Wiesław Kubiś

Institute of Mathematics, Czech Academy of Sciences and Cardinal Stefan Wyszyński University in Warsaw, Poland

TACL, Praha, 26 June 2017

W.Kubiś (http://www.math.cas.cz/kubis/)

Weak Fraïssé categories

26 June 2017 1 / 24

A I > A = A A

Sources, motivation

- A. Krawczyk, W. Kubiś, Games on finitely generated structures, preprint, (arXiv:1701.05756)
- A. Krawczyk, A. Kruckman, W. Kubiś, A. Panagiotopoulos, Examples of weak amalgamation classes, preprint
- A. Kruckman, Infinitary Limits of Finite Structures, PhD thesis, University of California, Berkeley 2016
- W. Kubiś, Banach-Mazur game played in partially ordered sets, Banach Center Publications 108 (2016) 151–160 (arXiv:1505.01094)
- A. Ivanov, Generic expansions of ω-categorical structures and semantics of generalized quantifiers, J. Symbolic Logic 64 (1999) 775–789
- R. Fraïssé, Sur l'extension aux relations de quelques propriétés des ordres, Ann. Sci. Ecole Norm. Sup. (3) 71 (1954) 363–388

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Categories

A category R consists of

- a class of objects Obj(£),
- a class of arrows U_{A,B∈Obj(ℜ)}, where f ∈ ℜ(A, B) means A is the domain of f and B is the codomain of f,
- a partial associative composition operation ∘ defined on arrows, where *f* ∘ *g* is defined ⇐⇒ the domain of *g* coincides with the domain of *f*.

Furthermore, for each $A \in \text{Obj}(\mathfrak{K})$ there is an *identity* $\text{id}_A \in \mathfrak{K}(A, A)$ satisfying $\text{id}_A \circ g = g$ and $f \circ \text{id}_A = f$ for $f \in \mathfrak{K}(A, X)$, $g \in \mathfrak{K}(Y, A)$, $X, Y \in \text{Obj}(\mathfrak{K})$.

イロト イ団ト イヨト イヨト

 \mathfrak{K} is a fixed category, $\mathfrak{L} \supseteq \mathfrak{K}$ is a bigger category such that \mathfrak{K} is full in \mathfrak{L} and the following conditions are satisfied:

(L0) All £-arrows are monic.

 \mathfrak{K} is a fixed category, $\mathfrak{L} \supseteq \mathfrak{K}$ is a bigger category such that \mathfrak{K} is full in \mathfrak{L} and the following conditions are satisfied:

- (L0) All £-arrows are monic.
- (L1) Every \mathfrak{L} -object is the co-limit of a sequence in \mathfrak{K} .

 \mathfrak{K} is a fixed category, $\mathfrak{L} \supseteq \mathfrak{K}$ is a bigger category such that \mathfrak{K} is full in \mathfrak{L} and the following conditions are satisfied:

- (L0) All £-arrows are monic.
- (L1) Every £-object is the co-limit of a sequence in R.
- (L2) Every sequence in \Re has a co-limit in \mathfrak{L} .

 \mathfrak{K} is a fixed category, $\mathfrak{L} \supseteq \mathfrak{K}$ is a bigger category such that \mathfrak{K} is full in \mathfrak{L} and the following conditions are satisfied:

- (L0) All £-arrows are monic.
- (L1) Every £-object is the co-limit of a sequence in R.
- (L2) Every sequence in \Re has a co-limit in \mathfrak{L} .
- (L3) Every \Re -object is ω -small in \mathfrak{L} .

Sequences

Definition

A sequence is a covariant functor $\vec{x} : \omega \to \mathfrak{K}$.

$$x_0 \xrightarrow{x_0^1} x_1 \xrightarrow{x_1^2} x_2 \xrightarrow{x_2} \cdots$$

Definition

The Banach-Mazur game played on \Re is described as follows.

