Theories of relational lattices. AKA: Embeddability into relational lattices is undecidable¹

> Luigi Santocanale LIF, Aix-Marseille Université

TACL@Praha, June 2017

¹Preprint available on HAL:

https://hal.archives-ouvertes.fr/hal-01344299

Plan

Playing around with real world databases

Relational lattices

Quasiequational theories of relational lattices

The lattice of a frame

p-morphisms from lattice embeddings

More on equational theory

Plan

Playing around with real world databases

- Relational lattices
- Quasiequational theories of relational lattices
- The lattice of a frame
- p-morphisms from lattice embeddings
- More on equational theory

Databases, tables, sqls ...

🔮 hostadmdev.stir.ac.uk / localhost / hostadm / hostadm_metadata phpMyAdmin 2.6.2-Deblan-3sarge1 - Firefox 🔍 🔿 🛞									
<u>E</u> ile <u>E</u> dit ⊻iew <u>G</u> o <u>B</u> ookma	arks <u>T</u> ools <u>H</u> elp								୍
🔄 • 🎲 • 🛃 🛞 🏠 https://									
phpMyActinin 	Bhow: In Particential Sort by twy Fance A Mac A Mac	SO ron(s) v fname Arme Description Serial Number Computer Room Rack Postion Height (U) Data Port Power Supply Notes Joo ron(s) v Pont lab	Jahring from recommendation of the second se	d # p neaders after ne text text text text text text text tex	100 15ize 40 80 40 40 10 3 3 40°4 10 5 100 100	cells values Values Values Values Value Va	mandatory Y N N N N N N N N N	unique default Y allo N allo N allo N allo N allo N allo N allo N allo	
Done S Adblock									

Databases, tables, sqls . . .

μ. A.		Server: mysql.sourceforge.net ▸ Database: phpmyadmin ▸ Table: lib	ros				
	🖀 Structure 🔚 Browse 🛛 🖧 SQL 🖉 Search 📑 insert 🕅 Export	% <mark>Ор</mark> е					
	phpMyAdmin						
		Run SQL query/queries on database phpmyadmin ⑦					
	A 🔤 🖾	SELECT * FROM `libros` WHERE 1					
	nhomvadmin (a)						
	TEeee						
		Show this query here again					
		Or Location of the text file:					
		Location of the text file:					
		Browse (Max: 2,048KB)					
		Compression:					
		Autodetect					
		To locart data from a text file into the table	4/32				

Operations on tables: the natural join

=

Name	Surname	Itom	1	Item	Description
		22		33	Book
Luigi	Santocanale	33	\bowtie	33	Livre
Alan	Turing	21		21	Machine
			,	21	Machine

Name	Surname	ltem	Description
Luigi	Santocanale	33	Book
Luigi	Santocanale	33	Livre
Alan	Turing	21	Machine

Operations on tables: the inner union

U

Name	Surname	ltem
Luigi	Santocanale	33
Alan	Turing	21

=

Name	Surname	Sport
Diego	Maradona	Football
Usain	Bolt	Athletics

Name	Surname
Luigi	Santocanale
Alan	Turing
Diego	Maradona
Usain	Bolt

▲□▶ ▲御▶ ▲臣▶ ★臣▶ 三臣

Lattices from databases

Proposition. [Spight & Tropashko, 2006] The set of tables, whose columns are indexed by a subset of A and values are from a set D, is a lattice, with natural join as meet and inner union as join.

Plan

Playing around with real world databases

Relational lattices

Quasiequational theories of relational lattices

The lattice of a frame

p-morphisms from lattice embeddings

More on equational theory

The relational lattices R(D, A)

A a set of attributes, D a set of values.

An element of R(D, A): • a pair (X, T) with $X \subseteq A$ and $T \subseteq D^X$.

