Theories of relational lattices.
 AKA: Embeddability into relational lattices is undecidable ${ }^{1}$

Luigi Santocanale
LIF, Aix-Marseille Université

TACL@Praha, June 2017
${ }^{1}$ Preprint available on HAL:
\quad https://hal.archives-ouvertes.fr/hal-01344299

Plan

Playing around with real world databases

Relational lattices

Quasiequational theories of relational lattices

The lattice of a frame
p-morphisms from lattice embeddings

More on equational theory

Plan

Playing around with real world databases

Relational lattices
 Quasiequational theories of relational lattices

The lattice of a frame
p-morphisms from lattice embeddings

More on equational theory

Databases, tables, sqls ...

Databases，tables，sqls ．．．

	節 Browse	${ }_{50}$ ？SQL	SSearch	zet Insert	算 Export			

Run SQL query／queries on database phpmyadmin（3）
SELECT＊FROM｀libros｀WHERE 1

F Show this query here again
Or Location of the text file：
Location of the text file：

Compression：
© Autodetect $饣$ None ς＂gzipped＂ς＂bzipped＂

Operations on tables: the natural join

Name	Surname	Item			
Luigi	Santocanale	33			
Alan	Turing	21		Item	Description
:---:	:---:				
33	Book				
33	Livre				
21	Machine				

$=$| Name | Surname | Item | Description |
| :---: | :---: | :---: | :---: |
| Luigi | Santocanale | 33 | Book |
| Luigi | Santocanale | 33 | Livre |
| Alan | Turing | 21 | Machine |

Operations on tables: the inner union

Name	Surname	Item
Luigi	Santocanale	33
Alan	Turing	21

Name	Surname	Sport
Diego	Maradona	Football
Usain	Bolt	Athletics

$=$| Name | Surname |
| :---: | :---: |
| Luigi | Santocanale |
| Alan | Turing |
| Diego | Maradona |
| Usain | Bolt |

Lattices from databases

Proposition. [Spight \& Tropashko, 2006] The set of tables, whose columns are indexed by a subset of A and values are from a set D, is a lattice, with natural join as meet and inner union as join.

Plan

Playing around with real world databases

Relational lattices

Quasiequational theories of relational lattices

The lattice of a frame
p-morphisms from lattice embeddings

More on equational theory

The relational lattices $\mathrm{R}(D, A)$

A a set of attributes, D a set of values.

An element of $\mathrm{R}(D, A)$:

- a pair (X, T) with $X \subseteq A$ and $T \subseteq D^{X}$.

We have

$$
\left(X_{1}, T_{1}\right) \leq\left(X_{2}, T_{2}\right) \text { iff } X_{2} \subseteq X_{1} \text { and } T_{1} \| x_{2} \subseteq T_{2}
$$

Meet and join

$$
\begin{aligned}
\left(X_{1}, T_{1}\right) \wedge\left(X_{2}, T_{2}\right) & :=\left(X_{1} \cup X_{2}, T\right) \\
\text { where } T & =\left\{f \mid f_{\left\lceil X_{i}\right.} \in T_{i}, i=1,2\right\} \\
& =i_{X_{1} \cup X_{2}}\left(T_{1}\right) \cap i_{X_{1} \cup X_{2}}\left(T_{2}\right), \\
\left(X_{1}, T_{1}\right) \vee\left(X_{2}, T_{2}\right) & :=\left(X_{1} \cap X_{2}, T\right) \\
\text { where } T & =\left\{f \mid \exists i \in\{1,2\}, \exists g \in T_{i} \text { s.t. } g_{\mid X_{1} \cap X_{2}}=f\right\} \\
& =T_{1\left\|X_{1} \cap X_{2} \cup T_{2}\right\| X_{1} \cap X_{2}} .
\end{aligned}
$$

Representation via closure operators

The Hamming/Priess_Crampe-Ribenboim ultrametric distance on D^{A} :

$$
\delta(f, g):=\{x \in A \mid f(x) \neq g(x)\}
$$

NB: this distance takes values in the join-semilattice $(P(A), \emptyset, \cup)$.

Representation via closure operators

The Hamming/Priess_Crampe-Ribenboim ultrametric distance on D^{A} :

$$
\delta(f, g):=\{x \in A \mid f(x) \neq g(x)\}
$$

NB: this distance takes values in the join-semilattice $(P(A), \emptyset, \cup)$.

A subset X of $A+D^{A}$ is closed if $\delta(f, g) \cup\{g\} \subseteq X$ implies $f \in X$.