Definition

The Banach-Mazur game played on \Re is described as follows. There are two players: *Eve* and *Odd*. Eve starts by choosing $A_0 \in \text{Obj}(\Re)$.

イロト イポト イヨト イヨ

Definition

The Banach-Mazur game played on \Re is described as follows. There are two players: *Eve* and *Odd*. Eve starts by choosing $A_0 \in Obj(\Re)$.

Then Odd chooses $A_1 \in \text{Obj}(\mathfrak{K})$ together with a \mathfrak{K} -arrow $a_0^1 \colon A_0 \to A_1$.

★ ∃ ► 4

Definition

The Banach-Mazur game played on \Re is described as follows. There are two players: *Eve* and *Odd*. Eve starts by choosing $A_0 \in \text{Obj}(\Re)$.

Then Odd chooses $A_1 \in \text{Obj}(\mathfrak{K})$ together with a \mathfrak{K} -arrow $a_0^1 \colon A_0 \to A_1$. More generally, after Odd's move finishing with an object A_{2k-1} , Eve chooses $A_{2k} \in \text{Obj}(\mathfrak{K})$ together with a \mathfrak{K} -arrow $a_{2k-1}^{2k} \colon A_{2k-1} \to A_{2k}$.

Definition

The Banach-Mazur game played on \Re is described as follows. There are two players: *Eve* and *Odd*. Eve starts by choosing $A_0 \in \text{Obj}(\Re)$.

Then Odd chooses $A_1 \in \text{Obj}(\mathfrak{K})$ together with a \mathfrak{K} -arrow $a_0^1 \colon A_0 \to A_1$. More generally, after Odd's move finishing with an object A_{2k-1} , Eve chooses $A_{2k} \in \text{Obj}(\mathfrak{K})$ together with a \mathfrak{K} -arrow $a_{2k-1}^{2k} \colon A_{2k-1} \to A_{2k}$. Next, Odd chooses $A_{2k+1} \in \text{Obj}(\mathfrak{K})$ together with a \mathfrak{K} -arrow $a_{2k-1}^{2k} \colon A_{2k-1} \to A_{2k}$.

イロト イ団ト イヨト イヨト

Definition

The Banach-Mazur game played on \Re is described as follows. There are two players: *Eve* and *Odd*. Eve starts by choosing $A_0 \in \text{Obj}(\Re)$.

Then Odd chooses $A_1 \in \text{Obj}(\mathfrak{K})$ together with a \mathfrak{K} -arrow $a_0^1 \colon A_0 \to A_1$. More generally, after Odd's move finishing with an object A_{2k-1} , Eve chooses $A_{2k} \in \text{Obj}(\mathfrak{K})$ together with a \mathfrak{K} -arrow $a_{2k-1}^{2k} \colon A_{2k-1} \to A_{2k}$. Next, Odd chooses $A_{2k+1} \in \text{Obj}(\mathfrak{K})$ together with a \mathfrak{K} -arrow $a_{2k}^{2k+1} \colon A_{2k} \to A_{2k+1}$. And so on... The result of a play is a sequence \vec{a} :

$$A_0 \xrightarrow{a_0^1} A_1 \longrightarrow \cdots \longrightarrow A_{2k-1} \xrightarrow{a_{2k-1}^{2k}} A_{2k} \longrightarrow \cdots$$

イロン イ理 とく ヨン・

Generic objects

Definition

We say that $U \in Obj(\mathfrak{L})$ is \mathfrak{K} -generic if Odd has a strategy in the Banach-Mazur game such that the colimit of the resulting sequence \vec{a} is always isomorphic to U, no matter how Eve plays.

A (10) A (10) A (10)

Generic objects

Definition

We say that $U \in Obj(\mathfrak{L})$ is \mathfrak{K} -generic if Odd has a strategy in the Banach-Mazur game such that the colimit of the resulting sequence \vec{a} is always isomorphic to U, no matter how Eve plays.

Proposition

A f.-generic object, if exists, is unique up to isomorphism.

