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Databases, tables, sqls . ..
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Databases, tables, sqls . ..

phpRiyAdmin

at =1 BE)

phpmyadmin @)
B lbros

B TEese

B test

Server: E3mysql.sourceforge.net » Database: Gmphpmyadmin » Table: g libros

Structure| Bmwse| EQSQL| ,-L.Z‘Search| i-EInserl|

xport | %% Ope

Run SGQL query/queries on database phpmyadmin (1
SELECT * FROM libros” WHERE 1

[~ Show this query here again

Or Location of the text file:
Location of the text file:

Compression:
¢ Autodetect ¢ Mone ¢ "gzipped" ¢ "bzipped"
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Operations on tables: the natural join

Name Surname [tem ltem  Description
— 33 Book
Luigi  Santocanale 33 .
Al Turi o1 33 Livre
an urnng 21 Machine
Name Surname I[tem  Description
Luigi Santocanale 33 Book
o Luigi  Santocanale 33 Livre
Alan Turing 21 Machine

5/32



Operations on tables: the inner union

Name Surname Item
Luigi  Santocanale 33
Alan Turing 21
Name  Surname Sport
U Diego Maradona  Football
Usain Bolt Athletics

Name Surname
Luigi  Santocanale
Alan Turing
Diego  Maradona
Usain Bolt
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Lattices from databases

Proposition. [Spight & Tropashko, 2006] The set of tables, whose
columns are indexed by a subset of A and values are from a set D,
is a lattice, with natural join as meet and inner union as join.
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Plan

Relational lattices
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The relational lattices R(D, A)

A a set of attributes, D a set of values.

An element of R(D, A):
» a pair (X, T) with X C Aand T C DX.

We have

(X1, T1) < (Xo, T2) iff Xo € Xq and T1[x,C T».
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Meet and join

(Xl, Tl) A (XQ, Tg) = (Xl U Xo, T)
where T={f|f;, € T;,i=1,2}
= ix,ux(T1) N ixux(T2)

(X1, T1) V (X2, T2) == (Xa N X2, T)
where T ={f[Jie€{1,2},3g € Tist. g, =1}

= Tilxinx U T2l xinx, -
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Representation via closure operators
The Hamming/Priess_Crampe-Ribenboim ultrametric distance on D*:

o(f.g) :={xcAlf(x)#g(x)}.

NB: this distance takes values in the join-semilattice (P(A), 0, V).

11/32



Representation via closure operators
The Hamming/Priess_Crampe-Ribenboim ultrametric distance on D*:
o(f,g) ={xeAlf(x)#&(x)}.

NB: this distance takes values in the join-semilattice (P(A), 0, V).

A subset X of A+ DA is closed if (f,g)U{g} C X implies f € X.

11/32



Representation via closure operators
The Hamming/Priess_Crampe-Ribenboim ultrametric distance on D*:
o(f,g) ={xecAlf(x) #&g(x)}-
NB: this distance takes values in the join-semilattice (P(A), 0, V).

A subset X of A+ DA is closed if (f,g)U{g} C X implies f € X.

Proposition. [Litak, Mikulds and Hidders 2015] R(D, A) is isomorphic to
the lattice of closed subsets of A+ DA.

11/32



Plan

Quasiequational theories of relational lattices
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Undecidable quasiequational theories

Theorem. [Litak, Mikulds and Hidders, 2015] The set of
quasiequations in the signature (A, V, H) that are valid on
relational lattices is undecidable.

We refine here this to:
Theorem. The set of quasiequations in the signature (A, V) that
are valid on relational lattices is undecidable.

We actually prove a stronger result:
Theorem. It is undecidable whether a finite subdirectly irreducible
lattice embeds into some R(D, A).
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Related undecidable problems

Theorem. [Maddux 1980] The equational theory of 3-dimensional
diagonal free cylindric algebras is undecidable.

Theorem. [Hirsch and Hodkinson 2001] It is not decidable whether
a finite simple relation algebras embeds into a concrete one (a
powerset of a binary product).

