Deepening the link between logic and functional analysis via Riesz MV-algebras

Serafina Lapenta

includes joint works with Antonio Di Nola and Ioana Leuștean

TACL 2017, Prague

26-30 June 2017

Serafina Lapenta – Deepening the link between logic and functional analysis via Riesz MV-algebras

► Algebraic counterpart of Łukasiewicz logic,

- ► Algebraic counterpart of Łukasiewicz logic,
- ► A generalization of boolean algebras,

- ► Algebraic counterpart of Łukasiewicz logic,
- ► A generalization of boolean algebras,
- Unit interval of lattice ordered groups with strong unit.

Unit interval of lattice ordered groups with strong unit

Serafina Lapenta - Deepening the link between logic and functional analysis via Riesz MV-algebras

Unit interval of lattice ordered groups with strong unit

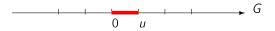
Lattice-ordered groups

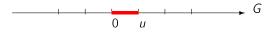
 $(G, +, 0, \leq)$ is ℓ -group

- ▶ if (*G*, +, 0) group,
- (G, \leq) lattice,
- $x \le y$ implies $x + z \le y + z$ for any $x, y, z \in G$.

ℓu-groups

 $u \in G$ is a **strong unit**: $u \ge 0$, for any $x \in G$ there is $n \ge 1$ s.t. $x \le nu$. An abelian ℓ -group with strong unit is an ℓu -group.

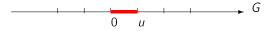




(G, u) ℓu -group, $x, y \in G, x \oplus y = (x +_G y) \land u, x^* = u -_G x$

Serafina Lapenta - Deepening the link between logic and functional analysis via Riesz MV-algebras

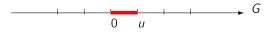
4/25



(G, u) ℓu -group, $x, y \in G, x \oplus y = (x + G y) \land u, x^* = u - G x$

 $([0, u]_G, \oplus, *, 0)$ is an MV-algebra

Serafina Lapenta - Deepening the link between logic and functional analysis via Riesz MV-algebras



(G, u) ℓu -group, $x, y \in G, x \oplus y = (x +_G y) \land u, x^* = u -_G x$

 $([0, u]_G, \oplus, *, 0)$ is an MV-algebra

Categorical equivalence. Mundici, 1986 $\Gamma(G, u) = [0, u]_G,$ $f: (G, u) \rightarrow (H, v) \mapsto f|_{[0, u]_G} : [0, u]_G \rightarrow [0, v]_H$ MV-algebras with product: Riesz MV-algebras

MV-algebras R endowed with a scalar multiplication with scalars from [0, 1].

A. Di Nola, I. Leuștean, 2014

MV-algebras with product: Riesz MV-algebras

MV-algebras R endowed with a scalar multiplication with scalars from [0, 1].

- A. Di Nola, I. Leuștean, 2014
 - Standard model: [0, 1]_{RMV} = [0, 1]_{MV} + scalar multiplication from [0, 1],
 - RMVs form a variety,
 - $\mathbb{RMV} = HSP([0, 1]_{RMV}),$
 - as a category, are equivalent to Riesz Spaces (vector lattices) with a strong unit.

We can expand Łukasiewicz logic with connectives that model the scalar multiplication and obtain a new logic, \mathbb{RL} .

We can expand Łukasiewicz logic with connectives that model the scalar multiplication and obtain a new logic, \mathbb{RL} .

 $\mathbb{R}\mathcal{L}$ is a conservative extension of $\mathcal L$

- Boolean algebras \Leftrightarrow Classical logic
- MV -algebras \Leftrightarrow Łukasiewicz logic \mathcal{L}

 $f: [0,1]^n \to [0,1]$ is a $\mathsf{PWL}_u(\mathbb{Z})$ function if it is continuous and there is a finite set of affine functions $p_1, \ldots, p_k : \mathbb{R}^n \to \mathbb{R}$ with integer coefficients such that for any $(a_1, \ldots, a_n) \in [0,1]^n$ there exists $i \in \{1, \ldots, k\}$ with $f(a_1, \ldots, a_n) = p_i(a_1, \ldots, a_n)$.