イロト イポト イヨト イヨ

Variants of amalgamations

Definition

We say that \Re has amalgamations at $Z \in \text{Obj}(\Re)$ if for every \Re -arrows $f: Z \to X, g: Z \to Y$ there exist \Re -arrows $f': X \to W, g': Y \to W$ such that $f' \circ f = g' \circ g$.

We say that \Re has the amalgamation property (AP) if it has the amalgamation property at every $Z \in Obj(\Re)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

We say that \Re has the cofinal amalgamation property (CAP) if for every $Z \in Obj(\Re)$ there is a \Re -arrow $e: Z \to Z'$ such that \Re has amalgamations at Z'.

A (1) > A (2) > A

Definition

We say that \Re has the cofinal amalgamation property (CAP) if for every $Z \in Obj(\Re)$ there is a \Re -arrow $e: Z \to Z'$ such that \Re has amalgamations at Z'.

Definition (Ivanov, 1999)

We say that \Re has the weak amalgamation property (WAP) if for every $Z \in \text{Obj}(\Re)$ there is a \Re -arrow $e: Z \to Z'$ such that for every \Re -arrows $f: Z' \to X, g: Z' \to Y$ there exist \Re -arrows $f': X \to W, g': Y \to W$ such that $f' \circ f \circ e = g' \circ g \circ e$.

・ロト ・ 四ト ・ ヨト ・ ヨト

CAP and WAP



W.Kubiś (http://www.math.cas.cz/kubis/)

Weak Fraïssé categories

26 June 2017 10 / 24

2

イロト イヨト イヨト イヨト

Directedness and weak domination

Definition

We say that \Re is directed if for every $X, Y \in Obj(\Re)$ there exist \Re -arrows f, g such that dom(f) = X, dom(g) = Y, and cod(f) = cod(g).

A (10) A (10)

Directedness and weak domination

Definition

We say that \Re is directed if for every $X, Y \in Obj(\Re)$ there exist \Re -arrows f, g such that dom(f) = X, dom(g) = Y, and cod(f) = cod(g).

Definition

We say that $\mathscr{F} \subseteq \mathfrak{K}$ is weakly dominating if

For every X ∈ Obj(ℜ) there is f ∈ ℜ such that dom(f) = X and cod(f) ∈ Obj(𝔅).

イロト イ団ト イヨト イヨト

Directedness and weak domination

Definition

We say that \Re is directed if for every $X, Y \in Obj(\Re)$ there exist \Re -arrows f, g such that dom(f) = X, dom(g) = Y, and cod(f) = cod(g).

Definition

We say that $\mathscr{F} \subseteq \mathfrak{K}$ is weakly dominating if

- For every $X \in \text{Obj}(\mathfrak{K})$ there is $f \in \mathfrak{K}$ such that dom(f) = X and $\text{cod}(f) \in \text{Obj}(\mathfrak{S})$.
- ② For every $Y \in Obj(\mathfrak{S})$ there exists an \mathfrak{S} -arrow $j: Y \to Y'$ such that for every \mathfrak{K} -arrow $f: Y' \to Z$ there is a \mathfrak{K} -arrow $g: Z \to W$ satisfying $g \circ f \circ j \in \mathfrak{S}$.

Definition

We say that R is a weak Fraïssé category if

• it is directed,

Definition

We say that R is a weak Fraïssé category if

- it is directed,
- has the WAP, and

Definition

We say that R is a weak Fraïssé category if

- it is directed,
- has the WAP, and
- is dominated by a countable subcategory.

- E - N

Definition

We say that R is a weak Fraïssé category if

- it is directed,
- has the WAP, and
- is dominated by a countable subcategory.

Theorem

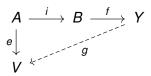
Assume \Re is a weak Fraïssé category. Then there exists a \Re -generic object $U \in Obj(\mathfrak{L})$.

The object U will be called the limit of \Re .

