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The space of located subsets

We are interested in spaces of the located subsets of some structures.

Examples
» Extended Dedekind reals (L, U), i.e. extended with +o00, —oc.
»gelU < (3¢ <q)q €U,
PEL < (I'>p)p' €L,
LNU=0,
p<qg = pelLvgel.
An extended Dedekind reals (L, U) is equivalent to a located
(possibly unbounded) upper real U.
»qeU = (3¢’ <q)q €U,
» p<q = p¢UVqeU (locatedness)

v vy

» Compact (including ()) subsets of a compact metric space (X, d)
with the Hausdorff metric whose values are in the extended reals.

d(A,B) = sup inf d(a, b inf d(a,b) .
(A, B) maX{ZEE}féB (a, )’?,2};31& (a, )}



1. Is there a geometric theory (over some given structure) whose
models are the located subsets of that structure?

2. If so, what is the locale presented by the theory?

A geometric theory T = (P, R) over a set P of propositional symbols
is a set R of axioms of the form

icl

A model (ideal) of T is subset o C P such that
{po,---,pn-1} Ca = (Jiel {qé,...,qilﬁl} Cao

for all axioms po A -+ App—1 = Vg gy A=+~ Al inT.
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Continuous covers (Continuous lattices)

An continuous cover is a structure S = (S, </, wb) where
< C S x Pow(S) is a cover satisfying

acU adlU UV

a<U’ a<aV

U<V <& VaeU)a<V,

3

and wb is function wb: S — Pow(S) such that

1. a < wb(a),
2. (Vb ewb(a))b < a.
Here, < is the way-below relation:

a<b <& NYUCS)[b<U = (JA€Fin(U))a<A].
Wehavea < b <= (A €Fin(S))a <A & A C wb(b).

The Sat(S) & {AU | U C S} where AU = {a € S | a <1 U} forms
a continuous lattice with a base {AB | B € Fin(S)}.
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Continuous covers (Continuous lattices)

A perfect map between continuous covers S = (S, <1, wb) and
S = (5, <’/,wb’) is arelation r C § x S such that

1.a<'U = r {a} <r U,

2. a<'b = r {a} < r {b}.
Let CCov be the category of continuous covers and perfect maps.
Remark

A perfect map S — S’ between continuous covers corresponds to a
Scott continuous map f: Sat(S) — Sat(S’) that has a left adjoint.



Located subsets of continuous covers

Fix a continuous cover § = (S, <1, wb). A subset V C S'is splitting if

a<1U&acV = (IbelU)beV.
Lemma. A subset V C § is splitting iff

1. a < {ap,...,ap1} &ac€V = (Ji<n)ag; €V,
2.acV = (Ib<Ka)beV.
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Examples of located subsets

Example (Scott topology on Pow(N))
Pw = (Fin(N), <, wb) where

A<,U & 3BeU)BCA,

wb(4) & {B € Fin(S) | A C B} .

» V C Fin(N) is splitting iff it is closed downwards w.r.t. C.
» A splitting subset V is located iff it is detachable (NB. A < A).



Examples of located subsets

Example (Scott topology on the bounded upper reals)
R"* = (Q, <y, wb) where

q<1uU<g> (Vp<q) (34 €eU)p <,
def
wb(q) € {peQlp<gql}.

» V C Qs splitting iff it is an upper real, i.e.
geV < (Ip<q)peV.

> A splitting subset V is located iff it is a located upper real
(extended real),ie. p<q = p¢ VVgqgeV.



Examples of located subsets

Example (Binary tree C (Formal Cantor space))
C = ({0,1}", <t¢, wb) where

a<eU < (FkeN)(Veeak]) BbeU)b<c

<= U is a uniform bar of a.
alk] € {axb | |b| =k},

wb(a) € {b € {0,1}* |a< b}.

» VC{0,1}"issplittingiffa € V < (Ji€ {0,1})ax (i) € V.
> A splitting subset V is located iff it is detachable (NB. a < a),
i.e. itis a (possibly empty) “spread”.



Examples of located subsets

Example (Locally compact metric spaces, Palmgren (2007))

Given a (Bishop) locally compact metric space (X, d), its localic
completion is the continuous cover M(X) = (M, < x,wb) where
» My & x x Q>0 = {b(x,e) | x € X & £ € Q°} with an order
b(x,e) <x b(y,d) & d(x,y) +e <.

