Tensor products of Cuntz semigroups

Hannes Thiel
(joint work with Ramon Antoine, Francesc Perera)

University of Münster, Germany

26. June 2017

TACL, Prague

The category Cu of abstract Cuntz semigroup

Recall:

- Cu-semigroup is domain with monoid structure such that addition is jointly Scott continuous and \ll-preserving:

$$
a^{\prime} \ll a, b^{\prime} \ll b \quad \Rightarrow \quad a^{\prime}+b^{\prime} \ll a+b .
$$

- Cu-morphism $f: S \rightarrow T$ is additive, \ll-preserving Scott continuous map:

$$
a^{\prime} \ll a \quad \Rightarrow \quad f\left(a^{\prime}\right) \ll f(a)
$$

The category Cu of abstract Cuntz semigroup

Recall:

- Cu-semigroup is domain with monoid structure such that addition is jointly Scott continuous and \ll-preserving:

$$
a^{\prime} \ll a, b^{\prime} \ll b \quad \Rightarrow \quad a^{\prime}+b^{\prime} \ll a+b .
$$

- Cu-morphism $f: S \rightarrow T$ is additive, \ll-preserving Scott continuous map:

$$
a^{\prime} \ll a \quad \Rightarrow \quad f\left(a^{\prime}\right) \ll f(a)
$$

Examples:

- $\overline{\mathbb{N}}:=\{0,1,2, \ldots, \infty\}$.

The category Cu of abstract Cuntz semigroup

Recall:

- Cu-semigroup is domain with monoid structure such that addition is jointly Scott continuous and \ll-preserving:

$$
a^{\prime} \ll a, b^{\prime} \ll b \quad \Rightarrow \quad a^{\prime}+b^{\prime} \ll a+b .
$$

- Cu-morphism $f: S \rightarrow T$ is additive, \ll-preserving Scott continuous map:

$$
a^{\prime} \ll a \quad \Rightarrow \quad f\left(a^{\prime}\right) \ll f(a)
$$

Examples:

- $\overline{\mathbb{N}}:=\{0,1,2, \ldots, \infty\}$.
- $Z:=\operatorname{Cu}(\mathcal{Z})=\mathbb{N} \cup(0, \infty]$.

The category Cu of abstract Cuntz semigroup

Recall:

- Cu-semigroup is domain with monoid structure such that addition is jointly Scott continuous and \ll-preserving:

$$
a^{\prime} \ll a, b^{\prime} \ll b \quad \Rightarrow \quad a^{\prime}+b^{\prime} \ll a+b .
$$

- Cu-morphism $f: S \rightarrow T$ is additive, \ll-preserving Scott continuous map:

$$
a^{\prime} \ll a \quad \Rightarrow \quad f\left(a^{\prime}\right) \ll f(a) .
$$

Examples:

- $\overline{\mathbb{N}}:=\{0,1,2, \ldots, \infty\}$.
- $Z:=\mathrm{Cu}(\mathcal{Z})=\mathbb{N} \cup(0, \infty]$.
- $R_{P}:=\mathrm{Cu}\left(U H F_{p}\right)=\mathbb{N}\left[\frac{1}{\rho}\right] \cup(0, \infty]$.

The category Cu of abstract Cuntz semigroup

Recall:

- Cu-semigroup is domain with monoid structure such that addition is jointly Scott continuous and \ll-preserving:

$$
a^{\prime} \ll a, b^{\prime} \ll b \quad \Rightarrow \quad a^{\prime}+b^{\prime} \ll a+b .
$$

- Cu-morphism $f: S \rightarrow T$ is additive, \ll-preserving Scott continuous map:

$$
a^{\prime} \ll a \quad \Rightarrow \quad f\left(a^{\prime}\right) \ll f(a) .
$$

Examples:

- $\overline{\mathbb{N}}:=\{0,1,2, \ldots, \infty\}$.
- $Z:=\mathrm{Cu}(\mathcal{Z})=\mathbb{N} \cup(0, \infty]$.
- $R_{P}:=\mathrm{Cu}\left(U H F_{p}\right)=\mathbb{N}\left[\frac{1}{p}\right] \cup(0, \infty]$.
- $\mathrm{Cu}\left(\|_{1}\right.$-factor $)=[0, \infty) \cup(0, \infty]$.