Weak injectivity

Definition

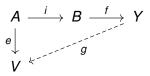
We say that $V \in \text{Obj}(\mathfrak{L})$ is weakly \mathfrak{K} -injective if for every $A \in \text{Obj}(\mathfrak{K})$, for every \mathfrak{L} -arrow $e: A \to V$ there exists a \mathfrak{K} -arrow $i: A \to B$ such that for every \mathfrak{K} -arrow $f: B \to Y$ there is an \mathfrak{L} -arrow $g: Y \to V$ satisfying $g \circ f \circ i = e$.



Weak injectivity

Definition

We say that $V \in \text{Obj}(\mathfrak{L})$ is weakly \mathfrak{K} -injective if for every $A \in \text{Obj}(\mathfrak{K})$, for every \mathfrak{L} -arrow $e: A \to V$ there exists a \mathfrak{K} -arrow $i: A \to B$ such that for every \mathfrak{K} -arrow $f: B \to Y$ there is an \mathfrak{L} -arrow $g: Y \to V$ satisfying $g \circ f \circ i = e$.



V is <u>*R*-injective</u> if we can always take $i := id_A$.

Definition

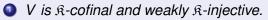
We say that $V \in Obj(\mathfrak{L})$ is \mathfrak{K} -cofinal if for every $X \in Obj(\mathfrak{K})$ there exists an \mathfrak{L} -arrow $e: X \to V$.

Definition

We say that $V \in Obj(\mathfrak{L})$ is \mathfrak{K} -cofinal if for every $X \in Obj(\mathfrak{K})$ there exists an \mathfrak{L} -arrow $e: X \to V$.

Theorem

Assume \mathfrak{K} is a weak Fraïssé category and $V \in Obj(\mathfrak{L})$. The following assertions are equivalent.



V is R-generic.

Homogeneity

Definition

We say that $U \in Obj(\mathfrak{L})$ is \mathfrak{K} -homogeneous if for every $A \in Obj(\mathfrak{K})$ for every \mathfrak{K} -arrows $i_0 : A \to U$, $i_1 : A \to U$ there exists an automorphism $h : U \to U$ such that $i_1 = h \circ i_0$.

Homogeneity

Definition

We say that $U \in Obj(\mathfrak{L})$ is \mathfrak{K} -homogeneous if for every $A \in Obj(\mathfrak{K})$ for every \mathfrak{K} -arrows $i_0 : A \to U$, $i_1 : A \to U$ there exists an automorphism $h : U \to U$ such that $i_1 = h \circ i_0$.

Definition

The age of $U \in Obj(\mathfrak{L})$ is

 $\mathsf{Age}(U) := \{ A \in \mathsf{Obj}(\mathfrak{K}) \colon (\exists \ e \in \mathfrak{L}) \ e \colon A \to U \}.$

W.Kubiś (http://www.math.cas.cz/kubis/)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition

Assume U is \Re -homogeneous. Then Age(U) has the amalgamation property.

э

Weak homogeneity

Definition

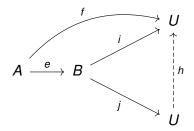
We say that $U \in Obj(\mathfrak{L})$ is weakly \mathfrak{K} -homogeneous if for every $A \in Obj(\mathfrak{K})$, for every \mathfrak{L} -arrow $f \colon A \to U$ there exists a \mathfrak{K} -arrow $e \colon A \to B$ and an \mathfrak{L} -arrow $i \colon B \to U$ such that $f = i \circ e$ and for every \mathfrak{L} -arrow $j \colon B \to U$ there is an automorphism $h \colon U \to U$ satisfying $f = h \circ j \circ e$.

A (10) A (10) A (10)

Weak homogeneity

Definition

We say that $U \in Obj(\mathfrak{L})$ is weakly \mathfrak{K} -homogeneous if for every $A \in Obj(\mathfrak{K})$, for every \mathfrak{L} -arrow $f \colon A \to U$ there exists a \mathfrak{K} -arrow $e \colon A \to B$ and an \mathfrak{L} -arrow $i \colon B \to U$ such that $f = i \circ e$ and for every \mathfrak{L} -arrow $j \colon B \to U$ there is an automorphism $h \colon U \to U$ satisfying $f = h \circ j \circ e$.