> a<axU < (Vb <y a) (A € Fin(U)) (30 € Q%) b g A,

bgA <L (Vb(x,e) <x b)e < 0— (3a € A)b(x,e) <x a.

> wb(a) £ {beMx|b<xa}.



Examples of located subsets

Proposition

» A splitting subset V.C My corresponds to a closed subset

Xy  {xe X | (Vb(y,8) € My)d(x,y) < 6§ —b(y,5) € V}.

A closed subset Y C X corresponds to a splitting subset

vy & {b(x,e) e Mx | 3y € Y)d(x,y) < e}.

The correspondence is bijective.

» (Coquand, Palmgren, and Spitters (2011)) A splitting subset
V C My is located iff Xy C X is semi-located, i.e. for each x € X,
the distance

dx,Xv) € {g€ Q7| (Fy € Xv)d(x,y) < ¢}

is a located upper real.



The space of located subsets



Geometric theories

A geometric theory T = (P, R) over a set P of propositional symbols
is a set R of axioms of the form

icl

A model (ideal) of T is subset o« C P such that
{po,...,pn-1} Ca = (i€l {qg,...,qﬁll__l} Ca

for all axioms po A -+ Apn—1 = Vg g A=+~ Al inT.

Problem. Given a continuous cover S, find a geometric theory 7,
whose models are the located subsets of S.



Geometric theories

Example (Theory of splitting subsets)
Let S = (S, <, wb) be a continuous cover.
Recall that V C § is splitting iff

1. a < {ag,...,ap1} & acV = (Ji<n)ag; €V,
2.aeV = (Ib<Ka)beV.

Thus, splitting subsets of S are the models of a geometric theory over
S with the following axioms:

al \/b, al—\/ak (a < {ao,...,an—1})

bka k<n



Geometric theories

Example (Theory of splitting subsets)

Let S = (S, <, wb) be a continuous cover.
Recall that V C § is splitting iff

1. a < {ag,...,ap1} & acV = (Ji<n)ag; €V,
2.aeV = (Ib<Ka)beV.

Thus, splitting subsets of S are the models of a geometric theory over
S with the following axioms:

al \/b, al—\/ak (a < {ao,...,an—1})

bka k<n

Non-example (Located subsets)

Alocatedness a < b = a ¢ V V b € Vis not geometric.
A naive approach requires non-geometric axiom:

Th@a— 1)Vvb (a<b)
where T %' AD.



But there is a way out

Example (Theory of extended Dedekind reals)
» Consider R" = (Q, <1,,wb) whose located subsets are the
located (unbounded) upper reals.
> A located upper real is equivalent to an extended Dedekind real
(L, U), a pair of disjoint lower and upper reals that is located:
p<q = pelLvVvgqgel.



But there is a way out

Example (Theory of extended Dedekind reals)

» Consider R" = (Q, <1,,wb) whose located subsets are the
located (unbounded) upper reals.

> A located upper real is equivalent to an extended Dedekind real
(L, U), a pair of disjoint lower and upper reals that is located:
p<q = pelLvVvgqgel.
Extended Dedekind reals are the models of a theory T over the
propositional symbols {(p, +00) | p € Q} U {(—00,q) | g € Q} with
the following axioms:
(_OO,q) F \/ (_OO,q/)
q'<q
(—00,q) - (—00,4") (¢<4q)
Dual axioms for (p, +00) ....
(g, +00) A (—00,q) F L

Tl_(p7+oo)/\(_oo>q) (p<Q)7

TE A0, L v



Cuts of a continuous cover

Let S = (S, <, wb) be a continuous cover. A cut of S is a pair (L, U)
of subsets of S such that

1. a < {ag,...,ap1} &acU = (Fk<n)a €U,
2.a€eU = (Ibka)bel,

3. a<{ao,...,an-1} & {ao,...,ap-1} CL = a €L,
4.
5
6

acL = (3{ao,...,an—1} > a){ao,...,an—1} C L,

.LNU=0,
.a<b = acLVvbeUl.



