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Operations on tables: the natural join

Name Surname Item
Luigi Santocanale 33
Alan Turing 21

./

Item Description
33 Book
33 Livre
21 Machine

=

Name Surname Item Description
Luigi Santocanale 33 Book
Luigi Santocanale 33 Livre
Alan Turing 21 Machine
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Operations on tables: the inner union

Name Surname Item
Luigi Santocanale 33
Alan Turing 21

∪
Name Surname Sport
Diego Maradona Football
Usain Bolt Athletics

=

Name Surname
Luigi Santocanale
Alan Turing

Diego Maradona
Usain Bolt
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Lattices from databases

Proposition. [Spight & Tropashko, 2006] The set of tables, whose
columns are indexed by a subset of A and values are from a set D,
is a lattice, with natural join as meet and inner union as join.
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The relational lattices R(D,A)

A a set of attributes, D a set of values.

An element of R(D,A):

I a pair (X ,T ) with X ⊆ A and T ⊆ DX .

We have

(X1,T1) ≤ (X2,T2) iff X2 ⊆ X1 and T1��X2⊆ T2 .
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Meet and join

(X1,T1) ∧ (X2,T2) := (X1 ∪ X2,T )

where T = { f | f�Xi ∈ Ti , i = 1, 2 }

= iX1∪X2(T1) ∩ iX1∪X2(T2) ,

(X1,T1) ∨ (X2,T2) := (X1 ∩ X2,T )

where T = { f | ∃i ∈ { 1, 2 },∃g ∈ Ti s.t. g �X1∩X2
= f }

= T1��X1∩X2 ∪T2��X1∩X2 .
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Representation via closure operators

The Hamming/Priess Crampe-Ribenboim ultrametric distance on DA:

δ(f , g) := { x ∈ A | f (x) 6= g(x) } .

NB: this distance takes values in the join-semilattice (P(A), ∅,∪).

A subset X of A + DA is closed if δ(f , g) ∪ { g } ⊆ X implies f ∈ X .

Proposition. [Litak, Mikulás and Hidders 2015] R(D,A) is isomorphic to
the lattice of closed subsets of A + DA.
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Undecidable quasiequational theories

Theorem. [Litak, Mikulás and Hidders, 2015] The set of
quasiequations in the signature (∧,∨,H) that are valid on
relational lattices is undecidable.

We refine here this to:
Theorem. The set of quasiequations in the signature (∧,∨) that
are valid on relational lattices is undecidable.

We actually prove a stronger result:
Theorem. It is undecidable whether a finite subdirectly irreducible
lattice embeds into some R(D,A).
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Related undecidable problems

Theorem. [Maddux 1980] The equational theory of 3-dimensional
diagonal free cylindric algebras is undecidable.

Theorem. [Hirsch and Hodkinson 2001] It is not decidable whether
a finite simple relation algebras embeds into a concrete one (a
powerset of a binary product).

Theorem. [Hirsch, Hodkinson and Kurucz 2002] It is not decid-
able whether a finite mutimodal Kripke frame has a surjective p-
morphism from a universal product frame.

14/32



Frames, universal product frames

A (multimodal Kripke) A-frame is a pair (X , {Ra | a ∈ A }) with

I X a set, and

I Ra ⊆ X × X , for each a ∈ A.

A universal S5-product frame is an A-frame (X , {Ra | a ∈ A })
with

I X =
∏

a∈A Ya,

I ~xRa~y iff ~xb = ~yb, for each b 6= a.

A p-morphism from (X , {Ra | a ∈ A }) to (X ′, {R ′a | a ∈ A }) is a
function f : X −→ X ′ such that

I xRay implies f (x)R ′af (y), for each a ∈ A,

I f (x)R ′ay
′ implies xRay for some y ∈ X such that f (y) = y ′,

for each a ∈ A.
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The lattice of a frame

Let F = (X , {Ra | a ∈ A }) be a finite A-frame.

If α ⊆ A, then we say that Y ⊆ X is α-closed if

x0Ra1x1Ra2x2 . . .Ranxn ∈ Y and { a1, . . . , an } ⊆ α
implies x0 ∈ Y .

We say that Z ⊆ A + X is closed if Z ∩ X is Z ∩ A-closed.

Definition. The lattice L(F) is the lattice of closed subsets of
A + X .

Theorem. A full rooted S4 mutimodal frame F has a surjective
p-morphism from a universal product frame iff L(F) embeds into
a relational lattice.
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The easy part: embeddings from p-morphisms

L extends to a contravariant functor.

Moreover if X =
∏

a∈AD (= DA) and A is finite then
L(F) = R(D,A).