(The triangle may not be commutative!)

W.Kubiś (http://www.math.cas.cz/kubis/)

Weak Fraïssé categories

Proposition

Assume U is weakly \Re -homogeneous. Then Age(U) has the weak amalgamation property.

Proposition

Assume U is weakly \Re -homogeneous. Then Age(U) has the weak amalgamation property.

Proposition

Assume U is weakly \Re -homogeneous and Age(U) has the amalgamation property. Then U is Age(U)-homogeneous.

Main result

Denote by $BM(\mathfrak{K}, V)$ the Banach-Mazur game defined above, where Odd wins if and only if the resulting sequence is isomorphic to *V*.

A .

Main result

Denote by $BM(\mathfrak{K}, V)$ the Banach-Mazur game defined above, where Odd wins if and only if the resulting sequence is isomorphic to *V*.

Theorem

Assume \mathfrak{K} is locally countable. Given an $V \in Obj(\mathfrak{L})$, the following properties are equivalent.

- V is the limit of A (in particular, A is a weak Fraïssé category).
- **2** Odd has a winning strategy in BM (\mathfrak{K}, V) (i.e. V is \mathfrak{K} -generic).
- Solution \mathbb{S} Eve does not have a winning strategy in BM (\mathfrak{K}, V).

The model-theoretic case is due to Krawczyk & K.

< 口 > < 同 > < 回 > < 回 > < 回 > <

Applications

• Classical Fraïssé theory.

æ

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Applications

- Classical Fraïssé theory.
- Inverse Fraïssé theory (Irwin & Solecki).

A (10) A (10)

Applications

- Classical Fraïssé theory.
- Inverse Fraïssé theory (Irwin & Solecki).
- More abstract categories?

Three examples

Example 1

 \Re = the category of all finite graphs with embeddings.

 \mathfrak{L} = the category of all countable graphs with embeddings.

A (10) > A (10) > A (10)

Three examples

Example 1

 \Re = the category of all finite graphs with embeddings.

 \mathfrak{L} = the category of all countable graphs with embeddings.

Claim

A has the amalgamation property.

A (10) A (10) A (10)

Three examples

Example 1

 \Re = the category of all finite graphs with embeddings.

 \mathfrak{L} = the category of all countable graphs with embeddings.

Claim

 \mathfrak{K} has the amalgamation property.

The \Re -generic object is the Rado graph (found by Rado and independently by Erdős & Renyi).

A D b 4 A b

Example 2

 \Re = all finite cycle-free graphs with embeddings.

 \mathfrak{L} = the category of all countable cycle-free graphs with embeddings.

A .

Example 2

 \Re = all finite cycle-free graphs with embeddings.

 \mathfrak{L} = the category of all countable cycle-free graphs with embeddings.

Claim

R has the CAP, not the AP.

A (10) A (10) A (10)

Example 2

 \Re = all finite cycle-free graphs with embeddings.

 \mathfrak{L} = the category of all countable cycle-free graphs with embeddings.

Claim

A has the CAP, not the AP.

The \Re -generic object is the countable tree in which each vertex has infinite degree.

Example 3 (Krawczyk, Kruckman, Panagiotopoulos, K.) \Re = all finite cycle-free graphs in which no two vertices of degree > 2 are adjacent (with embeddings).

< 回 > < 三 > < 三 >

Example 3 (Krawczyk, Kruckman, Panagiotopoulos, K.)

 \Re = all finite cycle-free graphs in which no two vertices of degree > 2 are adjacent (with embeddings).

Claim

A has the WAP, not the CAP.

A (10) A (10)

Further research: Generic objects in continuous category theory.

< 6 b

Further research: Generic objects in continuous category theory.

Thank you for your attention!