We have

$$(X_1,\,T_1)\leq (X_2,\,T_2)$$
 iff $X_2\subseteq X_1$ and $T_1|_{X_2}\subseteq T_2$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○

Meet and join

$$(X_1, T_1) \land (X_2, T_2) := (X_1 \cup X_2, T)$$

where $T = \{ f \mid f_{\uparrow_{X_i}} \in T_i, i = 1, 2 \}$
 $= i_{X_1 \cup X_2}(T_1) \cap i_{X_1 \cup X_2}(T_2),$
 $(X_1, T_1) \lor (X_2, T_2) := (X_1 \cap X_2, T)$

$$(X_1, T_1) \lor (X_2, T_2) := (X_1 \cap X_2, T)$$

where $T = \{ f \mid \exists i \in \{1, 2\}, \exists g \in T_i \text{ s.t. } g_{\restriction X_1 \cap X_2} = f \}$
 $= T_1 \restriction_{X_1 \cap X_2} \cup T_2 \restriction_{X_1 \cap X_2} .$

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三世

10/32

Representation via closure operators

The Hamming/Priess_Crampe-Ribenboim ultrametric distance on D^A :

$$\delta(f,g) := \{ x \in A \mid f(x) \neq g(x) \}.$$

NB: this distance takes values in the join-semilattice $(P(A), \emptyset, \cup)$.

Representation via closure operators

The Hamming/Priess_Crampe-Ribenboim ultrametric distance on D^A :

$$\delta(f,g) := \{ x \in A \mid f(x) \neq g(x) \}.$$

NB: this distance takes values in the join-semilattice $(P(A), \emptyset, \cup)$.

A subset X of $A + D^A$ is *closed* if $\delta(f, g) \cup \{g\} \subseteq X$ implies $f \in X$.

Representation via closure operators

The Hamming/Priess_Crampe-Ribenboim ultrametric distance on D^A :

$$\delta(f,g) := \{ x \in A \mid f(x) \neq g(x) \}.$$

NB: this distance takes values in the join-semilattice $(P(A), \emptyset, \cup)$.

A subset X of $A + D^A$ is *closed* if $\delta(f, g) \cup \{g\} \subseteq X$ implies $f \in X$.

Proposition. [Litak, Mikulás and Hidders 2015] R(D, A) is isomorphic to the lattice of closed subsets of $A + D^A$.

Plan

Playing around with real world databases

Relational lattices

Quasiequational theories of relational lattices

The lattice of a frame

p-morphisms from lattice embeddings

More on equational theory

Undecidable quasiequational theories

Theorem. [Litak, Mikulás and Hidders, 2015] The set of quasiequations in the signature (\land,\lor,H) that are valid on relational lattices is undecidable.

We refine here this to:

Theorem. The set of quasiequations in the signature (\land, \lor) that are valid on relational lattices is undecidable.

We actually prove a stronger result:

Theorem. It is undecidable whether a finite subdirectly irreducible lattice embeds into some R(D, A).

Related undecidable problems

Theorem. [Maddux 1980] The equational theory of 3-dimensional diagonal free cylindric algebras is undecidable.

Theorem. [Hirsch and Hodkinson 2001] It is not decidable whether a finite simple relation algebras embeds into a concrete one (a powerset of a binary product).

Theorem. [Hirsch, Hodkinson and Kurucz 2002] It is not decidable whether a finite mutimodal Kripke frame has a surjective pmorphism from a universal product frame.

Frames, universal product frames

- A (multimodal Kripke) A-frame is a pair $(X, \{R_a \mid a \in A\})$ with
 - X a set, and
 - $R_a \subseteq X \times X$, for each $a \in A$.

Frames, universal product frames

- A (multimodal Kripke) A-frame is a pair $(X, \{R_a \mid a \in A\})$ with
 - X a set, and
 - $R_a \subseteq X \times X$, for each $a \in A$.

A universal S5-product frame is an A-frame $(X, \{ R_a \mid a \in A \})$ with

- ► $X = \prod_{a \in A} Y_a$,
- $\vec{x}R_a\vec{y}$ iff $\vec{x}_b = \vec{y}_b$, for each $b \neq a$.

Frames, universal product frames

- A (multimodal Kripke) A-frame is a pair $(X, \{R_a \mid a \in A\})$ with
 - X a set, and
 - $R_a \subseteq X \times X$, for each $a \in A$.

A universal S5-product frame is an A-frame $(X, \{ R_a \mid a \in A \})$ with

- ► $X = \prod_{a \in A} Y_a$,
- $\vec{x}R_a\vec{y}$ iff $\vec{x}_b = \vec{y}_b$, for each $b \neq a$.

A *p*-morphism from $(X, \{R_a \mid a \in A\})$ to $(X', \{R'_a \mid a \in A\})$ is a function $f : X \to X'$ such that

- ► xR_ay implies $f(x)R'_af(y)$, for each $a \in A$,
- f(x)R'_ay' implies xR_ay for some y ∈ X such that f(y) = y', for each a ∈ A.