Theorem. [Hirsch, Hodkinson and Kurucz 2002] It is not decid-
able whether a finite mutimodal Kripke frame has a surjective p-
morphism from a universal product frame.
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Frames, universal product frames

A (multimodal Kripke) A-frame is a pair (X,{ R, | a€ A}) with
» X a set, and
» R, C X x X, for each a € A.
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Frames, universal product frames

A (multimodal Kripke) A-frame is a pair (X,{ R, | a€ A}) with
» X a set, and
» R, C X x X, for each a € A.

A universal S5-product frame is an A-frame (X, {R,|a€ A})
with

» X = ]_13654 Ya,
> XR,y iff X, = v}, for each b # a.
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Frames, universal product frames

A (multimodal Kripke) A-frame is a pair (X,{ R, | a€ A}) with
» X a set, and
» R, C X x X, for each a € A.

A universal S5-product frame is an A-frame (X, {R,|a€ A})
with

» X = HaeA Ya’

> XR,y iff X, = v}, for each b # a.

A p-morphism from (X,{R,|a€ A})to (X', {R,|ac A})isa
function f : X — X’ such that
» xR,y implies f(x)R.f(y), for each a € A,
/

» f(x)RLy’ implies xR,y for some y € X such that f(y) = y/,
for each a € A.
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The lattice of a frame
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The lattice of a frame

Let F = (X,{Rs| a€ A}) be a finite A-frame.

If o C A, then we say that Y C X is a-closed if

XoRayx1Rayx2 ... Ra,xn € Y and {a1,...,a,} C«
implies xp € Y.

We say that Z C A+ X is closed if ZN X is Z N A-closed.

Definition. The lattice L(F) is the lattice of closed subsets of
A+ X.
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The lattice of a frame

Let F = (X,{Rs| a€ A}) be a finite A-frame.

If o C A, then we say that Y C X is a-closed if

XoRayx1Rayx2 ... Ra,xn € Y and {a1,...,a,} C«
implies xp € Y.

We say that Z C A+ X is closed if ZN X is Z N A-closed.

Definition. The lattice L(F) is the lattice of closed subsets of
A+ X.

Theorem. A full rooted S4 mutimodal frame F has a surjective
p-morphism from a universal product frame iff L(F) embeds into
a relational lattice.
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The easy part: embeddings from p-morphisms

L extends to a contravariant functor.

Moreover if X =[],c4 D (= D*) and A is finite then
L(F) =R(D, A).
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The easy part: embeddings from p-morphisms

L extends to a contravariant functor.

Moreover if X =[],c4 D (= D*) and A is finite then
L(F) =R(D, A).

Corollary. If a finite multimodal frame F has a surjective
p-morphism from a universal product frame, then L(F) embeds
into some R(D, A).
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p-morphisms from lattice embeddings
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Lattice embeddings into the R(D, B)s

We study lattice embeddings of the form
i:L(F)—— R(D,B)

where F is an A-frame.
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Lattice embeddings into the R(D, B)s

We study lattice embeddings of the form
i:L(F)—— R(D,B)

where F is an A-frame.

We can suppose that:

1. A= B is both the set of join-prime elements of L(F) and the
set of join-prime elements of R(D, B) (= R(D, A));

2. i preserves L, T, so u i (use L(F) subdirectly irreducible).
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DA ? = X]:
A+ DA = J(R(D, A)) A+ Xr = J(L(F))
R(D, A) - L(F)
‘S\\\"\-\\,\__________,,———”’//’//’
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DA ? = X]:
A+ DA = J(R(D, A)) A+ Xr = J(L(F))
R(D, A) - L(F)
‘S\\\"\-\\,\__________,,———”’//’//’

For f € DA, we have u(f) € Xz if and only if f € X, where

X, ={feD"u(f)=0}, w(f):={jeAlj<u(f)}.
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DA ? = X]:
A+ DA = J(R(D, A)) A+ Xr = J(L(F))
R(D, A) - L(F)
\_/

For f € DA, we have u(f) € Xz if and only if f € X, where
X, ={feD*|v(f)=0}, v(f)={jcAlj<u(f)}.

Moreover v is a on the space (D4, 0).
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Some theory of generalized ultrametric spaces

An ultrametric space over P(A) is a pair (X, ) such that
» i(x,y)=0iff x=y,
> d(x,z) Co(x,y)Ud(y,2z),
> 3(x, ) = d(y, x).

