On the complexity of the equational theory of generalized residuated boolean algerbas

Zhe Lin and Minghui Ma Institute of Logic and Cognition, Sun Yat-Sen University

TACL2017 Praha

Zhe Lin and Minghui Malnstitute of Logic and Cognition, Sun Ye On the complexity of the equational theory of generalized residua

A residuated Boolean algebra, or r-algebra, (B.Jónsson and Tsinakis) is an algebra $\mathbf{A} = (A, \land, \lor, ', \top, \bot, \cdot, \backslash, /)$ where $(A, \land, \lor, ', \top, \bot)$ is a Boolean algebra, and \cdot, \backslash and / are binary operators on A satisfying the following residuation property: for any $a, b, c \in A$,

$$a \cdot b \leq c$$
 iff $b \leq a \setminus c$ iff $a \leq c/b$

The operators \setminus and / are called *right* and *left* residuals of \cdot respectively.

The left and right conjugates of \cdot are binary operators on A defined by setting

$$a \rhd c = (a \backslash c')'$$
 and $c \rhd b = (c'/b)'$.

The following conjugation property holds for any $a, b, c \in A$:

$$a \cdot b \leq c'$$
 iff $a \rhd c \leq b'$ iff $c \triangleleft b \leq a'$

Zhe Lin and Minghui Malnstitute of Logic and Cognition, Sun Ye On the complexity of the equational theory of generalized residua

Let \mathbb{K} be any class of algebras. The equational theory of \mathbb{K} , denoted by $Eq(\mathbb{K})$, is the set of all equations of the form s = t that are valid in \mathbb{K} . The universal theory of \mathbb{K} is the set of all first-order universal sentences that are valid in \mathbb{K} denoted by $Ueq(\mathbb{K})$,

- $Eq(\mathbb{NA})$ is decidable (Németi 1987)
- $Eq(\mathbb{UR})$ is decidable. (Jipsen 1992)
- $Ueq(\mathbb{UR})$ and $Ueq(\mathbb{RA})$ are decidable (Buszkowski 2011)
- *Eq*(ARA) is undecidable (Kurucz, Nemeti, Sain and Simon 1993)

伺 ト イ ヨ ト イ ヨ ト

Generalized residuated algebras admit a finite number of finitary operations o. With each n-ary operation (o_i) $(1 \le i \le m)$ there are associated n residual operations (o_i/j) $(1 \le j \le n)$ which satisfy the following generalized residuation law:

 $(o_i)(\alpha_1,\ldots,\alpha_n) \leq \beta$ iff $\alpha_j \leq (o_i/j)(\alpha_1,\ldots,\alpha_{j-1},\beta,\alpha_{j+1},\ldots,\alpha_n)$

A generalized residuated Boolean algebra is a Boolean algebra with generalized residual operations. A generalized residuated distributive lattice and lattice are defined naturally. The logics are denoted by RBL, RDLL, RLL respectively.

Figure: Outline of Proof

Zhe Lin and Minghui Malnstitute of Logic and Cognition, Sun Ye On the complexity of the equational theory of generalized residua

イロト イポト イヨト イヨト

æ

$$\begin{array}{ll} (\mathrm{Id}) \ A \Rightarrow A, \quad (\mathrm{D}) \ A \wedge (B \lor C) \Rightarrow (A \land B) \lor (A \land C), \\ (\bot) \ \Gamma[\bot] \Rightarrow A, \quad (\top) \ \Gamma \Rightarrow \top, \\ (\neg 1) \ A \wedge \neg A \Rightarrow \bot, \quad (\neg 2) \ \top \Rightarrow A \lor \neg A, \\ (\land \mathrm{L}) \ \frac{\Gamma[A_i] \Rightarrow B}{\Gamma[A_1 \land A_2] \Rightarrow B}, \quad (\land \mathrm{R}) \ \frac{\Gamma \Rightarrow A \ \Gamma \Rightarrow B}{\Gamma \Rightarrow A \land B}, \\ (\lor \mathrm{L}) \ \frac{\Gamma[A_1] \Rightarrow B \ \Gamma[A_2] \Rightarrow B}{\Gamma[A_1 \lor A_2] \Rightarrow B}, \quad (\lor \mathrm{R}) \ \frac{\Gamma \Rightarrow A_i}{\Gamma \Rightarrow A_1 \lor A_2}. \\ (\mathrm{Cut}) \ \ \frac{\Delta \Rightarrow A; \ \Gamma[A] \Rightarrow B}{\Gamma[\Delta] \Rightarrow B} \end{array}$$