Representation via closure operators

The Hamming/Priess_Crampe-Ribenboim ultrametric distance on D^{A} :

$$
\delta(f, g):=\{x \in A \mid f(x) \neq g(x)\}
$$

NB: this distance takes values in the join-semilattice $(P(A), \emptyset, \cup)$.

A subset X of $A+D^{A}$ is closed if $\delta(f, g) \cup\{g\} \subseteq X$ implies $f \in X$.

Proposition. [Litak, Mikulás and Hidders 2015] $\mathrm{R}(D, A)$ is isomorphic to the lattice of closed subsets of $A+D^{A}$.

Plan

Playing around with real world databases

Relational lattices

Quasiequational theories of relational lattices

The lattice of a frame
p-morphisms from lattice embeddings

More on equational theory

Undecidable quasiequational theories

Theorem. [Litak, Mikulás and Hidders, 2015] The set of quasiequations in the signature (\wedge, \vee, H) that are valid on relational lattices is undecidable.

We refine here this to:
Theorem. The set of quasiequations in the signature (\wedge, \vee) that are valid on relational lattices is undecidable.

We actually prove a stronger result:
Theorem. It is undecidable whether a finite subdirectly irreducible lattice embeds into some $\mathrm{R}(D, A)$.

Related undecidable problems

Theorem. [Maddux 1980] The equational theory of 3-dimensional diagonal free cylindric algebras is undecidable.

Theorem. [Hirsch and Hodkinson 2001] It is not decidable whether a finite simple relation algebras embeds into a concrete one (a powerset of a binary product).

Theorem. [Hirsch, Hodkinson and Kurucz 2002] It is not decidable whether a finite mutimodal Kripke frame has a surjective p morphism from a universal product frame.

Frames, universal product frames

A (multimodal Kripke) A-frame is a pair $\left(X,\left\{R_{a} \mid a \in A\right\}\right)$ with

- X a set, and
- $R_{a} \subseteq X \times X$, for each $a \in A$.

Frames, universal product frames

A (multimodal Kripke) A-frame is a pair $\left(X,\left\{R_{a} \mid a \in A\right\}\right)$ with

- X a set, and
- $R_{a} \subseteq X \times X$, for each $a \in A$.

A universal S5-product frame is an A-frame ($\left.X,\left\{R_{a} \mid a \in A\right\}\right)$ with

- $X=\prod_{a \in A} Y_{a}$,
- $\vec{x} R_{a} \vec{y}$ iff $\vec{x}_{b}=\vec{y}_{b}$, for each $b \neq a$.

Frames, universal product frames

A (multimodal Kripke) A-frame is a pair $\left(X,\left\{R_{a} \mid a \in A\right\}\right)$ with

- X a set, and
- $R_{a} \subseteq X \times X$, for each $a \in A$.

A universal S5-product frame is an A-frame $\left(X,\left\{R_{a} \mid a \in A\right\}\right)$ with

- $X=\prod_{a \in A} Y_{a}$,
- $\vec{x} R_{a} \vec{y}$ iff $\vec{x}_{b}=\overrightarrow{y_{b}}$, for each $b \neq a$.

A p-morphism from $\left(X,\left\{R_{a} \mid a \in A\right\}\right)$ to $\left(X^{\prime},\left\{R_{a}^{\prime} \mid a \in A\right\}\right)$ is a function $f: X \rightarrow X^{\prime}$ such that

- $x R_{a} y$ implies $f(x) R_{a}^{\prime} f(y)$, for each $a \in A$,
- $f(x) R_{a}^{\prime} y^{\prime}$ implies $x R_{a} y$ for some $y \in X$ such that $f(y)=y^{\prime}$, for each $a \in A$.

Plan

Playing around with real world databases

Relational lattices

Quasiequational theories of relational lattices

The lattice of a frame
p-morphisms from lattice embeddings

More on equational theory

The lattice of a frame

Let $\mathcal{F}=\left(X,\left\{R_{a} \mid a \in A\right\}\right)$ be a finite A-frame.
If $\alpha \subseteq A$, then we say that $Y \subseteq X$ is α-closed if

$$
\begin{gathered}
x_{0} R_{a_{1}} x_{1} R_{a_{2}} x_{2} \ldots R_{a_{n}} x_{n} \in Y \text { and }\left\{a_{1}, \ldots, a_{n}\right\} \subseteq \alpha \\
\text { implies } x_{0} \in Y .
\end{gathered}
$$

We say that $Z \subseteq A+X$ is closed if $Z \cap X$ is $Z \cap A$-closed.
Definition. The lattice $L(\mathcal{F})$ is the lattice of closed subsets of $A+X$.