A space (X, ) is pairwise-complete if
» (x,z) C aU S implies §(x,y) C « and 6(y, z) C 3, for some
y e X,

A space (X, ) is spherically-complete if every chain of balls has
non empty intersection.
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Universal product frames as GUMSs

Theorem. [Ackerman 2013] For a GUMS (X, ) over P(A), TFAE:

» (X,0) is an injective object in the category of GUMS over
P(A).

» (X, 9) is pairwise-complete and spherically-complete,
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Universal product frames as GUMSs

Theorem. [Ackerman 2013] For a GUMS (X, ) over P(A), TFAE:

» (X,0) is an injective object in the category of GUMS over
P(A).

» (X, 9) is pairwise-complete and spherically-complete,

Theorem. [LS] For a GUMS (X, ¢) over P(A), TFAE:
» (X,0) is pairwise-complete and spherically-complete,

» (X,0) are spaces of sections (universal product frames,
Hamming graphs, dependent product types, ...)
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Modules

An ultrametric space (X, d) is a category enriched over

(P(A),0,0).

A module on (X, ) is an enriched functor v : (X,d) — (P(A), Q).
That is, a function v : X — P(A) such that:

v(x) Cé(x,y)Uv(y).

Lemma
If (X, 6) is spherically-complete and pairwise-complete and
v : (X,0) — P(A) is a module, then its kernel

X, ={xeX|v(x)=0}

induces a spherically-complete and pairwise-complete subspace of
(X, 0).
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Completing the proof of the converse

The subspace induced by
X, ={feD?|u(f) e Xr}={FeDA|u(f)=0},

is the kernel of a module, therefore it is pairwise-complete (and
spherically-complete), that is, a universal product frame.
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Then
Hry, * Xl, E— X]:

yields the desired surjective map.
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Completing the proof of the converse

The subspace induced by
X, ={feD?|u(f) e Xr}={FeDA|u(f)=0},

is the kernel of a module, therefore it is pairwise-complete (and
spherically-complete), that is, a universal product frame.

Then
Hry, * Xl, E— X]:

yields the desired surjective map.

This map is a p-morphism since (roughly) this property
corresponds to j preserving joins.
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More on equational theory
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Back to equations

The reduction (with results by KHH) also yields the following:

Proposition. If cardA > 3, then there exists a quasiequation that
holds in all the finite R(D’, A), but fails in R(D, A) when D is
infinite.
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Back to equations

The reduction (with results by KHH) also yields the following:

Proposition. If cardA > 3, then there exists a quasiequation that
holds in all the finite R(D’, A), but fails in R(D, A) when D is
infinite.

Theorem. If A or D is finite, then R(D, A) belongs to the variety
generated by the finite R(D’, A").

» If Ais finite, then R(D, A) is an algebraic lattice.

» If Ais infinite, then R(D, A) is not an algebraic lattice.
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Functorial properties

Let f : A — B be a (set theoretic function).
Then

R(D,f):R(D,A) — R(D,B)
defined by
R(D, f)(a, X) := (Ve(a), F*7H(X))

makes R(D, —) into a functor from Set to ASL.
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Functorial properties

Let f : A — B be a (set theoretic function).
Then

R(D, f): R(D, A) — R(D, B)
defined by
R(D, F)(ar, X) = (V¢ (), F*7H(X))
makes R(D, —) into a functor from Set to ASL.

Proposition. If D is finite, then the canonical map

R(D, A) — lim R(D,A/Q)

Q a finite partition of Q

is injective and preserves finite joins.
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From meet-semilattices to lattices

» The projective limit limg R(D, A/Q) is an algebraic lattice.
» Compact elements are of the form jo(f3, Y), for some
(8,Y) € R(D,A/Q), for some finite partition Q of A.
Here jg is left adjoint to R(D, mq) : R(D,A) — R(D,A/Q)
with g : A — A/Q.

Proposition. If m: A — B is surjective, then the left adjoint to
R(D, ) is a right adjoint (that is, it preserves meets).

Theorem. The projective limit limg R(D, A/Q) is (up to
isomorphism) the ideal completion of inductive colimgR(D, A/Q),
where the latter lives in the category of lattices.
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