Plan

Playing around with real world databases

Relational lattices

Quasiequational theories of relational lattices

The lattice of a frame

p-morphisms from lattice embeddings

More on equational theory

The lattice of a frame

Let $\mathcal{F} = (X, \{ R_a \mid a \in A \})$ be a finite A-frame.

If $\alpha \subseteq A$, then we say that $Y \subseteq X$ is α -closed if

$$x_0 R_{a_1} x_1 R_{a_2} x_2 \dots R_{a_n} x_n \in Y \text{ and } \{a_1, \dots, a_n\} \subseteq \alpha$$

implies $x_0 \in Y$.

We say that $Z \subseteq A + X$ is closed if $Z \cap X$ is $Z \cap A$ -closed.

Definition. The lattice $L(\mathcal{F})$ is the lattice of closed subsets of A + X.

The lattice of a frame

Let $\mathcal{F} = (X, \{ R_a \mid a \in A \})$ be a finite A-frame.

If $\alpha \subseteq A$, then we say that $Y \subseteq X$ is α -closed if

$$x_0 R_{a_1} x_1 R_{a_2} x_2 \dots R_{a_n} x_n \in Y \text{ and } \{a_1, \dots, a_n\} \subseteq \alpha$$

implies $x_0 \in Y$.

We say that $Z \subseteq A + X$ is closed if $Z \cap X$ is $Z \cap A$ -closed.

Definition. The lattice $L(\mathcal{F})$ is the lattice of closed subsets of A + X.

Theorem. A full rooted **S4** mutimodal frame \mathcal{F} has a surjective *p*-morphism from a universal product frame iff $L(\mathcal{F})$ embeds into a relational lattice.

The easy part: embeddings from *p*-morphisms

L extends to a contravariant functor.

Moreover if $X = \prod_{a \in A} D$ (= D^A) and A is finite then $L(\mathcal{F}) = R(D, A)$.

<□> <@> < 注→ < 注→ < 注→ < 注→ ○ 注 → ○

18/32

The easy part: embeddings from *p*-morphisms

L extends to a contravariant functor.

Moreover if
$$X = \prod_{a \in A} D$$
 (= D^A) and A is finite then $L(\mathcal{F}) = R(D, A)$.

Corollary. If a finite multimodal frame \mathcal{F} has a surjective *p*-morphism from a universal product frame, then L(\mathcal{F}) embeds into some R(D, A).

Plan

Playing around with real world databases

Relational lattices

Quasiequational theories of relational lattices

The lattice of a frame

p-morphisms from lattice embeddings

More on equational theory

Lattice embeddings into the R(D, B)s

We study lattice embeddings of the form

$$i: L(\mathcal{F}) \longrightarrow R(D, B)$$

where \mathcal{F} is an A-frame.

Lattice embeddings into the R(D, B)s

We study lattice embeddings of the form

$$i: L(\mathcal{F}) \longrightarrow R(D, B)$$

where \mathcal{F} is an A-frame.

We can suppose that:

- 1. A = B is both the set of join-prime elements of L(\mathcal{F}) and the set of join-prime elements of R(D, B) (= R(D, A));
- 2. *i* preserves \bot , \top , so $\mu \dashv i$ (use L(\mathcal{F}) subdirectly irreducible).

<ロト < 部ト < 書ト < 書ト 差 の Q () 21/32

For $f \in D^A$, we have $\mu(f) \in X_F$ if and only if $f \in X_{\nu}$, where

 $X_{\nu} := \{ f \in D^{\mathcal{A}} \mid \nu(f) = \emptyset \}, \quad \nu(f) := \{ j \in \mathcal{A} \mid j \leq \mu(f) \}.$

For $f \in D^A$, we have $\mu(f) \in X_F$ if and only if $f \in X_{\nu}$, where

$$X_{
u} := \left\{ f \in D^{\mathcal{A}} \mid
u(f) = \emptyset
ight\}, \quad
u(f) := \left\{ j \in \mathcal{A} \mid j \leq \mu(f)
ight\}.$$

Moreover ν is a module on the space (D^A, δ) , where $\lambda \in \mathbb{R}^{n}$ is a module of the space (D^A, δ) .