The lattice of a frame

Let $\mathcal{F}=\left(X,\left\{R_{a} \mid a \in A\right\}\right)$ be a finite A-frame.
If $\alpha \subseteq A$, then we say that $Y \subseteq X$ is α-closed if

$$
\begin{array}{r}
x_{0} R_{a_{1}} x_{1} R_{a_{2}} x_{2} \ldots R_{a_{n}} x_{n} \in Y \text { and }\left\{a_{1}, \ldots, a_{n}\right\} \subseteq \alpha \\
\text { implies } x_{0} \in Y .
\end{array}
$$

We say that $Z \subseteq A+X$ is closed if $Z \cap X$ is $Z \cap A$-closed.
Definition. The lattice $L(\mathcal{F})$ is the lattice of closed subsets of $A+X$.

Theorem. A full rooted $\mathbf{S} 4$ mutimodal frame \mathcal{F} has a surjective p-morphism from a universal product frame iff $\mathrm{L}(\mathcal{F})$ embeds into a relational lattice.

The easy part: embeddings from p-morphisms

L extends to a contravariant functor.

Moreover if $X=\prod_{a \in A} D\left(=D^{A}\right)$ and A is finite then $\mathrm{L}(\mathcal{F})=\mathrm{R}(D, A)$.

The easy part: embeddings from p-morphisms

L extends to a contravariant functor.

Moreover if $X=\prod_{a \in A} D\left(=D^{A}\right)$ and A is finite then $\mathrm{L}(\mathcal{F})=\mathrm{R}(D, A)$.

Corollary. If a finite multimodal frame \mathcal{F} has a surjective p-morphism from a universal product frame, then $L(\mathcal{F})$ embeds into some $\mathrm{R}(D, A)$.

Plan

Playing around with real world databases

Relational lattices

Quasiequational theories of relational lattices

The lattice of a frame
p-morphisms from lattice embeddings

More on equational theory

Lattice embeddings into the $\mathrm{R}(D, B) \mathrm{s}$

We study lattice embeddings of the form

$$
i: \mathrm{L}(\mathcal{F}) \longrightarrow \mathrm{R}(D, B)
$$

where \mathcal{F} is an A-frame.

Lattice embeddings into the $\mathrm{R}(D, B) \mathrm{s}$

We study lattice embeddings of the form

$$
i: \mathrm{L}(\mathcal{F}) \longrightarrow \mathrm{R}(D, B)
$$

where \mathcal{F} is an A-frame.

We can suppose that:

1. $A=B$ is both the set of join-prime elements of $L(\mathcal{F})$ and the set of join-prime elements of $\mathrm{R}(D, B)(=\mathrm{R}(D, A))$;
2. i preserves \perp, \top, so $\mu \dashv i$ (use $L(\mathcal{F})$ subdirectly irreducible).

For $f \in D^{A}$, we have $\mu(f) \in X_{\mathcal{F}}$ if and only if $f \in X_{\nu}$, where

$$
X_{\nu}:=\left\{f \in D^{A} \mid \nu(f)=\emptyset\right\}, \quad \nu(f):=\{j \in A \mid j \leq \mu(f)\}
$$

For $f \in D^{A}$, we have $\mu(f) \in X_{\mathcal{F}}$ if and only if $f \in X_{\nu}$, where

$$
X_{\nu}:=\left\{f \in D^{A} \mid \nu(f)=\emptyset\right\}, \quad \nu(f):=\{j \in A \mid j \leq \mu(f)\}
$$

Moreover ν is a module on the space $\left(D^{A}, \delta\right)$.

Some theory of generalized ultrametric spaces

An ultrametric space over $P(A)$ is a pair (X, δ) such that

- $\delta(x, y)=\emptyset$ iff $x=y$,
- $\delta(x, z) \subseteq \delta(x, y) \cup \delta(y, z)$,
- $\delta(x, y)=\delta(y, x)$.

A space (X, δ) is pairwise-complete if

- $\delta(x, z) \subseteq \alpha \cup \beta$ implies $\delta(x, y) \subseteq \alpha$ and $\delta(y, z) \subseteq \beta$, for some $y \in X$,

A space (X, δ) is spherically-complete if every chain of balls has non empty intersection.