Zhe Lin and Minghui Malnstitute of Logic and Cognition, Sun Ye On the complexity of the equational theory of generalized residua

A ≥ ►

$$\frac{\Gamma[(\varphi_1,\ldots,\varphi_n)_{o_i}] \Rightarrow \alpha}{\Gamma[(o_i)(\varphi_1,\ldots,\varphi_n)] \Rightarrow \alpha} (o_i L) \quad \frac{\Gamma_1 \Rightarrow \varphi_1;\ldots;\Gamma_n \Rightarrow \varphi_n}{(\Gamma_1,\ldots,\Gamma_n)_{o_i} \Rightarrow \alpha} (o_i R) \\
\frac{\Gamma[\varphi_j] \Rightarrow \alpha,;\Gamma_1 \Rightarrow \varphi_1;\ldots;\Gamma_n \Rightarrow \varphi_n}{\Gamma[(\Gamma_1,\ldots,(o_i/j)(\varphi_1,\ldots,\varphi_n),\ldots,\Gamma_n)_{o_i}] \Rightarrow \alpha} ((o_i/j)L) \\
\frac{(\varphi_1,\ldots,\Gamma,\ldots,\varphi)_{o_i} \Rightarrow \alpha}{\Gamma \Rightarrow (o_i/j)(\varphi_1,\ldots,\Gamma,\ldots,\varphi)} ((o_i/j)R)$$

Remark

All above rules are invertible.

Zhe Lin and Minghui Malnstitute of Logic and Cognition, Sun Ye On the complexity of the equational theory of generalized residua

伺 ト イヨト イヨト

A frame is a pair $\mathfrak{F} = (W, R)$ where $W \neq \emptyset$ and $R \subseteq W^{n+1}$ is an n + 1-ary relation on W. A model is a triple $\mathfrak{M} = (W, R, V)$ where (W, R) is a frame and $V : \mathcal{P} \to \wp(W)$ is a valuation from the set of propositional variables \mathcal{P} to the powerset of W. The satisfaction relation $\mathfrak{M}, w \models \varphi$ between a model \mathfrak{M} with

a point w and a formula φ is defined inductively as follows:

 $\mathfrak{M}, w \not\models \bot.$

- $\mathfrak{M}, w \models o(\varphi_1, \dots, \varphi_n)$ iff there are points $u_1, \dots, u_n \in W$ such that $Rwu_1 \dots u_n$ and $\mathfrak{M}, u_i \models \varphi_i$ for $1 \le i \le n$.
- $\mathfrak{M}, w \models (o/i)(\varphi_1, \dots, \varphi_n)$ iff for all $u_1, \dots, u_n \in W$, if $Ru_iu_1 \dots w \dots u_n$ and $\mathfrak{M}, u_j \models \varphi_j$ for all $1 \le j \le n$ and $j \ne i$, then $\mathfrak{M}, u_i \models \varphi_i$.