 $f: [0,1]^n \to [0,1]$ is a PWL_u(Z) function if it is continuous and there is a finite set of affine functions $p_1, \ldots, p_k : \mathbb{R}^n \to \mathbb{R}$ with integer coefficients such that for any $(a_1, \ldots, a_n) \in [0,1]^n$ there exists $i \in \{1, \ldots, k\}$ with $f(a_1, \ldots, a_n) = p_i(a_1, \ldots, a_n)$.

Free MV-algebra $MV_n \simeq Lind_{\mathcal{L},n}$ [R. McNaughton, 1951] $MV_n = \{f_{\varphi} : [0,1]^n \rightarrow [0,1] \mid \varphi \text{ formula of } \mathcal{L}\}= PWL_u(\mathbb{Z})$

 $f: [0,1]^n \to [0,1]$ is a PWL_u(\mathbb{R}) function if it is continuous and there is a finite set of affine functions $p_1, \ldots, p_k : \mathbb{R}^n \to \mathbb{R}$ with real coefficients such that for any $(a_1, \ldots, a_n) \in [0,1]^n$ there exists $i \in \{1, \ldots, k\}$ with $f(a_1, \ldots, a_n) = p_i(a_1, \ldots, a_n)$.

 $f: [0, 1]^n \to [0, 1]$ is a PWL_u(\mathbb{R}) function if it is continuous and there is a finite set of affine functions $p_1, \ldots, p_k : \mathbb{R}^n \to \mathbb{R}$ with real coefficients such that for any $(a_1, \ldots, a_n) \in [0, 1]^n$ there exists $i \in \{1, \ldots, k\}$ with $f(a_1, \ldots, a_n) = p_i(a_1, \ldots, a_n)$.

Free Riesz MV-algebra $RMV_n \simeq Lind_{\mathbb{RL},n}$ [A. Di Nola, I. Leuștean 2014]

 $RMV_n = \{f_{\varphi} : [0,1]^n \to [0,1] \mid \varphi \text{ formula of } \mathbb{RL}\} = PWL_u(\mathbb{R})$

Convergence in $\mathbb{R}\mathcal{L}$

Convergence in $\mathbb{R}\mathcal{L}$

For $r \in [0, 1]$ we set $\mathbf{r} := \Delta_r(\theta)$ where $\vdash \theta$

Convergence in \mathbb{RL}

For $r \in [0, 1]$ we set $\mathbf{r} := \Delta_r(\theta)$ where $\vdash \theta$

Uniform Limit of formulas

A formula φ is the uniform limit of the sequence $(\varphi_n)_n$ in \mathbb{RL} if for any r < 1 there is k such that for any $n \ge k$: $\vdash \mathbf{r} \to (\varphi \leftrightarrow \varphi_n)$. We write $\lim_n \varphi_n = \varphi$.

Convergence in \mathbb{RL}

For $r \in [0, 1]$ we set $\mathbf{r} := \Delta_r(\theta)$ where $\vdash \theta$

Uniform Limit of formulas

A formula φ is the uniform limit of the sequence $(\varphi_n)_n$ in \mathbb{RL} if for any r < 1 there is k such that for any $n \ge k$: $\vdash \mathbf{r} \to (\varphi \leftrightarrow \varphi_n)$. We write $\lim_n \varphi_n = \varphi$.

TFAE:

- $\blacktriangleright \lim_{n} \varphi_{n} = \varphi,$
- $\lim_{n} f_{\varphi_n} = f_{\varphi}$ (uniform convergence),
- ▶ there exists $\{f_{\psi_n}\}_{n \in \mathbb{N}}$ such that $\bigwedge_n f_{\psi_n}(x) = 0$ for all $x \in [0, 1]^n$ and $d(f_{\varphi_n}, f_{\varphi})(x) \leq f_{\psi_n}(x)$ in $Lind_{\mathbb{RL}}$ (strong order convergence)

 Riesz MV-algebras are equivalent with Riesz Spaces with a strong unit,

- Riesz MV-algebras are equivalent with Riesz Spaces with a strong unit,
- In a Riesz space we have three notions of convergence: uniform, in order and in norm,

- Riesz MV-algebras are equivalent with Riesz Spaces with a strong unit,
- In a Riesz space we have three notions of convergence: uniform, in order and in norm,
- Usually, order converge does not imply uniform convergence nor norm-convergence
- ► In C([0, 1]ⁿ) with the requirement of point-wise inf, we can prove that our three notions coincide!

Thus, what about (uniform) norm-convergence and norm-completions?