Some theory of generalized ultrametric spaces

An ultrametric space over P(A) is a pair (X, δ) such that

•
$$\delta(x, y) = \emptyset$$
 iff $x = y$,

- $\delta(x,z) \subseteq \delta(x,y) \cup \delta(y,z)$,
- $\delta(x, y) = \delta(y, x)$.

A space (X, δ) is *pairwise-complete* if

δ(x, z) ⊆ α ∪ β implies δ(x, y) ⊆ α and δ(y, z) ⊆ β, for some y ∈ X,

A space (X, δ) is *spherically-complete* if every chain of balls has non empty intersection.

Universal product frames as GUMSs

Theorem. [Ackerman 2013] For a GUMS (X, δ) over P(A), TFAE:

- (X, δ) is an injective object in the category of GUMS over P(A),
- (X, δ) is pairwise-complete and spherically-complete,

Universal product frames as GUMSs

Theorem. [Ackerman 2013] For a GUMS (X, δ) over P(A), TFAE:

- (X, δ) is an injective object in the category of GUMS over P(A),
- (X, δ) is pairwise-complete and spherically-complete,

Theorem. [LS] For a GUMS (X, δ) over P(A), TFAE:

- (X, δ) is pairwise-complete and spherically-complete,
- (X, δ) are spaces of sections (universal product frames, Hamming graphs, dependent product types, ...)

Modules

An ultrametric space (X, δ) is a category enriched over $(P(A), \emptyset, \cup)$.

A module on (X, δ) is an enriched functor $v : (X, \delta) \to (P(A), \triangle)$. That is, a function $v : X \to P(A)$ such that:

 $v(x) \subseteq \delta(x,y) \cup v(y)$.

Lemma

If (X, δ) is spherically-complete and pairwise-complete and $v : (X, \delta) \rightarrow P(A)$ is a module, then its kernel

$$X_{\nu} = \{ x \in X \mid \nu(x) = \emptyset \}$$

induces a spherically-complete and pairwise-complete subspace of (X, δ) .

Completing the proof of the converse

The subspace induced by

$$X_{\nu} = \{ f \in D^{\mathcal{A}} \mid \mu(f) \in X_{\mathcal{F}} \} = \{ f \in D^{\mathcal{A}} \mid \nu(f) = \emptyset \},\$$

is the kernel of a module, therefore it is pairwise-complete (and spherically-complete), that is, a universal product frame.

Completing the proof of the converse

The subspace induced by

$$X_{\nu} = \{ f \in D^{\mathcal{A}} \mid \mu(f) \in X_{\mathcal{F}} \} = \{ f \in D^{\mathcal{A}} \mid \nu(f) = \emptyset \},\$$

is the kernel of a module, therefore it is pairwise-complete (and spherically-complete), that is, a universal product frame.

Then

$$u_{\restriction_{X_{\nu}}}:X_{\nu}\longrightarrow X_{\mathcal{F}}$$

<ロ> (四) (四) (三) (三) (三)

yields the desired surjective map.

Completing the proof of the converse

The subspace induced by

$$X_{\nu} = \{ f \in D^{\mathcal{A}} \mid \mu(f) \in X_{\mathcal{F}} \} = \{ f \in D^{\mathcal{A}} \mid \nu(f) = \emptyset \},\$$

is the kernel of a module, therefore it is pairwise-complete (and spherically-complete), that is, a universal product frame.

Then

$$\mu_{\restriction_{X_{\nu}}}:X_{\nu}\longrightarrow X_{\mathcal{F}}$$

yields the desired surjective map.

This map is a *p*-morphism since (roughly) this property corresponds to μ preserving joins.

Plan

Playing around with real world databases

Relational lattices

Quasiequational theories of relational lattices

The lattice of a frame

p-morphisms from lattice embeddings

More on equational theory

The reduction (with results by KHH) also yields the following: Proposition. If $cardA \ge 3$, then there exists a quasiequation that holds in all the finite R(D', A), but fails in R(D, A) when D is infinite.

The reduction (with results by KHH) also yields the following: Proposition. If $cardA \ge 3$, then there exists a quasiequation that holds in all the finite R(D', A), but fails in R(D, A) when D is infinite.

Theorem. If A or D is finite, then R(D, A) belongs to the variety generated by the finite R(D', A').

