee \overline{x_{j}} & \text { if } & Q_{j}=\forall
\end{array}\right.
$$

and for any $k+1 \leq j \leq n z_{j}$ is defined as above. Further the translation on A is remained the same.

Theorem $e(\phi)=1$ iff $\sigma(e) \Rightarrow \sigma(A)$ where A is a quantifier free formula of ϕ.

Theorem
 The decision problem of $L G$ is PSPACE-hard.

We define two special sub-languages of LG and DLG. The Left sub-language of LG and DLG denoted by LL is defined recursively as follows:

$$
A::=p|p \wedge p| p \vee p \mid(A \cdot A)
$$

The right sub-language of LG and DLG denoted by RL is defined recursively as follows:

$$
A::=p|p \vee p|(A \cdot A)
$$

Lemma

Given a sequent $\Gamma \Rightarrow A$ such that Γ is a $L L$ formula structure and A is a $R L$ formula. Then $\vdash_{L G} \Gamma \Rightarrow A$ iff $\vdash_{D L G} \Gamma \Rightarrow A$.

Theorem

The decision problem of RBL, RDLL, RLL are PSPACE-hard.

Remark

By Buszkowski[2011], RBL is conservative extension of RDLL, while RDLL and RLL are conservative extension of DLG and LG respectively

PSPACE-completeness

Theorem
 The decision problem of RBL, RDLL, RLL are PSPACE-complete.

Extensions

For any extensions S of RBL, RDLL, RLL with set of axioms ϕ, if $(\cdot L)$ and $(\cdot R)$ are both invertible, then the decision problem of S is PSPACE-hard.

For instance, $\mathrm{FNL}_{\mathrm{e}}, \mathrm{FNL}_{\mathrm{c}}, \mathrm{DFNL}_{\mathrm{e}}, \ldots$
For any extensions S of RLL with set of axioms ϕ, if $(\cdot L)$ and $(\cdot R)$ re both invertible and admit cut elimination, then the decision problem of S is PSPACE-complete.

For instance, $\mathrm{FNL}_{\mathrm{e}}, \ldots$.

Thank you

Zhe Lin and Minghui Malnstitute of Logic and Cognition, Sun $Y_{\bar{c}}$ On the complexity of the equational theory of generalized residua