Norm of formulas: the unit-norm $[\varphi]$ in $Lind_{\mathbb{RL},n}$,

$$\|[\boldsymbol{\varphi}]\|_u = \sup\{f_{\boldsymbol{\varphi}}(\mathbf{x})|\mathbf{x}\in[0,1]^n\}$$

[arphi] in $Lind_{\mathbb{RL},n}$,

$$\|[\boldsymbol{\varphi}]\|_u = \sup\{f_{\boldsymbol{\varphi}}(\mathbf{x})|\mathbf{x}\in[0,1]^n\}$$

 $(Lind_{\mathbb{RL},n}, \|\cdot\|_u)$ is a normed space.

[arphi] in $Lind_{\mathbb{RL},n}$,

$$\|[\boldsymbol{\varphi}]\|_u = \sup\{f_{\boldsymbol{\varphi}}(\mathbf{x})|\mathbf{x}\in[0,1]^n\}$$

 $(Lind_{\mathbb{RL},n}, \|\cdot\|_u)$ is a normed space.

Completions

The norm-completion of the normed space $(Lind_{\mathbb{RL},n}, \|\cdot\|_u)$ is isometrically isomorphic with $(C([0, 1]^n), \|\cdot\|_\infty)$.

[arphi] in $Lind_{\mathbb{RL},n}$,

$$\|[\boldsymbol{\varphi}]\|_{u} = \sup\{f_{\boldsymbol{\varphi}}(\mathbf{x})|\mathbf{x}\in[0,1]^{n}\}$$

 $(Lind_{\mathbb{RL},n}, \|\cdot\|_u)$ is a normed space.

Completions

The norm-completion of the normed space $(Lind_{\mathbb{RL},n}, \|\cdot\|_u)$ is isometrically isomorphic with $(C([0, 1]^n), \|\cdot\|_{\infty})$.

Corollary: approximation of continuous functions

For any continuous function $f : [0, 1]^n \to [0, 1]$ there exists a sequence of formulas $(\varphi_n)_n$ of \mathbb{RL} such that $\lim_n f_{\varphi_n} = f$.

Norm of formulas: the integral norm

Norm of formulas: the integral norm

 $[\varphi]$ in $Lind_{\mathbb{RL},n}$,

$$I([\varphi]) = \int f_{\varphi}(\mathbf{x}) d\mathbf{x}$$

Norm of formulas: the integral norm

 $[\varphi]$ in $Lind_{\mathbb{RL},n}$,

$$I([\varphi]) = \int f_{\varphi}(\mathbf{x}) d\mathbf{x}$$

 $(Lind_{\mathbb{RL},n}, I)$ is a normed space.

Completions

The norm-completion of the normed space $(Lind_{\mathbb{RL},n}, I)$ is isometrically isomorphic with $(L^1(\mu)_u, s_\mu)$,

Norm of formulas: the integral norm

 $[\varphi]$ in $Lind_{\mathbb{RL},n}$,

$$I([\varphi]) = \int f_{\varphi}(\mathbf{x}) d\mathbf{x}$$

 $(Lind_{\mathbb{RL},n}, I)$ is a normed space.

Completions

The norm-completion of the normed space $(Lind_{\mathbb{RL},n}, I)$ is isometrically isomorphic with $(L^{1}(\mu)_{u}, s_{\mu})$, where:

- μ be the Lebesgue measure associated to I,
- $L^1(\mu)_u$ is the algebra of [0, 1]-valued integrable functions on $[0, 1]^n$,
- ► $s_{\mu}(\hat{f}) = l(f)$ and \hat{f} is the class of f, provided we identify two functions that are equal μ -almost everywhere.

Thus, we have two norm-completions of $Lind_{\mathbb{RL},n}$ and one of them is $C([0, 1]^n)...$

Thus, we have two norm-completions of $Lind_{\mathbb{RL},n}$ and one of them is $C([0, 1]^n)...$

How can we generalize this result? How can we provide a system that has C(X), with X compact Hausdorff space, as models?

Disclaimer: the following is still a work in progress!!

Serafina Lapenta – Deepening the link between logic and functional analysis via Riesz MV-algebras

Disclaimer: the following is still a work in progress!!

- Di Nola A., Lapenta S., Leuştean I., An analysis of the logic of Riesz Spaces with strong unit, submitted.
- Di Nola A., Lapenta S., Leuștean I., *Infinitary Riesz Logic*, in preparation.