The reduction (with results by KHH) also yields the following: Proposition. If $cardA \ge 3$, then there exists a quasiequation that holds in all the finite R(D', A), but fails in R(D, A) when D is infinite.

Theorem. If A or D is finite, then R(D, A) belongs to the variety generated by the finite R(D', A').

▶ If A is finite, then R(D, A) is an algebraic lattice.

The reduction (with results by KHH) also yields the following: Proposition. If $cardA \ge 3$, then there exists a quasiequation that holds in all the finite R(D', A), but fails in R(D, A) when D is infinite.

Theorem. If A or D is finite, then R(D, A) belongs to the variety generated by the finite R(D', A').

- If A is finite, then R(D, A) is an algebraic lattice.
- If A is infinite, then R(D, A) is not an algebraic lattice.

Functorial properties

Let $f : A \rightarrow B$ be a (set theoretic function). Then

$$\mathsf{R}(D, f) : \mathsf{R}(D, A) \to \mathsf{R}(D, B)$$

defined by

$$\mathsf{R}(D,f)(\alpha,X) := (\forall_f(\alpha), f^{*-1}(X))$$

makes R(D, -) into a functor from **Set** to ASL.

Functorial properties

Let $f : A \rightarrow B$ be a (set theoretic function). Then

$$\mathsf{R}(D, f) : \mathsf{R}(D, A) \to \mathsf{R}(D, B)$$

defined by

$$\mathsf{R}(D,f)(\alpha,X) := (\forall_f(\alpha), f^{*-1}(X))$$

makes R(D, -) into a functor from **Set** to ASL.

Proposition. If D is finite, then the canonical map

 $\mathsf{R}(D,A) o \lim_{Q ext{ a finite partition of } \mathsf{Q}} \mathsf{R}(D,A/Q)$

is injective and preserves finite joins.

From meet-semilattices to lattices

- The projective limit $\lim_{Q} R(D, A/Q)$ is an algebraic lattice.
- Compact elements are of the form j_Q(β, Y), for some (β, Y) ∈ R(D, A/Q), for some finite partition Q of A. Here j_Q is left adjoint to R(D, π_Q) : R(D, A) → R(D, A/Q) with π_Q : A → A/Q.

Proposition. If $\pi : A \to B$ is surjective, then the left adjoint to $R(D, \pi)$ is a right adjoint (that is, it preserves meets). Theorem. The projective limit $\lim_Q R(D, A/Q)$ is (up to isomorphism) the ideal completion of inductive $\operatorname{colim}_Q R(D, A/Q)$, where the latter lives in the category of lattices.

Thanks ! Questions ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

30/32

(Some) references I

Ackerman, N. (2013).

Completeness in generalized ultrametric spaces. p-Adic Numbers Ultrametric Anal. Appl., 5(2):89–105.

Codd, E. F. (1970).

A relational model of data for large shared data banks. *Commun. ACM*, 13(6):377–387.

Hirsch, R. and Hodkinson, I. (2001).

Representability is not decidable for finite relation algebras. *Trans. Amer. Math. Soc.*, 353:1403–1425.

Hirsch, R., Hodkinson, I., and Kurucz, A. (2002). On modal logics between $K \times K \times K$ and $S5 \times S5 \times S5$. The Journal of Symbolic Logic, 67:221–234.

Litak, T., Mikulájs, S., and Hidders, J. (2016).

Relational lattices: From databases to universal algebra. Journal of Logical and Algebraic Methods in Programming, 85(4):540 – 573.

Maddux, R. (1980).

The equational theory of CA_3 is undecidable. The Journal of Symbolic Logic, 45(2):311-316.

Priess-Crampe, S. and Ribemboim, P. (1995).

Equivalence relations and spherically complete ultrametric spaces. *C. R. Acad. Sci. Paris*, 320(1):1187–1192.

(Some) references II

Santocanale, L. (2016a).

Relational lattices via duality.

In Hasuo, I., editor, Coalgebraic Methods in Computer Science, CMCS 2016, volume 9608 of Lecture Notes in Computer Science, pages 195–215. Springer.

★ロト ★課 ト ★注 ト ★注 ト 一注

32/32

Santocanale, L. (2016b).

The quasiequational theory of relational lattices, in the pure lattice signature. working paper or preprint.

Spight, M. and Tropashko, V. (2006).

First steps in relational lattice. *CoRR*, abs/cs/0603044.