Goals and strategy

Problem
Define $S \otimes_{\mathrm{Cu}} T$ and show that Cu is closed, monoidal category.

Goals and strategy

Problem
Define $S \otimes_{\mathrm{Cu}} T$ and show that Cu is closed, monoidal category.
Strategy:

- Define category W of 'pre-completed Cu-semigroups'.

Goals and strategy

Problem
Define $S \otimes_{\mathrm{Cu}} T$ and show that Cu is closed, monoidal category.
Strategy:

- Define category W of 'pre-completed Cu-semigroups'.
- Define \otimes_{W}.

Goals and strategy

Problem

Define $S \otimes_{\mathrm{Cu}} T$ and show that Cu is closed, monoidal category.
Strategy:

- Define category W of 'pre-completed Cu-semigroups'.
- Define \otimes_{W}.
- Completion functor $\gamma: \mathbf{W} \rightarrow \mathbf{C u}$ that is reflection:

$$
\mathrm{W}(S, T) \cong \mathrm{Cu}(\gamma(S), T)
$$

Goals and strategy

Problem

Define $S \otimes_{\mathrm{Cu}} T$ and show that Cu is closed, monoidal category.
Strategy:

- Define category W of 'pre-completed Cu-semigroups'.
- Define $\otimes \mathrm{W}$.
- Completion functor $\gamma: \mathbf{W} \rightarrow \mathbf{C u}$ that is reflection:

$$
\mathrm{W}(S, T) \cong \mathrm{Cu}(\gamma(S), T)
$$

- Reflection functors transfer monoidal structure.

Category W of pre-completed Cuntz semigroups

- The predecessor set: $a^{\prec}:=\{x \mid x \prec a\}$.

Definition

W-semigroup is monoid with transitive relation \prec such that:

- \prec has interpolation: $\quad a^{\prec}$ is upward directed.

Category W of pre-completed Cuntz semigroups

- The predecessor set: $a^{\prec}:=\{x \mid x \prec a\}$.

Definition

W-semigroup is monoid with transitive relation \prec such that:

- \prec has interpolation: a^{\prec} is upward directed.
- + preserves $\prec: \quad a^{\prec}+b^{\prec} \subseteq(a+b)^{\prec}$.

Category W of pre-completed Cuntz semigroups

- The predecessor set: $a^{\prec}:=\{x \mid x \prec a\}$.

Definition

W-semigroup is monoid with transitive relation \prec such that:

- \prec has interpolation: a^{\prec} is upward directed.
- + preserves $\prec: \quad a^{\prec}+b^{\prec} \subseteq(a+b)^{\prec}$.
- + is continuous: $a^{\prec}+b^{\prec} \subseteq(a+b)^{\prec}$ is cofinal.

Category W of pre-completed Cuntz semigroups

- The predecessor set: $a^{\prec}:=\{x \mid x \prec a\}$.

Definition

W-semigroup is monoid with transitive relation \prec such that:

- \prec has interpolation: a^{\prec} is upward directed.
- + preserves $\prec: \quad a^{\prec}+b^{\prec} \subseteq(a+b)^{\prec}$.
$\bullet+$ is continuous: $a^{\prec}+b^{\prec} \subseteq(a+b)^{\prec}$ is cofinal.
\mathbf{W}-morphism preserves $0,+, \prec$ and is continuous: $f\left(a^{\prec}\right) \subseteq f(a)^{\prec}$ is cofinal.

Category W of pre-completed Cuntz semigroups

- The predecessor set: $a^{\prec}:=\{x \mid x \prec a\}$.

Definition

W-semigroup is monoid with transitive relation \prec such that:

- \prec has interpolation: a^{\prec} is upward directed.
- + preserves $\prec: \quad a^{\prec}+b^{\prec} \subseteq(a+b)^{\prec}$.
$\bullet+$ is continuous: $a^{\prec}+b^{\prec} \subseteq(a+b)^{\prec}$ is cofinal.
\mathbf{W}-morphism preserves $0,+, \prec$ and is continuous:
$f\left(a^{\prec}\right) \subseteq f(a)^{\prec}$ is cofinal.
- Cu-semigroup $S \rightsquigarrow$ W-semigroup (S, \ll).
- W-semigroup $(S, \prec) \rightsquigarrow$ round-ideal completion $\gamma(S, \prec)$.

Category W of pre-completed Cuntz semigroups

- The predecessor set: $a^{\prec}:=\{x \mid x \prec a\}$.

Definition

W-semigroup is monoid with transitive relation \prec such that:

- \prec has interpolation: a^{\prec} is upward directed.
- + preserves $\prec: \quad a^{\prec}+b^{\prec} \subseteq(a+b)^{\prec}$.
- + is continuous: $a^{\prec}+b^{\prec} \subseteq(a+b)^{\prec}$ is cofinal.
\mathbf{W}-morphism preserves $0,+, \prec$ and is continuous:
$f\left(a^{\prec}\right) \subseteq f(a)^{\prec}$ is cofinal.
- Cu-semigroup $S \rightsquigarrow$ W-semigroup (S, \ll).
- W-semigroup $(S, \prec) \rightsquigarrow$ round-ideal completion $\gamma(S, \prec)$.

Theorem

- Cu is a full, reflective subcategory of W.
- Have completion functor γ : W $\rightarrow \mathbf{C u}$.

Bimorphisms

\otimes_{Cu} should linearize bilinear maps:

$$
\operatorname{BiCu}(S \times T, R) \cong \mathrm{Cu}\left(S \otimes_{\mathrm{Cu}} T, R\right)
$$

Bimorphisms

\otimes_{Cu} should linearize bilinear maps:

$$
\operatorname{BiCu}(S \times T, R) \cong \mathrm{Cu}\left(S \otimes_{\mathrm{Cu}} T, R\right)
$$

Definition
Cu-bimorphism is $f: S \times T \rightarrow R$ such that:

- f is additive in each variable.

Bimorphisms

\otimes_{Cu} should linearize bilinear maps:

$$
\operatorname{BiCu}(S \times T, R) \cong \mathrm{Cu}\left(S \otimes_{\mathrm{Cu}} T, R\right)
$$

Definition
Cu-bimorphism is $f: S \times T \rightarrow R$ such that:

- f is additive in each variable.
- f is jointly \ll-preserving: $f\left(s^{\ll}, t \ll\right) \subseteq f(s, t)^{\ll}$.

Bimorphisms

\otimes_{Cu} should linearize bilinear maps:

$$
\operatorname{BiCu}(S \times T, R) \cong \mathrm{Cu}\left(S \otimes_{\mathrm{Cu}} T, R\right)
$$

Definition
Cu-bimorphism is $f: S \times T \rightarrow R$ such that:

- f is additive in each variable.
- f is jointly \ll-preserving: $f\left(s^{\ll}, t \ll\right) \subseteq f(s, t)^{\ll}$.
- f is continuous: $f\left(s^{\ll}, t \ll\right) \subseteq f(s, t)^{\ll}$ is cofinal.

Bimorphisms

\otimes_{Cu} should linearize bilinear maps:

$$
\operatorname{BiCu}(S \times T, R) \cong \mathrm{Cu}\left(S \otimes_{\mathrm{Cu}} T, R\right)
$$

Definition
Cu-bimorphism is $f: S \times T \rightarrow R$ such that:

- f is additive in each variable.
- f is jointly \ll-preserving: $f\left(s^{\ll}, t \ll\right) \subseteq f(s, t)^{\ll}$.
- f is continuous: $f\left(s^{\ll}, t^{\ll}\right) \subseteq f(s, t)^{\ll}$ is cofinal.

Approach: First define \otimes in W .

Bimorphisms

\otimes_{Cu} should linearize bilinear maps:

$$
\operatorname{BiCu}(S \times T, R) \cong \mathrm{Cu}\left(S \otimes_{\mathrm{Cu}} T, R\right)
$$

Definition

Cu-bimorphism is $f: S \times T \rightarrow R$ such that:

- f is additive in each variable.
- f is jointly \ll-preserving: $f\left(s^{\ll}, t \ll\right) \subseteq f(s, t) \ll$.
- f is continuous: $f\left(s^{\ll}, t \ll\right) \subseteq f(s, t)^{\ll}$ is cofinal.

Approach: First define \otimes in W .

Definition

W-bimorphism is $f: S \times T \rightarrow R$ such that:

- f is additive in each variable.
- f is jointly \prec-preserving: $f\left(s^{\prec}, t^{\prec}\right) \subseteq f(s, t)^{\prec}$.
- f is continuous: $f\left(s^{\prec}, t^{\prec}\right) \subseteq f(s, t)^{\prec}$ cofinal.

Tensor product in \mathbf{W}

Definition

W-bimorphism is $f: S \times T \rightarrow R$ such that:

- f is additive in each variable.
- f is jointly $\prec-$ preserving: $f\left(s^{\prec}, t^{\prec}\right) \subseteq f(s, t)^{\prec}$.
- f is continuous: $f\left(s^{\prec}, t^{\prec}\right) \subseteq f(s, t)^{\prec}$ cofinal.

Tensor product in \mathbf{W}

Definition

W-bimorphism is $f: S \times T \rightarrow R$ such that:

- f is additive in each variable.
- f is jointly $\prec-$ preserving: $f\left(s^{\prec}, t^{\prec}\right) \subseteq f(s, t)^{\prec}$.
- f is continuous: $f\left(s^{\prec}, t^{\prec}\right) \subseteq f(s, t)^{\prec}$ cofinal.
- on tensor product $S \otimes_{\mathrm{alg}} T$ of monoids, let \prec be induced by

Tensor product in \mathbf{W}

Definition

W-bimorphism is $f: S \times T \rightarrow R$ such that:

- f is additive in each variable.
- f is jointly $\prec-$ preserving: $f\left(s^{\prec}, t^{\prec}\right) \subseteq f(s, t)^{\prec}$.
- f is continuous: $f\left(s^{\prec}, t^{\prec}\right) \subseteq f(s, t)^{\prec}$ cofinal.
- on tensor product $S \otimes_{\mathrm{alg}} T$ of monoids, let \prec be induced by

Definition

$\sum_{i} s_{i}^{\prime} \otimes t_{i}^{\prime} \prec^{0} \sum_{i} s_{i} \otimes t_{i} \quad \Leftrightarrow \quad s_{i}^{\prime} \prec s_{i}, t_{i}^{\prime} \prec t_{i}$

Tensor product in W

Definition

W-bimorphism is $f: S \times T \rightarrow R$ such that:

- f is additive in each variable.
- f is jointly \prec-preserving: $f\left(s^{\prec}, t^{\prec}\right) \subseteq f(s, t)^{\prec}$.
- f is continuous: $f\left(s^{\prec}, t^{\prec}\right) \subseteq f(s, t)^{\prec}$ cofinal.
- on tensor product $S \otimes_{\text {alg }} T$ of monoids, let \prec be induced by

Definition

$$
\sum_{i} s_{i}^{\prime} \otimes t_{i}^{\prime} \prec^{0} \sum_{i} s_{i} \otimes t_{i} \quad \Leftrightarrow \quad s_{i}^{\prime} \prec s_{i}, t_{i}^{\prime} \prec t_{i}
$$

Lemma

- $S \otimes{ }_{\mathrm{w}} T:=\left(S \otimes_{\mathrm{alg}} T, \prec\right)$ is W -semigroup.
- $S \times T \rightarrow S \otimes{ }_{\mathrm{W}} T$ is \mathbf{W}-bimorphism with universal property:

$$
\mathrm{W}(S \otimes \mathrm{~W} T, R) \xrightarrow{\cong} \operatorname{BiW}(S \times T, R)
$$

Tensor product in $\mathbf{C u}$

The tensor product of Cu -semigroups S and T is:

$$
S \otimes_{\mathrm{Cu}} T:=\gamma\left(S \otimes_{\mathrm{w}} T\right)
$$

Tensor product in $\mathbf{C u}$

The tensor product of Cu-semigroups S and T is:

$$
S \otimes_{\mathrm{Cu}} T:=\gamma\left(S \otimes_{\mathrm{w}} T\right)
$$

Theorem

- $S \otimes_{\mathrm{cu}} T$ linearizes Cu -bimorphisms:

$$
\operatorname{BiCu}(S \times T, R) \cong \mathrm{Cu}\left(S \otimes_{\mathrm{Cu}} T, R\right)
$$