▶
$$R \in \mathbf{RMV}, \|\cdot\|_u : R \to [0, 1]$$

$$||x||_u = \min\{r \in [0, 1] \mid x \le r1\}$$

▶
$$R \in \mathbf{RMV}, \|\cdot\|_u : R \to [0, 1]$$

$$||x||_u = \min\{r \in [0, 1] \mid x \le r1\}$$

On $Lind_{\mathbb{RL},n}$, it collapses on sup-norm seen before!!

$$\triangleright \ R \in \mathbf{RMV}, \|\cdot\|_u : R \to [0, 1]$$

 $||x||_u = \min\{r \in [0, 1] \mid x \le r1\}$

On $Lind_{\mathbb{RL},n}$, it collapses on sup-norm seen before!!

- ► A Riesz MV-algebra is norm-complete if it is a complete normed space wrt to $\|\cdot\|_u$.
- The unit-norm can be defined on Riesz Spaces. A norm complete Riesz space wrt the unit-norm is called M-space.

$$\triangleright \ R \in \mathbf{RMV}, \|\cdot\|_u : R \to [0, 1]$$

 $||x||_u = \min\{r \in [0, 1] \mid x \le r1\}$

On $Lind_{\mathbb{RL},n}$, it collapses on sup-norm seen before!!

- ► A Riesz MV-algebra is norm-complete if it is a complete normed space wrt to || · ||_u.
- The unit-norm can be defined on Riesz Spaces. A norm complete Riesz space wrt the unit-norm is called M-space.

M-spaces

An M-space is a Banach lattice (norm-complete Riesz Space) endowed with a norm ρ such that $\rho(x \lor y) = \max(\rho(x), \rho(y))$.

Kakutani's duality

The category of M-spaces and suitable morphisms is dual to the category of compact Hausdorff spaces and continuous maps.

Kakutani's duality

The category of M-spaces and suitable morphisms is dual to the category of compact Hausdorff spaces and continuous maps.

M-spaces and Riesz MV-algebras [A. Di Nola and I. Leuștean, 2014]

The category of M-spaces and suitable morphisms is equivalent to the full subcategory of norm-complete Riesz MV-algebras.

Kakutani's duality

The category of M-spaces and suitable morphisms is dual to the category of compact Hausdorff spaces and continuous maps.

M-spaces and Riesz MV-algebras [A. Di Nola and I. Leuștean, 2014]

The category of M-spaces and suitable morphisms is equivalent to the full subcategory of norm-complete Riesz MV-algebras.

Hence, Norm-complete Riesz MV-algebras are dual to compact Hausdorff spaces.

The idea

In Lind_{ℝL,n}, unit-norm convergence ⇔ uniform convergence ⇔ strong order-convergence,

The idea

- In Lind_{ℝL,n}, unit-norm convergence ⇔ uniform convergence ⇔ strong order-convergence,
- $C([0, 1]^n)$ is the norm-completion of $Lind_{\mathbb{RL},n}$,

The idea

- In Lind_{ℝL,n}, unit-norm convergence ⇔ uniform convergence ⇔ strong order-convergence,
- $C([0, 1]^n)$ is the norm-completion of $Lind_{\mathbb{RL},n}$,
- Why not to "close" \mathbb{RL} for countable inf and sup of formulas?

The logic \mathcal{IRL}

Serafina Lapenta – Deepening the link between logic and functional analysis via Riesz MV-algebras

The logic \mathcal{IRL}

• Language: $\{\rightarrow, \neg\} \cup \{\nabla_r\}_{r \in [0,1]} \cup \bigvee$

• Axioms: the ones of
$$\mathbb{RL}$$
 +
(S1) $\varphi_k \to \bigvee_{n \in \mathbb{N}} \varphi_n$, for any $k \in \mathbb{N}$

► Deduction rules: Modus Ponens +
(SUP)
$$\frac{(\varphi_1 \to \psi), \dots, (\varphi_k \to \psi)}{\bigvee_{n \in \mathbb{N}} \varphi_n \to \psi}$$

The logic \mathcal{IRL}

▶ Language: $\{\rightarrow, \neg\} \cup \{\nabla_r\}_{r \in [0,1]} \cup \bigvee$

• Axioms: the ones of
$$\mathbb{RL}$$
 +
(S1) $\varphi_k \to \bigvee_{n \in \mathbb{N}} \varphi_n$, for any $k \in \mathbb{N}$