周 ト イ ヨ ト イ ヨ ト ・ ヨ ・ の Q ()

Unary case:

- $\mathfrak{M}, w \models \Diamond A$ iff there exists $u \in W$ with R(w, u) and $\mathfrak{M}, u \models A$.
- ② $\mathfrak{M}, w \models \Box ↓ A$ iff for every $u \in W$, if R(u, w), then $\mathfrak{M}, u \models A$. Binary case:
- $\mathfrak{J}, u \models A/B$ iff for all $v, w \in W$ with S(w, u, v), if $\mathfrak{J}, v \models B$, then $\mathfrak{J}, w \models A$
- **③** $\mathfrak{J}, u \models A \setminus B$ iff for all $v, w \in W$ with S(v, w, u), if $\mathfrak{J}, w \models A$, then $\mathfrak{J}, v \models B$.

▲母 ▶ ▲ 国 ▶ ▲ 国 ▶ → 의 ● → ○ ○ ○

The translation (.)[#] : $\mathcal{L}_{RBL}(\mathsf{Prop}) \to \mathcal{L}_{MRBNL}(\mathsf{Prop})$ is defined as below:

•
$$o_i(\alpha_1, \ldots \alpha_n)^{\ddagger} = (\ldots (\alpha_1 \cdot_i \alpha_2) \ldots) \cdot_i \alpha_n) \ldots)$$

• $(o_i/j)(\alpha_1, \ldots, \alpha_n) =$

$$(\ldots(\alpha_1 \cdot \alpha_2)\ldots) \cdot \alpha_{j-1}) \setminus (\ldots(\alpha_j/\alpha_n)\ldots/\alpha_{j+1})$$

•
$$((\Gamma_1,\ldots,\Gamma_n)_{o_i})^{\ddagger}=(\ldots(\Gamma_1\circ_i\Gamma_2)\ldots)\circ_i\Gamma_n)\ldots)$$

Theorem

For any
$$\mathcal{L}_{RBL}$$
-sequent $\Gamma \Rightarrow \alpha$, $\vdash_{RBL} \Gamma \Rightarrow \alpha$ if and only if $\vdash_{MRBNL} ((\Gamma))^{\dagger} \supset \alpha^{\dagger}$.

- 4 同 ト 4 ヨ ト

From MRBNL to MK_t

The translation $(.)^{\#}$: $\mathcal{L}_{\mathrm{MBFNL}}(\mathsf{Prop}) \to \mathcal{L}_{\mathrm{MK}_{\mathrm{t}}}(\mathsf{Prop})$ is defined as below:

$$p^{\#} = p, \qquad \qquad \forall \forall \# = \top, \quad \bot^{\#} = \bot, \\ (\neg \alpha)^{\#} = \neg \alpha^{\#}, \qquad \qquad (\alpha \land \beta)^{\#} = \alpha^{\#} \land \beta^{\#}, \\ (\alpha \lor \beta)^{\#} = \alpha^{\#} \lor \beta^{\#}, \qquad \qquad (\alpha \lor_{i} \beta)^{\#} = \Diamond_{i1}(\Diamond_{i1}\alpha^{\#} \land \Diamond_{i2}\beta^{\#}), \\ (\alpha \lor_{i} \beta)^{\#} = \Box_{i2}^{\downarrow}(\Diamond_{i1}\alpha^{\#} \supset \Box_{i1}^{\downarrow}\beta^{\#}), \quad (\alpha/_{i}\beta)^{\#} = \Box_{i1}^{\downarrow}(\Diamond_{i2}\beta^{\#} \supset \Box_{i1}^{\downarrow}\alpha^{\#}).$$

Theorem

For any \mathcal{L}_{MBFNL} -sequent $\Gamma \Rightarrow \alpha$, $\vdash_{MBFNL} \Gamma \Rightarrow \alpha$ if and only if $\vdash_{MK_t} (f(\Gamma))^{\#} \supset \alpha^{\#}$.

Zhe Lin and Minghui Malnstitute of Logic and Cognition, Sun Ye On the complexity of the equational theory of generalized residua

э.