Corollary. If a finite multimodal frame F has a surjective
p-morphism from a universal product frame, then L(F) embeds
into some R(D,A).
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Lattice embeddings into the R(D,B)s

We study lattice embeddings of the form

i : L(F) −−−→ R(D,B)

where F is an A-frame.

We can suppose that:

1. A = B is both the set of join-prime elements of L(F) and the
set of join-prime elements of R(D,B) (= R(D,A));

2. i preserves ⊥,>, so µ a i (use L(F) subdirectly irreducible).
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Xν

��

µ

++DA

��

? // XF

��
A + DA = J(R(D,A))

��

A + XF = J(L(F))

��
R(D,A)

µ // L(F)

i

hh

For f ∈ DA, we have µ(f ) ∈ XF if and only if f ∈ Xν , where

Xν := { f ∈ DA | ν(f ) = ∅ } , ν(f ) := { j ∈ A | j ≤ µ(f ) } .

Moreover ν is a module on the space (DA, δ).
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Some theory of generalized ultrametric spaces

An ultrametric space over P(A) is a pair (X , δ) such that

I δ(x , y) = ∅ iff x = y ,

I δ(x , z) ⊆ δ(x , y) ∪ δ(y , z),

I δ(x , y) = δ(y , x).

A space (X , δ) is pairwise-complete if

I δ(x , z) ⊆ α ∪ β implies δ(x , y) ⊆ α and δ(y , z) ⊆ β, for some
y ∈ X ,

A space (X , δ) is spherically-complete if every chain of balls has
non empty intersection.
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Universal product frames as GUMSs

Theorem. [Ackerman 2013] For a GUMS (X , δ) over P(A), TFAE:

I (X , δ) is an injective object in the category of GUMS over
P(A),

I (X , δ) is pairwise-complete and spherically-complete,

Theorem. [LS] For a GUMS (X , δ) over P(A), TFAE:

I (X , δ) is pairwise-complete and spherically-complete,

I (X , δ) are spaces of sections (universal product frames,
Hamming graphs, dependent product types, . . . )
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Modules

An ultrametric space (X , δ) is a category enriched over
(P(A), ∅,∪).

A module on (X , δ) is an enriched functor v : (X , δ) −→ (P(A),4).
That is, a function v : X −→ P(A) such that:

v(x) ⊆ δ(x , y) ∪ v(y) .

Lemma
If (X , δ) is spherically-complete and pairwise-complete and
v : (X , δ) −→ P(A) is a module, then its kernel

Xv = { x ∈ X | v(x) = ∅ }

induces a spherically-complete and pairwise-complete subspace of
(X , δ).
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Completing the proof of the converse

The subspace induced by

Xν = { f ∈ DA | µ(f ) ∈ XF } = { f ∈ DA | ν(f ) = ∅ } ,

is the kernel of a module, therefore it is pairwise-complete (and
spherically-complete), that is, a universal product frame.

Then
µ�Xν : Xν −−−→ XF

yields the desired surjective map.

This map is a p-morphism since (roughly) this property
corresponds to µ preserving joins.
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Back to equations

The reduction (with results by KHH) also yields the following:

Proposition. If cardA ≥ 3, then there exists a quasiequation that
holds in all the finite R(D ′,A), but fails in R(D,A) when D is
infinite.

Theorem. If A or D is finite, then R(D,A) belongs to the variety
generated by the finite R(D ′,A′).

I If A is finite, then R(D,A) is an algebraic lattice.

I If A is infinite, then R(D,A) is not an algebraic lattice.
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Functorial properties

Let f : A −→ B be a (set theoretic function).
Then

R(D, f ) : R(D,A) −→ R(D,B)

defined by

R(D, f )(α,X ) := (∀f (α), f ∗−1(X ))

makes R(D,−) into a functor from Set to ∧SL.

Proposition. If D is finite, then the canonical map

R(D,A) −→ lim
Q a finite partition of Q

R(D,A/Q)

is injective and preserves finite joins.
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From meet-semilattices to lattices

I The projective limit limQ R(D,A/Q) is an algebraic lattice.

I Compact elements are of the form jQ(β,Y ), for some
(β,Y ) ∈ R(D,A/Q), for some finite partition Q of A.
Here jQ is left adjoint to R(D, πQ) : R(D,A) −→ R(D,A/Q)
with πQ : A −→ A/Q.

Proposition. If π : A −→ B is surjective, then the left adjoint to
R(D, π) is a right adjoint (that is, it preserves meets).
Theorem. The projective limit limQ R(D,A/Q) is (up to
isomorphism) the ideal completion of inductive colimQR(D,A/Q),
where the latter lives in the category of lattices.
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Thanks ! Questions ?
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