► Deduction rules: Modus Ponens +
(SUP)
$$\frac{(\varphi_1 \rightarrow \psi), \dots, (\varphi_k \rightarrow \psi)}{\bigvee_{n \in \mathbb{N}} \varphi_n \rightarrow \psi}$$

 Karp C. R., Languages with expressions of infinite length, North-Holland Pub. Co., 1964.
(For the boolean case)

- Models are Dedekind σ-complete Riesz MV-algebras, and RMV_{dc}σ is their subcategory;
- ► \mathcal{IRL} is complete wrt to all objects in $\mathbf{RMV}_{\mathbf{dc}\sigma}$, i.e. $\vdash_{\mathcal{IRL}} \varphi$ iff $e(\varphi) = 1$ for any *R*-valued evaluation, with $R \in \mathbf{RMV}_{\mathbf{dc}\sigma}$;

- Models are Dedekind σ-complete Riesz MV-algebras, and RMV_{dc}σ is their subcategory;
- ► \mathcal{IRL} is complete wrt to all objects in $\mathbf{RMV}_{\mathbf{dc}\sigma}$, i.e. $\vdash_{\mathcal{IRL}} \varphi$ iff $e(\varphi) = 1$ for any *R*-valued evaluation, with $R \in \mathbf{RMV}_{\mathbf{dc}\sigma}$;
- Lind_{*IRL*} is the Dedekind σ -completion of Lind_{*RL*};

- Models are Dedekind σ-complete Riesz MV-algebras, and RMV_{dc}σ is their subcategory;
- ► \mathcal{IRL} is complete wrt to all objects in $\mathbf{RMV}_{\mathbf{dc}\sigma}$, i.e. $\vdash_{\mathcal{IRL}} \varphi$ iff $e(\varphi) = 1$ for any *R*-valued evaluation, with $R \in \mathbf{RMV}_{\mathbf{dc}\sigma}$;
- Lind_{*IRL*} is the Dedekind σ -completion of Lind_{*RL*};
- Any Dedekind σ -complete Riesz MV-algebra is norm-complete.

C(X) is Dedekind σ -complete iff X is quasi-Stonean (basically disconnected) [Mundici, 2011, for MV-algebras]

A corollary: $Lind_{IRL}$ is a σ -complete Riesz MV-algebra, and therefore it is also norm-complete

C(X) is Dedekind σ -complete iff X is quasi-Stonean (basically disconnected) [Mundici, 2011, for MV-algebras]

A corollary:

 $Lind_{IRL}$ is a σ -complete Riesz MV-algebra, and therefore it is also norm-complete

 \Rightarrow Lind_{*IRL*} is the unit interval of a Dedekind σ -complete *M*-space

C(X) is Dedekind σ -complete iff X is quasi-Stonean (basically disconnected) [Mundici, 2011, for MV-algebras]

A corollary:

 $Lind_{IRL}$ is a σ -complete Riesz MV-algebra, and therefore it is also norm-complete

- \Rightarrow Lind_{IRL} is the unit interval of a Dedekind σ -complete M-space
- \Rightarrow there exists a basically disconnected space X such that $Lind_{IRL} \simeq C(X)$

C(X) is Dedekind σ -complete iff X is quasi-Stonean (basically disconnected) [Mundici, 2011, for MV-algebras]

A corollary:

 $Lind_{IRL}$ is a σ -complete Riesz MV-algebra, and therefore it is also norm-complete

 \Rightarrow Lind_{*IRL*} is the unit interval of a Dedekind σ -complete *M*-space

 \Rightarrow there exists a basically disconnected space X such that $Lind_{IRL} \simeq C(X)$

We have a functional representation of $Lind_{IRL}!$

▶ We provided three different extensions of $Lind_{\mathbb{RL},n}$, and

 \blacktriangleright We provided three different extensions of $\textit{Lind}_{\mathbb{RL},n},$ and

 $Lind_{\mathbb{RL},n} \subseteq C([0,1]^n)$

 (i) C([0,1]ⁿ) is the norm completion of Lind_{RL,n} and it is not is not Dedekind σ-complete, thus Lind_{RL,n} ⊆ C([0,1]ⁿ),