Figure: Translation

Zhe Lin and Minghui Malnstitute of Logic and Cognition, Sun Ye On the complexity of the equational theory of generalized residua

э

Let $P \subseteq Prop$ and $\{x, q_1, \ldots, q_n\} \not\subseteq P$ be a distinguished propositional variable. Define a translation $(.)^* : \mathcal{L}_{K_{12}^t}(P) \rightarrow \mathcal{L}_{K.t}(P \cup \{x, q_1, \ldots, q_n\})$ recursively as follows:

$$p^* = p, \perp^* = \perp,$$

 $(A \supset B)^* = A^* \supset B^*.$
 $(\diamondsuit_i A)^* = \neg x \land \diamondsuit(q_i \land A^*),$
 $(\Box_i^{\downarrow} A)^* = \neg x \supset \Box^{\downarrow}(q_i \supset A^*),$

Zhe Lin and Minghui Malnstitute of Logic and Cognition, Sun Ye On the complexity of the equational theory of generalized residua

Theorem

For any \mathcal{L}_{MK_t} -sequent $\Gamma \Rightarrow \alpha$, $\vdash_{MK_t} \Gamma \Rightarrow \alpha$ if and only if $\vdash_{K_t} (f(\Gamma))^* \supset \alpha^*$.

Figure: Translation *

Zhe Lin and Minghui Malnstitute of Logic and Cognition, Sun Ye On the complexity of the equational theory of generalized residua

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

$$(\mathrm{Id}) \quad A \Rightarrow A,$$

(

and inference rules

$$\begin{array}{ll} (\cdot \mathrm{L}) & \frac{\Gamma[A \circ B] \Rightarrow C}{\Gamma[A \cdot B] \Rightarrow C}, \quad (\cdot \mathrm{R}) & \frac{\Gamma \Rightarrow A \quad \Delta \Rightarrow B}{\Gamma \circ \Delta \Rightarrow A \cdot B}, \\ & (\mathrm{Cut}) & \frac{\Delta \Rightarrow A; \quad \Gamma[A] \Rightarrow B}{\Gamma[\Delta] \Rightarrow B} \\ & (\wedge \mathrm{L}) \frac{\Gamma[A_i] \Rightarrow B}{\Gamma[A_1 \wedge A_2] \Rightarrow B}, \quad (\wedge \mathrm{R}) \frac{\Gamma \Rightarrow A \quad \Gamma \Rightarrow B}{\Gamma \Rightarrow A \wedge B}, \\ & (\vee \mathrm{L}) \frac{\Gamma[A_1] \Rightarrow B \quad \Gamma[A_2] \Rightarrow B}{\Gamma[A_1 \vee A_2] \Rightarrow B}, \quad (\vee \mathrm{R}) \frac{\Gamma \Rightarrow A_i}{\Gamma \Rightarrow A_1 \vee A_2}. \end{array}$$
$$(\cdot \ \mathsf{L}), (\cdot \ \mathsf{R}), (\wedge R) \text{ and } (\vee L) \text{ are invertible.} \end{array}$$

Zhe Lin and Minghui Malnstitute of Logic and Cognition, Sun Ye On the complexity of the equational theory of generalized residua

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Lemma

If $\vdash_{LG} \Gamma[A \land B] \Rightarrow C$ and all formulae in $\Gamma[A \land B]$ are \lor -free and C is \land -free, then $\Gamma[A] \Rightarrow C$ or $\Gamma[B] \Rightarrow C$.

