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The space of located subsets

We are interested in spaces of the located subsets of some structures.

Examples
I Extended Dedekind reals (L,U), i.e. extended with +∞,−∞.

I q ∈ U ⇐⇒ (∃q′ < q) q′ ∈ U,
I p ∈ L ⇐⇒ (∃p′ > p) p′ ∈ L,
I L ∩ U = ∅,
I p < q =⇒ p ∈ L ∨ q ∈ U.

An extended Dedekind reals (L,U) is equivalent to a located
(possibly unbounded) upper real U.

I q ∈ U ⇐⇒ (∃q′ < q) q′ ∈ U,
I p < q =⇒ p /∈ U ∨ q ∈ U (locatedness)

I Compact (including ∅) subsets of a compact metric space (X, d)
with the Hausdorff metric whose values are in the extended reals.

d(A,B) = max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)
}
.
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Questions

1. Is there a geometric theory (over some given structure) whose
models are the located subsets of that structure?

2. If so, what is the locale presented by the theory?

A geometric theory T = (P,R) over a set P of propositional symbols
is a set R of axioms of the form

p0 ∧ · · · ∧ pn−1 `
∨
i∈I

qi
0 ∧ · · · ∧ qi

ni−1.

A model (ideal) of T is subset α ⊆ P such that

{p0, . . . , pn−1} ⊆ α =⇒ (∃i ∈ I)
{

qi
0, . . . , q

i
ni−1
}
⊆ α

for all axioms p0 ∧ · · · ∧ pn−1 `
∨

i∈I qi
0 ∧ · · · ∧ qi

ni−1 in T .
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Continuous covers (Continuous lattices)

An continuous cover is a structure S = (S, � ,wb) where
� ⊆ S× Pow(S) is a cover satisfying

a ∈ U
a � U

,
a � U U � V

a � V
,

U � V def⇐⇒ (∀a ∈ U) a � V,

and wb is function wb : S→ Pow(S) such that
1. a � wb(a),
2. (∀b ∈ wb(a)) b� a.

Here,� is the way-below relation:

a� b def⇐⇒ (∀U ⊆ S) [b � U =⇒ (∃A ∈ Fin(U)) a � A] .

We have a� b ⇐⇒ (∃A ∈ Fin(S)) a � A & A ⊆ wb(b).

The Sat(S) def
= {AU | U ⊆ S} where AU = {a ∈ S | a � U} forms

a continuous lattice with a base {AB | B ∈ Fin(S)}.
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Continuous covers (Continuous lattices)

A perfect map between continuous covers S = (S, � ,wb) and
S ′ = (S′, � ′,wb′) is a relation r ⊆ S× S′ such that

1. a � ′U =⇒ r− {a} � r−U,
2. a�′ b =⇒ r− {a} � r− {b}.

Let CCov be the category of continuous covers and perfect maps.

Remark
A perfect map S → S ′ between continuous covers corresponds to a
Scott continuous map f : Sat(S)→ Sat(S ′) that has a left adjoint.
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Located subsets of continuous covers

Fix a continuous cover S = (S, � ,wb). A subset V ⊆ S is splitting if

a � U & a ∈ V =⇒ (∃b ∈ U) b ∈ V.
Lemma. A subset V ⊆ S is splitting iff

1. a � {a0, . . . , an−1} & a ∈ V =⇒ (∃i < n) ai ∈ V ,
2. a ∈ V =⇒ (∃b� a) b ∈ V .

A splitting subset V ⊆ S is a located if a� b =⇒ a /∈ V ∨ b ∈ V.

Lemma. A subset V ⊆ S is located iff a ∈ wb(b) =⇒ a /∈ V ∨ b ∈ V.

Proposition. “The located subsets of S” = CCov(1,S).
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Examples of located subsets

Example (Scott topology on Pow(N))
Pω = (Fin(N), � ω,wb) where

A � ω U def⇐⇒ (∃B ∈ U)B ⊆ A,

wb(A) def
= {B ∈ Fin(S) | A ⊆ B} .

I V ⊆ Fin(N) is splitting iff it is closed downwards w.r.t. ⊆.
I A splitting subset V is located iff it is detachable (NB. A� A).
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Examples of located subsets

Example (Scott topology on the bounded upper reals)
Ru = (Q, � u,wb) where

q � u U def⇐⇒ (∀p < q)
(
∃q′ ∈ U

)
p < q′,

wb(q) def
= {p ∈ Q | p < q} .

I V ⊆ Q is splitting iff it is an upper real, i.e.

q ∈ V ⇐⇒ (∃p < q) p ∈ V.

I A splitting subset V is located iff it is a located upper real
(extended real), i.e. p < q =⇒ p /∈ V ∨ q ∈ V .
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Examples of located subsets

Example (Binary tree C (Formal Cantor space))
C = ({0, 1}∗, � C ,wb) where

a � C U def⇐⇒ (∃k ∈ N) (∀c ∈ a[k]) (∃b ∈ U) b 4 c
⇐⇒ U is a uniform bar of a.

a[k] def
= {a ∗ b | |b| = k} ,

wb(a) def
= {b ∈ {0, 1}∗ | a 4 b} .

I V ⊆ {0, 1}∗ is splitting iff a ∈ V ⇐⇒ (∃i ∈ {0, 1}) a ∗ 〈i〉 ∈ V .
I A splitting subset V is located iff it is detachable (NB. a� a),

i.e. it is a (possibly empty) “spread”.
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Examples of located subsets

Example (Locally compact metric spaces, Palmgren (2007))
Given a (Bishop) locally compact metric space (X, d), its localic
completion is the continuous coverM(X) = (MX, � X,wb) where

I MX
def
= X ×Q>0 =

{
b(x, ε) | x ∈ X & ε ∈ Q>0

}
with an order

b(x, ε) <X b(y, δ) def⇐⇒ d(x, y) + ε < δ.

I a � X U def⇐⇒ (∀b <X a) (∃A ∈ Fin(U))
(
∃θ ∈ Q>0

)
b <θ A,

b <θ A def⇐⇒ (∀ b(x, ε) <X b) ε < θ→ (∃a ∈ A) b(x, ε) <X a.

I wb(a) def
= {b ∈ MX | b <X a}.
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Examples of located subsets

Proposition

I A splitting subset V ⊆ MX corresponds to a closed subset

XV
def
= {x ∈ X | (∀ b(y, δ) ∈ MX) d(x, y) < δ→ b(y, δ) ∈ V} .

A closed subset Y ⊆ X corresponds to a splitting subset

VY
def
= {b(x, ε) ∈ MX | (∃y ∈ Y) d(x, y) < ε} .

The correspondence is bijective.
I (Coquand, Palmgren, and Spitters (2011)) A splitting subset

V ⊆ MX is located iff XV ⊆ X is semi-located, i.e. for each x ∈ X,
the distance

d(x,XV)
def
=
{

q ∈ Q>0 | (∃y ∈ XV) d(x, y) < q
}

is a located upper real.
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Geometric theories

A geometric theory T = (P,R) over a set P of propositional symbols
is a set R of axioms of the form

p0 ∧ · · · ∧ pn−1 `
∨
i∈I

qi
0 ∧ · · · ∧ qi

ni−1.

A model (ideal) of T is subset α ⊆ P such that

{p0, . . . , pn−1} ⊆ α =⇒ (∃i ∈ I)
{

qi
0, . . . , q

i
ni−1
}
⊆ α

for all axioms p0 ∧ · · · ∧ pn−1 `
∨

i∈I qi
0 ∧ · · · ∧ qi

ni−1 in T .

Problem. Given a continuous cover S, find a geometric theory TL
whose models are the located subsets of S.
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Geometric theories

Example (Theory of splitting subsets)
Let S = (S, � ,wb) be a continuous cover.
Recall that V ⊆ S is splitting iff

1. a � {a0, . . . , an−1} & a ∈ V =⇒ (∃i < n) ai ∈ V ,
2. a ∈ V =⇒ (∃b� a) b ∈ V .

Thus, splitting subsets of S are the models of a geometric theory over
S with the following axioms:

a `
∨
b�a

b, a `
∨
k<n

ak (a � {a0, . . . , an−1})

Non-example (Located subsets)
A locatedness a� b =⇒ a 6∈ V ∨ b ∈ V is not geometric.
A naive approach requires non-geometric axiom:

> ` (a → ⊥) ∨ b (a� b)
where > def

= ∧∅.
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But there is a way out

Example (Theory of extended Dedekind reals)
I ConsiderRu = (Q, � u,wb) whose located subsets are the

located (unbounded) upper reals.
I A located upper real is equivalent to an extended Dedekind real

(L,U), a pair of disjoint lower and upper reals that is located:
p < q =⇒ p ∈ L ∨ q ∈ U.

Extended Dedekind reals are the models of a theory TD over the
propositional symbols {(p,+∞) | p ∈ Q} ∪ {(−∞, q) | q ∈ Q} with
the following axioms:

(−∞, q) `
∨

q′<q

(−∞, q′)

(−∞, q) ` (−∞, q′) (q < q′)
Dual axioms for (p,+∞) . . . .

(q,+∞) ∧ (−∞, q) ` ⊥
> ` (p,+∞) ∧ (−∞, q) (p < q),

> def
= ∧∅, ⊥ def

= ∨∅.
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Cuts of a continuous cover

Let S = (S, � ,wb) be a continuous cover. A cut of S is a pair (L,U)
of subsets of S such that

1. a � {a0, . . . , an−1} & a ∈ U =⇒ (∃k < n) ak ∈ U,
2. a ∈ U =⇒ (∃b� a) b ∈ U,
3. a � {a0, . . . , an−1} & {a0, . . . , an−1} ⊆ L =⇒ a ∈ L,
4. a ∈ L =⇒ (∃ {a0, . . . , an−1} � a) {a0, . . . , an−1} ⊆ L,
5. L ∩ U = ∅,
6. a� b =⇒ a ∈ L ∨ b ∈ U.

Proposition
There exists a bijective correspondence between the located subsets
of S and the cuts of S given by

V 7→ (LV ,V) ,

LV
def
= {a ∈ S | (∃ {a0, . . . , an−1} � a) (∀k < n) ak /∈ V} .
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The theory of located subsets

Given a continuous cover S, define a geometric theory TL over a
propositional symbols P = {l(a) | a ∈ S} ∪ {u(a) | a ∈ S} consisting
of axioms:

u(a) `
∨
k<n

u(ak) (a � {a0, . . . , an−1})

u(a) `
∨
b�a

u(b)

l(a0) ∧ · · · ∧ l(an−1) ` l(a) (a � {a0, . . . , an−1})

l(a) `
∨

{a0,...,an−1}�a

l(a0) ