Tensor products of Cuntz semigroups

Hannes Thiel (joint work with Ramon Antoine, Francesc Perera)

University of Münster, Germany

26. June 2017 TACL, Prague

Recall:

- **Cu**-semigroup is domain with monoid structure such that addition is jointly Scott continuous and \ll -preserving: $a' \ll a, b' \ll b \Rightarrow a' + b' \ll a + b.$
- Cu-morphism f: S → T is additive, ≪-preserving Scott continuous map:

$$a' \ll a \quad \Rightarrow \quad f(a') \ll f(a).$$

Recall:

- Cu-semigroup is domain with monoid structure such that addition is jointly Scott continuous and ≪-preserving:
 a' ≪ a, b' ≪ b ⇒ a' + b' ≪ a + b.
- Cu-morphism f: S → T is additive, ≪-preserving Scott continuous map:

$$a' \ll a \quad \Rightarrow \quad f(a') \ll f(a).$$

Examples:

 $\bullet \ \overline{\mathbb{N}} := \{0, 1, 2, \dots, \infty\}.$

Recall:

- **Cu**-semigroup is domain with monoid structure such that addition is jointly Scott continuous and \ll -preserving: $a' \ll a, b' \ll b \Rightarrow a' + b' \ll a + b.$
- Cu-morphism f: S → T is additive, «-preserving Scott continuous map:

$$a' \ll a \quad \Rightarrow \quad f(a') \ll f(a).$$

Examples:

- $\bullet \ \overline{\mathbb{N}} := \{0, 1, 2, \dots, \infty\}.$
- $Z := Cu(\mathcal{Z}) = \mathbb{N} \cup (0, \infty].$

Recall:

- Cu-semigroup is domain with monoid structure such that addition is jointly Scott continuous and ≪-preserving:
 a' ≪ a, b' ≪ b ⇒ a' + b' ≪ a + b.
- Cu-morphism f: S → T is additive, ≪-preserving Scott continuous map:

$$a' \ll a \quad \Rightarrow \quad f(a') \ll f(a).$$

Examples:

- $\bullet \ \overline{\mathbb{N}} := \{0, 1, 2, \dots, \infty\}.$
- $Z := Cu(\mathcal{Z}) = \mathbb{N} \cup (0, \infty].$
- $R_P := \operatorname{Cu}(UHF_p) = \mathbb{N}[\frac{1}{p}] \cup (0, \infty].$

Recall:

- Cu-semigroup is domain with monoid structure such that addition is jointly Scott continuous and ≪-preserving:
 a' ≪ a, b' ≪ b ⇒ a' + b' ≪ a + b.
- Cu-morphism f: S → T is additive, ≪-preserving Scott continuous map:

$$a' \ll a \quad \Rightarrow \quad f(a') \ll f(a).$$

Examples:

- $\bullet \ \overline{\mathbb{N}} := \{0, 1, 2, \dots, \infty\}.$
- $Z := Cu(\mathcal{Z}) = \mathbb{N} \cup (0, \infty].$
- $R_P := \operatorname{Cu}(UHF_p) = \mathbb{N}[\frac{1}{p}] \cup (0, \infty].$
- $Cu(II_1$ -factor) = $[0, \infty) \cup (0, \infty]$.

Problem

Define $S \otimes_{Cu} T$ and show that Cu is closed, monoidal category.

Problem

Define $S \otimes_{Cu} T$ and show that Cu is closed, monoidal category.

Strategy:

• Define category **W** of 'pre-completed **Cu**-semigroups'.

Problem

Define $S \otimes_{Cu} T$ and show that Cu is closed, monoidal category.

Strategy:

- Define category W of 'pre-completed Cu-semigroups'.
- Define \otimes_W .

Problem

Define $S \otimes_{Cu} T$ and show that Cu is closed, monoidal category.

Strategy:

- Define category W of 'pre-completed Cu-semigroups'.
- Define \otimes_W .
- Completion functor $\gamma \colon \mathbf{W} \to \mathbf{C}\mathbf{u}$ that is reflection:

$$W(S, T) \cong Cu(\gamma(S), T).$$

Problem

Define $S \otimes_{Cu} T$ and show that Cu is closed, monoidal category.

Strategy:

- Define category W of 'pre-completed Cu-semigroups'.
- Define \otimes_W .
- Completion functor $\gamma \colon \mathbf{W} \to \mathbf{C}\mathbf{u}$ that is reflection:

$$W(S, T) \cong Cu(\gamma(S), T).$$

Reflection functors transfer monoidal structure.

• The predecessor set: $a^{\prec} := \{x \mid x \prec a\}$.

Definition

W-semigroup is monoid with transitive relation ≺ such that:

→ has interpolation: a[¬] is upward directed.

• The predecessor set: $a^{\prec} := \{x \mid x \prec a\}$.

Definition

W-semigroup is monoid with transitive relation ≺ such that:

- A has interpolation: a[≺] is upward directed.
- + preserves \prec : $a^{\prec} + b^{\prec} \subseteq (a+b)^{\prec}$.

• The predecessor set: $a^{\prec} := \{x \mid x \prec a\}$.

Definition

W-semigroup is monoid with transitive relation ≺ such that:

- → has interpolation: a[¬] is upward directed.
- + preserves \prec : $a^{\prec} + b^{\prec} \subseteq (a+b)^{\prec}$.
- + is continuous: $a^{\prec} + b^{\prec} \subseteq (a+b)^{\prec}$ is cofinal.

• The predecessor set: $a^{\prec} := \{x \mid x \prec a\}.$

Definition

W-semigroup is monoid with transitive relation ≺ such that:

- A has interpolation: a[≺] is upward directed.
- + preserves \prec : $a^{\prec} + b^{\prec} \subseteq (a+b)^{\prec}$.
- + is continuous: $a^{\prec} + b^{\prec} \subseteq (a+b)^{\prec}$ is cofinal.

W-morphism preserves $0, +, \prec$ and is continuous: $f(a^{\prec}) \subseteq f(a)^{\prec}$ is cofinal.

• The predecessor set: $a^{\prec} := \{x \mid x \prec a\}$.

Definition

W-semigroup is monoid with transitive relation ≺ such that:

- \bullet \prec has interpolation: a^{\prec} is upward directed.
- + preserves \prec : $a^{\prec} + b^{\prec} \subseteq (a+b)^{\prec}$.
- + is continuous: $a^{\prec} + b^{\prec} \subseteq (a+b)^{\prec}$ is cofinal.

W-morphism preserves $0, +, \prec$ and is continuous: $f(\mathbf{a}^{\prec}) \subseteq f(\mathbf{a})^{\prec}$ is cofinal.

- **Cu**-semigroup $S \rightsquigarrow \mathbf{W}$ -semigroup (S, \ll) .
- **W**-semigroup $(S, \prec) \rightsquigarrow$ round-ideal completion $\gamma(S, \prec)$.

• The predecessor set: $a^{\prec} := \{x \mid x \prec a\}.$

Definition

W-semigroup is monoid with transitive relation ≺ such that:

- A has interpolation: a → is upward directed.
- + preserves \prec : $a^{\prec} + b^{\prec} \subseteq (a+b)^{\prec}$.
- + is continuous: $a^{\prec} + b^{\prec} \subseteq (a+b)^{\prec}$ is cofinal.

W-morphism preserves $0, +, \prec$ and is continuous: $f(a^{\prec}) \subseteq f(a)^{\prec}$ is cofinal.

- Cu-semigroup $S \rightsquigarrow W$ -semigroup (S, \ll) .
- **W**-semigroup $(S, \prec) \rightsquigarrow$ round-ideal completion $\gamma(S, \prec)$.

Theorem

- Cu is a full, reflective subcategory of W.
- Have completion functor $\gamma : \mathbf{W} \to \mathbf{Cu}$.

 \otimes_{Cu} should linearize bilinear maps:

 $BiCu(S \times T, R) \cong Cu(S \otimes_{Cu} T, R).$

 \otimes_{Cu} should linearize bilinear maps:

$$BiCu(S \times T, R) \cong Cu(S \otimes_{Cu} T, R).$$

Definition

Cu-bimorphism is $f: S \times T \rightarrow R$ such that:

f is additive in each variable.

 \otimes_{Cu} should linearize bilinear maps:

$$BiCu(S \times T, R) \cong Cu(S \otimes_{Cu} T, R).$$

Definition

Cu-bimorphism is $f: S \times T \rightarrow R$ such that:

- f is additive in each variable.
- f is jointly \ll -preserving: $f(s^{\ll}, t^{\ll}) \subseteq f(s, t)^{\ll}$.

 \otimes_{Cu} should linearize bilinear maps:

$$BiCu(S \times T, R) \cong Cu(S \otimes_{Cu} T, R).$$

Definition

Cu-bimorphism is $f: S \times T \rightarrow R$ such that:

- f is additive in each variable.
- f is jointly \ll -preserving: $f(s^{\ll}, t^{\ll}) \subseteq f(s, t)^{\ll}$.
- f is continuous: $f(s^{\ll}, t^{\ll}) \subseteq f(s, t)^{\ll}$ is cofinal.

 \otimes_{Cu} should linearize bilinear maps:

$$BiCu(S \times T, R) \cong Cu(S \otimes_{Cu} T, R).$$

Definition

Cu-bimorphism is $f: S \times T \rightarrow R$ such that:

- f is additive in each variable.
- f is jointly \ll -preserving: $f(s^{\ll}, t^{\ll}) \subseteq f(s, t)^{\ll}$.
- f is continuous: $f(s^{\ll}, t^{\ll}) \subseteq f(s, t)^{\ll}$ is cofinal.

Approach: First define \otimes in W.

 \otimes_{Cu} should linearize bilinear maps:

$$BiCu(S \times T, R) \cong Cu(S \otimes_{Cu} T, R).$$

Definition

Cu-bimorphism is $f: S \times T \rightarrow R$ such that:

- f is additive in each variable.
- f is jointly \ll -preserving: $f(s^{\ll}, t^{\ll}) \subseteq f(s, t)^{\ll}$.
- f is continuous: $f(s^{\ll}, t^{\ll}) \subseteq f(s, t)^{\ll}$ is cofinal.

Approach: First define ⊗ in W.

Definition

W-bimorphism is $f: S \times T \rightarrow R$ such that:

- f is additive in each variable.
- f is jointly \prec -preserving: $f(s^{\prec}, t^{\prec}) \subseteq f(s, t)^{\prec}$.
- f is continuous: $f(s^{\prec}, t^{\prec}) \subseteq f(s, t)^{\prec}$ cofinal.

Definition

W-bimorphism is $f: S \times T \rightarrow R$ such that:

- f is additive in each variable.
- f is jointly \prec -preserving: $f(s^{\prec}, t^{\prec}) \subseteq f(s, t)^{\prec}$.
- f is continuous: $f(s^{\prec}, t^{\prec}) \subseteq f(s, t)^{\prec}$ cofinal.

Definition

W-bimorphism is $f: S \times T \rightarrow R$ such that:

- f is additive in each variable.
- f is jointly \prec -preserving: $f(s^{\prec}, t^{\prec}) \subseteq f(s, t)^{\prec}$.
- f is continuous: $f(s^{\prec}, t^{\prec}) \subseteq f(s, t)^{\prec}$ cofinal.
- \bullet on tensor product $S \otimes_{alg} T$ of monoids, let \prec be induced by

Definition

W-bimorphism is $f: S \times T \rightarrow R$ such that:

- f is additive in each variable.
- f is jointly \prec -preserving: $f(s^{\prec}, t^{\prec}) \subseteq f(s, t)^{\prec}$.
- f is continuous: $f(s^{\prec}, t^{\prec}) \subseteq f(s, t)^{\prec}$ cofinal.
- \bullet on tensor product $S \otimes_{alg} T$ of monoids, let \prec be induced by

Definition

$$\sum_{i} s_{i}' \otimes t_{i}' \prec^{0} \sum_{i} s_{i} \otimes t_{i} \quad \Leftrightarrow \quad s_{i}' \prec s_{i}, t_{i}' \prec t_{i}$$

Definition

W-bimorphism is $f: S \times T \rightarrow R$ such that:

- f is additive in each variable.
- f is jointly \prec -preserving: $f(s^{\prec}, t^{\prec}) \subseteq f(s, t)^{\prec}$.
- f is continuous: $f(s^{\prec}, t^{\prec}) \subseteq f(s, t)^{\prec}$ cofinal.
- ullet on tensor product $\mathcal{S} \otimes_{alg} \mathcal{T}$ of monoids, let \prec be induced by

Definition

$$\textstyle \sum_i s_i' \otimes t_i' \prec^0 \textstyle \sum_i s_i \otimes t_i \quad \Leftrightarrow \quad s_i' \prec s_i, t_i' \prec t_i$$

Lemma

- $S \otimes_W T := (S \otimes_{\operatorname{alg}} T, \prec)$ is **W**-semigroup.
- $S \times T \to S \otimes_W T$ is **W**-bimorphism with universal property: $W(S \otimes_W T, R) \xrightarrow{\cong} BiW(S \times T, R).$

The tensor product of **Cu**-semigroups *S* and *T* is:

$$S \otimes_{Cu} T := \gamma(S \otimes_{W} T).$$

The tensor product of **Cu**-semigroups *S* and *T* is:

$$S \otimes_{Cu} T := \gamma(S \otimes_{W} T).$$

Theorem

S ⊗_{Cu} T linearizes Cu-bimorphisms:

$$BiCu(S \times T, R) \cong Cu(S \otimes_{Cu} T, R).$$

The tensor product of **Cu**-semigroups *S* and *T* is:

$$S \otimes_{Cu} T := \gamma(S \otimes_{W} T).$$

Theorem

S ⊗_{Cu} T linearizes Cu-bimorphisms:

$$BiCu(S \times T, R) \cong Cu(S \otimes_{Cu} T, R).$$

 $\bullet \ \overline{\mathbb{N}} = \{0,1,2,\ldots,\infty\} \ \text{is tensor unit:} \ \overline{\mathbb{N}} \otimes_{Cu} S \cong S \cong S \otimes_{Cu} \overline{\mathbb{N}}.$

The tensor product of **Cu**-semigroups *S* and *T* is:

$$S \otimes_{Cu} T := \gamma(S \otimes_{W} T).$$

Theorem

S ⊗_{Cu} T linearizes Cu-bimorphisms:

$$BiCu(S \times T, R) \cong Cu(S \otimes_{Cu} T, R).$$

- $\bullet \ \overline{\mathbb{N}} = \{0,1,2,\ldots,\infty\} \ \text{is tensor unit:} \ \overline{\mathbb{N}} \otimes_{Cu} S \cong S \cong S \otimes_{Cu} \overline{\mathbb{N}}.$
- Cu is a symmetric, monoidal category.

Proof.

$$BiCu(S \times T, R) \cong BiW(S \times T, R) \cong W(S \otimes_W T, R)$$

 $\cong Cu(\gamma(S \otimes_W T), R) = Cu(S \otimes_{Cu} T, R). \square$

• For $R_p := \operatorname{Cu}(\mathit{UHF}_p) = \mathbb{N}[\frac{1}{p}] \cup (0,\infty]$ have $R_p \otimes R_q \cong R_{pq}$.

- For $R_p := \operatorname{Cu}(UHF_p) = \mathbb{N}[\frac{1}{p}] \cup (0, \infty]$ have $R_p \otimes R_q \cong R_{pq}$.
- S ≅ R_p ⊗ S if and only if S is p-divisible and p-unperforated (pa ≤ pb ⇒ a ≤ b)

- For $R_p := \operatorname{Cu}(UHF_p) = \mathbb{N}[\frac{1}{p}] \cup (0, \infty]$ have $R_p \otimes R_q \cong R_{pq}$.
- S ≅ R_p ⊗ S if and only if S is p-divisible and p-unperforated (pa ≤ pb ⇒ a ≤ b)
- For $Z := Cu(\mathcal{Z}) = \mathbb{N} \cup (0, \infty]$ have $Z \otimes Z \cong Z$.

- For $R_p := \operatorname{Cu}(UHF_p) = \mathbb{N}[\frac{1}{p}] \cup (0, \infty]$ have $R_p \otimes R_q \cong R_{pq}$.
- S ≅ R_p ⊗ S if and only if S is p-divisible and p-unperforated (pa ≤ pb ⇒ a ≤ b)
- For $Z := Cu(\mathcal{Z}) = \mathbb{N} \cup (0, \infty]$ have $Z \otimes Z \cong Z$.
- S ≅ Z ⊗ S if and only if S is almost divisible and almost unperforated.

- For $R_p := \operatorname{Cu}(UHF_p) = \mathbb{N}[\frac{1}{p}] \cup (0, \infty]$ have $R_p \otimes R_q \cong R_{pq}$.
- S ≅ R_p ⊗ S if and only if S is p-divisible and p-unperforated (pa ≤ pb ⇒ a ≤ b)
- For $Z := Cu(\mathcal{Z}) = \mathbb{N} \cup (0, \infty]$ have $Z \otimes Z \cong Z$.
- S ≅ Z ⊗ S if and only if S is almost divisible and almost unperforated.
- $\{0,\infty\}\otimes S\cong \text{Lat}(S)$ lattice of ideals in S (Scott-closed submonoids).

Cu is closed

- Category Q such that Cu ⊆ Q full, hereditary.
- Functor $\tau : \mathbf{Q} \to \mathbf{Cu}$ that is coreflection:

$$Q(T, P) \cong Cu(T, \tau(P)).$$

• Q admits right adjoint for its bimorphism functor:

$$BiQ(S \times T, P) \cong Q(S, [T, P]).$$

Cu is closed

- Category Q such that Cu ⊆ Q full, hereditary.
- Functor $\tau : \mathbf{Q} \to \mathbf{Cu}$ that is coreflection:

$$Q(T, P) \cong Cu(T, \tau(P)).$$

• Q admits right adjoint for its bimorphism functor:

$$BiQ(S \times T, P) \cong Q(S, [T, P]).$$

The internal hom of Cu-semigroups S and T is:

$$[\![S, T]\!] := \tau([S, T]).$$

Cu is closed

- Category Q such that Cu ⊆ Q full, hereditary.
- Functor $\tau : \mathbf{Q} \to \mathbf{Cu}$ that is coreflection:

$$Q(T, P) \cong Cu(T, \tau(P)).$$

• Q admits right adjoint for its bimorphism functor:

$$BiQ(S \times T, P) \cong Q(S, [T, P]).$$

The internal hom of **Cu**-semigroups *S* and *T* is:

$$[\![S, T]\!] := \tau([S, T]).$$

Theorem

• $[T, _]$ is right adjoint to $_ \otimes_{Cu} T$:

$$Cu(S \times T, R) \cong Cu(S, [T, R]).$$

• Cu is a closed, symmetric, monoidal category.

Examples of internal homs

• For $R_p = \mathbb{N}[\frac{1}{p}] \cup (0, \infty]$ have $[\![R_p, R_q]\!] = R_q$ if p divides q, and $[\![R_p, R_q]\!] = \overline{\mathbb{R}}_+$ otherwise.

Examples of internal homs

- For $R_p = \mathbb{N}[\frac{1}{p}] \cup (0, \infty]$ have $[\![R_p, R_q]\!] = R_q$ if p divides q, and $[\![R_p, R_q]\!] = \overline{\mathbb{R}}_+$ otherwise.
- For $Z = \mathbb{N} \cup (0, \infty]$, have $[\![Z, Z]\!] = Z$.

Examples of internal homs

- For $R_p = \mathbb{N}[\frac{1}{p}] \cup (0, \infty]$ have $[\![R_p, R_q]\!] = R_q$ if p divides q, and $[\![R_p, R_q]\!] = \overline{\mathbb{R}}_+$ otherwise.
- ullet For $Z=\mathbb{N}\cup (0,\infty]$, have $[\![Z,Z]\!]=Z.$
- For $M:= Cu(\mathrm{II}_1\text{-factor})$, have $[\![\overline{\mathbb{R}}_+,\overline{\mathbb{R}}_+]\!] = M$, $[\![M,M]\!] = M$.

Thank you.