Cuts of a continuous cover

Let S = (S, <, wb) be a continuous cover. A cut of S is a pair (L, U)
of subsets of S such that

1. a < {ag,...,ap1} &acU = (Fk<n)a €U,
2.a€eU = (Ibka)bel,

3. a<{ao,...,an-1} & {ao,...,ap-1} CL = a €L,
4.
5
6

acL = (3{ao,...,an—1} > a){ao,...,an—1} C L,

.LNU=0,
.a<b = acLVvbeUl.

Proposition

There exists a bijective correspondence between the located subsets
of S and the cuts of S given by

V= (Ly,V),

Ly ®{aes|G{ao,... a1} > a)(Vk <n)ax ¢ V}.



The theory of located subsets

Given a continuous cover S, define a geometric theory T over a
propositional symbols P = {l(a) | a € S} U {u(a) | a € S} consisting

of axioms:
u(a) b \/ u(a) (a < {ao,...,an1})
k<n
u(a) - \/ u(b)
b<ka
1(ag) A -+ Al(ap—1) F1(a) (a <{ao,...,an-1})

Wa) b \/ Nao) A+ Alan—1)

{ag,....,an—1}>a
1(a) ANu(a) - L
T+ 1(a) Vu(b) (a < b)
A model o C P corresponds to a cut of S via

a— ({a|lla) € a},{a|u(a) € a}).



Lawson topologies



Formal topology

A formal topology S is atriple S = (S, <1, <) where (S,<) is a
preorder and < C § x Pow(S) is called a cover on S such that

acU a<b a<U U<V a<U a<xV
a<1U a<b’ a1V ’ a<qULV

foralla,b € Sand U,V C S where

ULVE lunv={ceS|BaclU)(@beV)c<akc<b}.

A geometric theory T over propositional symbols P determines a formal
topology St that corresponds to the frame presented by the theory T.
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The space of located subsets

Let S be a continuous cover, and let £(S) be the formal topology
associated with the geometric theory T; call £L(S) the space of
located subsets of S.

Theory T,
u(a) - \/ u(ay) (a < {ag,...,an-1})
k<n
u(a) - \/ u(b)
b<ka
1(ap) A -+ A(ap—1) F 1(a) (a < {ag,...,an-1})

a) - \/ Wao) A~ Al(an—y)

{a01'~"an71}>>(1
I(a) Nu(a) - L
T F1(a) Vu(b) (a < b)
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Compact regular formal topologies

A formal topology S = (S, <, <) is regular if

a<{beS|bxa},

where a << b < S < a*U{b}and b* o {ceS|blc< 0}

A formal topology S is compact if
S<U = (FA€Fin(U))S < A.

Lemma (Johnstone (1982))

Every compact regular formal topology S = (S, <1, <) is a continuous
cover (S, <1, wb) withwb(a) & {be S| b << a}.

Lemma

Continuous maps between compact regular formal topologies are

perfect. Hence, the category KReg of compact regular formal
topologies and continuous maps is a full subcategory of CCov.
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Universal property

Proposition

1. L(S) is a compact regular formal topology.

2. There exists a perfect map vs: L(S) — S such that for any
compact regular formal topology S" and a perfect map r: S’ — S,
there exists a unique continuous mapr: 8" — L(S) such that

LS\L /
f
S
Theorem

The construction L(S) is the right adjoint to the forgetful functor
KReg — CCov.
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Lawson topology

Classically, the right adjoint to the forgetful functor KReg — CCov is
given by the Lawson topologies on continuous lattices.

Theorem. L(S) represents the Lawson topology on Sat(S).

Theorem. The monad K on KReg induced by the adjunction is
naturally isomorphic to the Vietoris monad on KReg.

Oa k- \/<>ak (a < {ao,...,an—1})
k<n

Sat \/ b
hbka

TH\/{0A |4 €FinS}

DA + OB (A < B)
DA/\DBI—\/{DC|C<<A&C<<B}
OAANOat \/{Ob|becA|a}

O(AU{a}) F OAV Ca.
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» The notion located subset for continuous cover captures
well-known examples of located subsets.

» Located subsets can be characterised geometrically by the notion
of cuts.

» The space L(S) of located subsets of a continuous cover S is the
Lawson topology on S.

» The monad on KReg induced by the construction £(—) is the
Vietoris monad on KReg.
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