 \blacktriangleright We provided three different extensions of $\textit{Lind}_{\mathbb{RL},n},$ and

 $Lind_{\mathbb{RL},n} \subseteq C([0,1]^n) \subseteq Lind_{IRL,n}$

- (i) C([0,1]ⁿ) is the norm completion of Lind_{RL,n} and it is not is not Dedekind σ-complete, thus Lind_{RL,n} ⊆ C([0,1]ⁿ),
- (ii) $Lind_{\mathcal{IRL},n}$ is a Dedekind σ -complete and it is the completion of $Lind_{\mathbb{RL},n}$, thus $Lind_{\mathbb{RL},n} \subseteq Lind_{\mathcal{IRL},n}$,
- (iii) $Lind_{\mathcal{IRL}}$ is norm-complete and it contains $Lind_{\mathbb{RL},n}$, thus $C([0,1]^n) \subseteq Lind_{\mathcal{IRL},n}$,

 \blacktriangleright We provided three different extensions of $\textit{Lind}_{\mathbb{RL},n},$ and

 $Lind_{\mathbb{RL},n} \subseteq C([0,1]^n) \subseteq Lind_{\mathcal{IRL},n} \subseteq L^1(\mu)_u$

- (i) C([0,1]ⁿ) is the norm completion of Lind_{RL,n} and it is not is not Dedekind σ-complete, thus Lind_{RL,n} ⊆ C([0,1]ⁿ),
- (ii) $Lind_{\mathcal{IRL},n}$ is a Dedekind σ -complete and it is the completion of $Lind_{\mathbb{RL},n}$, thus $Lind_{\mathbb{RL},n} \subseteq Lind_{\mathcal{IRL},n}$,
- (iii) $Lind_{\mathcal{IRL}}$ is norm-complete and it contains $Lind_{\mathbb{RL},n}$, thus $C([0,1]^n) \subseteq Lind_{\mathcal{IRL},n}$,
- (iv) $L^1(\mu)_u$ is another norm-completion of $Lind_{\mathbb{RL},n}$ and it is Dedekind complete, thus $Lind_{\mathcal{IRL},n} \subseteq L^1(\mu)_u$.

Serafina Lapenta - Deepening the link between logic and functional analysis via Riesz MV-algebras

► They introduce δ -algebra: MV-algebra + an infinitary operator δ such that, for sequences in C(X), is $\sum_{n} \frac{f_n}{2^n}$.

- ► They introduce δ -algebra: MV-algebra + an infinitary operator δ such that, for sequences in C(X), is $\sum_{n} \frac{f_n}{2^n}$.
- They prove that **KHausd** is dual to the category of δ -algebras with δ -preserving MV-algebra morphisms.

- ► They introduce δ -algebra: MV-algebra + an infinitary operator δ such that, for sequences in C(X), is $\sum_{n} \frac{f_n}{2^n}$.
- They prove that **KHausd** is dual to the category of δ -algebras with δ -preserving MV-algebra morphisms.
- Hence, δ-algebras are equivalent to norm-complete Riesz MV-algebras,

- ► They introduce δ -algebra: MV-algebra + an infinitary operator δ such that, for sequences in C(X), is $\sum_{n} \frac{f_n}{2^n}$.
- They prove that **KHausd** is dual to the category of δ -algebras with δ -preserving MV-algebra morphisms.
- Hence, δ-algebras are equivalent to norm-complete Riesz MV-algebras,
- ► In our language: given $\{\varphi_n\}_n$ we define the sequence $\sigma_1 = \Delta_{\frac{1}{2}}\varphi_1$, $\sigma_2 = \Delta_{\frac{1}{2}}\varphi_1 \oplus \Delta_{\frac{1}{2^2}}\varphi_2, \ldots$ and we set $\delta(\varphi_1, \varphi_2, \cdots) = \lim_n \sigma_n$.

Work in progress

- Chain completeness for \mathcal{IRL}
- ► We aim at a more concrete functional representation (with functions in [0, 1]^{[0,1]ⁿ}) of Lind_{IRL} and we are following three main ideas: MV-tribes, normal functions and Baire functions.
- ► We are working the extension of ℝL with a deduction via limits and the impact of this ideas on the relations between ℝL and the Rational Łukasiewicz logic.

Thank you!

Serafina Lapenta - Deepening the link between logic and functional analysis via Riesz MV-algebras