Lemma

If $\vdash_{LG} \Gamma \Rightarrow A \lor B$ and all formulae in Γ are \lor -free, then $\Gamma \Rightarrow A$ or $\Gamma[B] \Rightarrow B$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

By $\sigma(e)$ we denote a formula structure $z_1 \circ (z_2 \cdots (z_{n-1} \circ z_n) \cdots)$ such that

$$z_j = \begin{cases} x_j & \text{if} \quad e(x_j) = 1\\ \overline{x_j} & \text{if} \quad e(x_j) = 0 \end{cases}$$

$$\sigma(A) = \sigma(D_1) \lor \ldots \lor \sigma(D_m) \text{ and}$$

$$\sigma(D_i) = y_1 \cdot (y_2 \cdots (y_{n-1} \cdot y_n) \cdots) \text{ such that}$$

$$y_j = \begin{cases} x_j & \text{if } x_j \in D_i \\ \overline{x_j} & \text{if } \neg x_j \in D_i \\ x_j \lor \overline{x_j} & o.w. \end{cases}$$

Zhe Lin and Minghui Malnstitute of Logic and Cognition, Sun Ye On the complexity of the equational theory of generalized residua

「同ト・モート・モート」

Lemma

$$e(A) = 1$$
 iff $\vdash_{LG} \sigma(e) \Rightarrow \sigma(A)$

Zhe Lin and Minghui MaInstitute of Logic and Cognition, Sun Ye On the complexity of the equational theory of generalized residua

÷.

Let us consider a quantified Boolean formula ϕ in DNF form i.e. $\phi = Q_k x_k \cdots Q_1 x_1 A$ where $Q_i \in \{\forall, \exists\}$ and A is a propositional formulae in DNF form. We extended the translation of $e(\phi)$ into a sequent in LG as follows: $\sigma(e)$ we denote a formula structure $z_1 \circ (z_2 \cdots (z_{n-1} \circ z_n) \cdots)$ such that for any $1 \le j \le k$

$$\mathbf{z}_j = egin{cases} x_j \wedge \overline{x_j} & \textit{if} \quad Q_j = \exists x_j \lor \overline{x_j} & \textit{if} \quad Q_j = \forall \end{cases}$$

and for any $k + 1 \le j \le n z_j$ is defined as above. Further the translation on A is remained the same.

Theorem

 $e(\phi) = 1$ iff $\sigma(e) \Rightarrow \sigma(A)$ where A is a quantifier free formula of ϕ .

Theorem

The decision problem of LG is PSPACE-hard.

Zhe Lin and Minghui MaInstitute of Logic and Cognition, Sun Ye On the complexity of the equational theory of generalized residua

< 同 > < 三 > < 三 >

We define two special sub-languages of LG and DLG. The Left sub-language of LG and DLG denoted by LL is defined recursively as follows:

$$A ::= p \mid p \land p \mid p \lor p \mid (A \cdot A)$$

The right sub-language of LG and DLG denoted by RL is defined recursively as follows:

$$A ::= p \mid p \lor p \mid (A \cdot A)$$

Lemma

Given a sequent $\Gamma \Rightarrow A$ such that Γ is a LL formula structure and A is a RL formula. Then $\vdash_{IG} \Gamma \Rightarrow A$ iff $\vdash_{DIG} \Gamma \Rightarrow A$.

Theorem

The decision problem of RBL, RDLL, RLL are PSPACE-hard.

Remark

By Buszkowski[2011], RBL is conservative extension of RDLL, while RDLL and RLL are conservative extension of DLG and LG respectively

Theorem

The decision problem of RBL, RDLL, RLL are PSPACE-complete.

Zhe Lin and Minghui MaInstitute of Logic and Cognition, Sun Ye On the complexity of the equational theory of generalized residua

For any extensions S of RBL, RDLL, RLL with set of axioms ϕ , if (·*L*) and (·*R*) are both invertible, then the decision problem of S is PSPACE-hard.

For instance, FNL_e , FNL_c , $DFNL_e$, ...

For any extensions S of RLL with set of axioms ϕ , if (·L) and (·R) re both invertible and admit cut elimination, then the decision problem of S is PSPACE-complete.

For instance, $\mathrm{FNL}_e\text{,}$ \ldots

Thank you

Zhe Lin and Minghui Malnstitute of Logic and Cognition, Sun Ye On the complexity of the equational theory of generalized residua

< 🗇 > <

э

æ