Universal product frames as GUMSs

Theorem. [Ackerman 2013] For a GUMS (X, δ) over $P(A)$, TFAE:

- (X, δ) is an injective object in the category of GUMS over $P(A)$,
- (X, δ) is pairwise-complete and spherically-complete,

Universal product frames as GUMSs

Theorem. [Ackerman 2013] For a GUMS (X, δ) over $P(A)$, TFAE:

- (X, δ) is an injective object in the category of GUMS over $P(A)$,
- (X, δ) is pairwise-complete and spherically-complete,

Theorem. [LS] For a GUMS (X, δ) over $P(A)$, TFAE:

- (X, δ) is pairwise-complete and spherically-complete,
- (X, δ) are spaces of sections (universal product frames, Hamming graphs, dependent product types, ...)

Modules

An ultrametric space (X, δ) is a category enriched over $(P(A), \emptyset, \cup)$.

A module on (X, δ) is an enriched functor $v:(X, \delta) \rightarrow(P(A), \triangle)$. That is, a function $v: X \rightarrow P(A)$ such that:

$$
v(x) \subseteq \delta(x, y) \cup v(y)
$$

Lemma

If (X, δ) is spherically-complete and pairwise-complete and $v:(X, \delta) \rightarrow P(A)$ is a module, then its kernel

$$
X_{v}=\{x \in X \mid v(x)=\emptyset\}
$$

induces a spherically-complete and pairwise-complete subspace of (X, δ).

Completing the proof of the converse

The subspace induced by

$$
X_{\nu}=\left\{f \in D^{A} \mid \mu(f) \in X_{\mathcal{F}}\right\}=\left\{f \in D^{A} \mid \nu(f)=\emptyset\right\}
$$

is the kernel of a module, therefore it is pairwise-complete (and spherically-complete), that is, a universal product frame.

Completing the proof of the converse

The subspace induced by

$$
X_{\nu}=\left\{f \in D^{A} \mid \mu(f) \in X_{\mathcal{F}}\right\}=\left\{f \in D^{A} \mid \nu(f)=\emptyset\right\}
$$

is the kernel of a module, therefore it is pairwise-complete (and spherically-complete), that is, a universal product frame.

Then

$$
\mu_{\Gamma_{\nu}}: X_{\nu} \longrightarrow X_{\mathcal{F}}
$$

yields the desired surjective map.

Completing the proof of the converse

The subspace induced by

$$
X_{\nu}=\left\{f \in D^{A} \mid \mu(f) \in X_{\mathcal{F}}\right\}=\left\{f \in D^{A} \mid \nu(f)=\emptyset\right\}
$$

is the kernel of a module, therefore it is pairwise-complete (and spherically-complete), that is, a universal product frame.

Then

$$
\mu_{\Gamma_{X_{\nu}}}: X_{\nu} \longrightarrow X_{\mathcal{F}}
$$

yields the desired surjective map.

This map is a p-morphism since (roughly) this property corresponds to μ preserving joins.

Plan

```
Playing around with real world databases
Relational lattices
Quasiequational theories of relational lattices
The lattice of a frame
p-morphisms from lattice embeddings
```

More on equational theory

Back to equations

The reduction (with results by KHH) also yields the following: Proposition. If card $A \geq 3$, then there exists a quasiequation that holds in all the finite $\mathrm{R}\left(D^{\prime}, A\right)$, but fails in $\mathrm{R}(D, A)$ when D is infinite.

Back to equations

The reduction (with results by KHH) also yields the following:
Proposition. If card $A \geq 3$, then there exists a quasiequation that holds in all the finite $\mathrm{R}\left(D^{\prime}, A\right)$, but fails in $\mathrm{R}(D, A)$ when D is infinite.

Theorem. If A or D is finite, then $\mathrm{R}(D, A)$ belongs to the variety generated by the finite $R\left(D^{\prime}, A^{\prime}\right)$.

Back to equations

The reduction (with results by KHH) also yields the following:
Proposition. If card $A \geq 3$, then there exists a quasiequation that holds in all the finite $\mathrm{R}\left(D^{\prime}, A\right)$, but fails in $\mathrm{R}(D, A)$ when D is infinite.

Theorem. If A or D is finite, then $\mathrm{R}(D, A)$ belongs to the variety generated by the finite $R\left(D^{\prime}, A^{\prime}\right)$.

- If A is finite, then $\mathrm{R}(D, A)$ is an algebraic lattice.

Back to equations

The reduction (with results by KHH) also yields the following:
Proposition. If card $A \geq 3$, then there exists a quasiequation that holds in all the finite $\mathrm{R}\left(D^{\prime}, A\right)$, but fails in $\mathrm{R}(D, A)$ when D is infinite.

Theorem. If A or D is finite, then $\mathrm{R}(D, A)$ belongs to the variety generated by the finite $R\left(D^{\prime}, A^{\prime}\right)$.

- If A is finite, then $\mathrm{R}(D, A)$ is an algebraic lattice.
- If A is infinite, then $\mathrm{R}(D, A)$ is not an algebraic lattice.

Functorial properties

Let $f: A \rightarrow B$ be a (set theoretic function). Then

$$
\mathrm{R}(D, f): \mathrm{R}(D, A) \rightarrow \mathrm{R}(D, B)
$$

defined by

$$
\mathrm{R}(D, f)(\alpha, X):=\left(\forall f(\alpha), f^{*-1}(X)\right)
$$

makes $\mathrm{R}(\mathrm{D},-)$ into a functor from Set to $\wedge \mathbf{S L}$.

Functorial properties

Let $f: A \rightarrow B$ be a (set theoretic function).
Then

$$
\mathrm{R}(D, f): \mathrm{R}(D, A) \rightarrow \mathrm{R}(D, B)
$$

defined by

$$
\mathrm{R}(D, f)(\alpha, X):=\left(\forall_{f}(\alpha), f^{*-1}(X)\right)
$$

makes $\mathrm{R}(D,-)$ into a functor from Set to $\wedge \mathbf{S L}$.
Proposition. If D is finite, then the canonical map

$$
\mathrm{R}(D, A) \rightarrow \lim _{Q \text { a finite partition of } \mathrm{Q}} \mathrm{R}(D, A / Q)
$$

is injective and preserves finite joins.

From meet-semilattices to lattices

- The projective limit $\lim _{Q} \mathrm{R}(D, A / Q)$ is an algebraic lattice.
- Compact elements are of the form $j_{Q}(\beta, Y)$, for some $(\beta, Y) \in \mathrm{R}(D, A / Q)$, for some finite partition Q of A. Here j_{Q} is left adjoint to $\mathrm{R}\left(D, \pi_{Q}\right): \mathrm{R}(D, A) \rightarrow \mathrm{R}(D, A / Q)$ with $\pi_{Q}: A \rightarrow A / Q$.

Proposition. If $\pi: A \rightarrow B$ is surjective, then the left adjoint to $\mathrm{R}(D, \pi)$ is a right adjoint (that is, it preserves meets).
Theorem. The projective limit $\lim _{Q} \mathrm{R}(D, A / Q)$ is (up to isomorphism) the ideal completion of inductive $\operatorname{colim}_{Q} \mathrm{R}(D, A / Q)$, where the latter lives in the category of lattices.

Thanks! Questions ?

(Some) references I

Ackerman, N. (2013).
Completeness in generalized ultrametric spaces.
p-Adic Numbers Ultrametric Anal. Appl., 5(2):89-105.

Codd, E. F. (1970).
A relational model of data for large shared data banks.
Commun. ACM, 13(6):377-387.
Hirsch, R. and Hodkinson, I. (2001).
Representability is not decidable for finite relation algebras.
Trans. Amer. Math. Soc., 353:1403-1425.
Hirsch, R., Hodkinson, I., and Kurucz, A. (2002).
On modal logics between $\mathbf{K} \times \mathbf{K} \times \mathbf{K}$ and $\mathbf{S 5} \times \mathbf{S 5} \times \mathbf{S 5}$.
The Journal of Symbolic Logic, 67:221-234.
Litak, T., Mikuláis, S., and Hidders, J. (2016).
Relational lattices: From databases to universal algebra.
Journal of Logical and Algebraic Methods in Programming, 85(4):540 - 573.
Maddux, R. (1980).
The equational theory of $C A_{3}$ is undecidable.
The Journal of Symbolic Logic, 45(2):311-316.
Priess-Crampe, S. and Ribemboim, P. (1995).
Equivalence relations and spherically complete ultrametric spaces.
C. R. Acad. Sci. Paris, 320(1):1187-1192.

(Some) references II

Santocanale, L. (2016a).
Relational lattices via duality.
In Hasuo, I., editor, Coalgebraic Methods in Computer Science, CMCS 2016, volume 9608 of Lecture Notes in Computer Science, pages 195-215. Springer.

Santocanale, L. (2016b).
The quasiequational theory of relational lattices, in the pure lattice signature.
working paper or preprint.
Spight, M. and Tropashko, V. (2006).
First steps in relational lattice.
CoRR, abs/cs/0603044.