Tensor product in $\mathbf{C u}$

The tensor product of Cu -semigroups S and T is:

$$
S \otimes_{\mathrm{Cu}} T:=\gamma\left(S \otimes_{\mathrm{w}} T\right)
$$

Theorem

- $S \otimes{ }_{\mathrm{cu}} T$ linearizes Cu -bimorphisms:

$$
\operatorname{BiCu}(S \times T, R) \cong \mathrm{Cu}\left(S \otimes_{\mathrm{cu}} T, R\right)
$$

- $\overline{\mathbb{N}}=\{0,1,2, \ldots, \infty\}$ is tensor unit: $\overline{\mathbb{N}} \otimes_{\mathrm{Cu}} S \cong S \cong S \otimes_{\mathrm{Cu}} \overline{\mathbb{N}}$.

Tensor product in $\mathbf{C u}$

The tensor product of Cu -semigroups S and T is:

$$
S \otimes_{\mathrm{Cu}} T:=\gamma\left(S \otimes_{\mathrm{w}} T\right) .
$$

Theorem

- $S \otimes \mathrm{cu} T$ linearizes Cu-bimorphisms:

$$
\mathrm{BiCu}(S \times T, R) \cong \mathrm{Cu}(S \otimes \mathrm{cu} T, R) .
$$

- $\overline{\mathbb{N}}=\{0,1,2, \ldots, \infty\}$ is tensor unit: $\overline{\mathbb{N}} \otimes_{\mathrm{Cu}} S \cong S \cong S \otimes_{\mathrm{Cu}} \overline{\mathbb{N}}$.
- Cu is a symmetric, monoidal category.

Proof.

$$
\begin{aligned}
\operatorname{BiCu}(S \times T, R) & \cong \operatorname{BiW}(S \times T, R) \cong \mathrm{W}(S \otimes \mathrm{w} T, R) \\
& \cong \mathrm{Cu}(\gamma(S \otimes \mathrm{w} T), R)=\mathrm{Cu}(S \otimes \mathrm{Cu} T, R) .
\end{aligned}
$$

Examples of tensor products

- For $R_{p}:=\mathrm{Cu}\left(U H F_{p}\right)=\mathbb{N}\left[\frac{1}{p}\right] \cup(0, \infty]$ have $R_{p} \otimes R_{q} \cong R_{p q}$.

Examples of tensor products

- For $R_{p}:=\mathrm{Cu}\left(U H F_{p}\right)=\mathbb{N}\left[\frac{1}{p}\right] \cup(0, \infty]$ have $R_{p} \otimes R_{q} \cong R_{p q}$.
- $S \cong R_{p} \otimes S$ if and only if S is p-divisible and p-unperforated ($p a \leq p b \Rightarrow a \leq b$)

Examples of tensor products

- For $R_{p}:=\mathrm{Cu}\left(U H F_{p}\right)=\mathbb{N}\left[\frac{1}{p}\right] \cup(0, \infty]$ have $R_{p} \otimes R_{q} \cong R_{p q}$.
- $S \cong R_{p} \otimes S$ if and only if S is p-divisible and p-unperforated ($p a \leq p b \Rightarrow a \leq b$)
- For $Z:=\operatorname{Cu}(\mathcal{Z})=\mathbb{N} \cup(0, \infty]$ have $Z \otimes Z \cong Z$.

Examples of tensor products

- For $R_{p}:=\mathrm{Cu}\left(U H F_{p}\right)=\mathbb{N}\left[\frac{1}{p}\right] \cup(0, \infty]$ have $R_{p} \otimes R_{q} \cong R_{p q}$.
- $S \cong R_{p} \otimes S$ if and only if S is p-divisible and p-unperforated ($p a \leq p b \Rightarrow a \leq b$)
- For $Z:=\operatorname{Cu}(\mathcal{Z})=\mathbb{N} \cup(0, \infty]$ have $Z \otimes Z \cong Z$.
- $S \cong Z \otimes S$ if and only if S is almost divisible and almost unperforated.

Examples of tensor products

- For $R_{p}:=\mathrm{Cu}\left(U H F_{p}\right)=\mathbb{N}\left[\frac{1}{p}\right] \cup(0, \infty]$ have $R_{p} \otimes R_{q} \cong R_{p q}$.
- $S \cong R_{p} \otimes S$ if and only if S is p-divisible and p-unperforated ($p a \leq p b \Rightarrow a \leq b$)
- For $Z:=\operatorname{Cu}(\mathcal{Z})=\mathbb{N} \cup(0, \infty]$ have $Z \otimes Z \cong Z$.
- $S \cong Z \otimes S$ if and only if S is almost divisible and almost unperforated.
- $\{0, \infty\} \otimes S \cong \operatorname{Lat}(S)$ - lattice of ideals in S (Scott-closed submonoids).

Cu is closed

- Category \mathbf{Q} such that $\mathbf{C u} \subseteq \mathbf{Q}$ full, hereditary.
- Functor $\tau: \mathbf{Q} \rightarrow \mathbf{C u}$ that is coreflection:

$$
\mathrm{Q}(T, P) \cong \mathrm{Cu}(T, \tau(P))
$$

- Q admits right adjoint for its bimorphism functor:

$$
\operatorname{BiQ}(S \times T, P) \cong \mathrm{Q}(S,[T, P])
$$

Cu is closed

- Category \mathbf{Q} such that $\mathbf{C u} \subseteq \mathbf{Q}$ full, hereditary.
- Functor $\tau: \mathbf{Q} \rightarrow \mathbf{C u}$ that is coreflection:

$$
\mathrm{Q}(T, P) \cong \mathrm{Cu}(T, \tau(P)) .
$$

- \mathbf{Q} admits right adjoint for its bimorphism functor:

$$
\operatorname{BiQ}(S \times T, P) \cong \mathrm{Q}(S,[T, P])
$$

The internal hom of Cu -semigroups S and T is:

$$
\llbracket S, T \rrbracket:=\tau([S, T]) .
$$

Cu is closed

- Category \mathbf{Q} such that $\mathbf{C u} \subseteq \mathbf{Q}$ full, hereditary.
- Functor $\tau: \mathbf{Q} \rightarrow \mathbf{C u}$ that is coreflection:

$$
\mathrm{Q}(T, P) \cong \mathrm{Cu}(T, \tau(P)) .
$$

- \mathbf{Q} admits right adjoint for its bimorphism functor:

$$
\operatorname{BiQ}(S \times T, P) \cong \mathrm{Q}(S,[T, P])
$$

The internal hom of Cu -semigroups S and T is:

$$
\llbracket S, T \rrbracket:=\tau([S, T]) .
$$

Theorem

- 【T, „】 is right adjoint to $-\otimes_{\mathrm{cu}} T$:

$$
\mathrm{Cu}(S \times T, R) \cong \mathrm{Cu}(S, \llbracket T, R \rrbracket) .
$$

- Cu is a closed, symmetric, monoidal category.

Examples of internal homs

- For $R_{p}=\mathbb{N}\left[\frac{1}{p}\right] \cup(0, \infty]$ have $\llbracket R_{p}, R_{q} \rrbracket=R_{q}$ if p divides q, and $\llbracket R_{p}, R_{q} \rrbracket=\overline{\mathbb{R}}_{+}$otherwise.

Examples of internal homs

- For $R_{p}=\mathbb{N}\left[\frac{1}{p}\right] \cup(0, \infty]$ have $\llbracket R_{p}, R_{q} \rrbracket=R_{q}$ if p divides q, and $\llbracket R_{p}, R_{q} \rrbracket=\overline{\mathbb{R}}_{+}$otherwise.
- For $Z=\mathbb{N} \cup(0, \infty]$, have $\llbracket Z, Z \rrbracket=Z$.

Examples of internal homs

- For $R_{p}=\mathbb{N}\left[\frac{1}{p}\right] \cup(0, \infty]$ have $\llbracket R_{p}, R_{q} \rrbracket=R_{q}$ if p divides q, and $\llbracket R_{p}, R_{q} \rrbracket=\overline{\mathbb{R}}_{+}$otherwise.
- For $Z=\mathbb{N} \cup(0, \infty]$, have $\llbracket Z, Z \rrbracket=Z$.
- For $M:=\mathrm{Cu}\left(\mathrm{II}_{1}\right.$-factor), have $\llbracket \overline{\mathbb{R}}_{+}, \overline{\mathbb{R}}_{+} \rrbracket=M, \llbracket M, M \rrbracket=M$.

Thank you.

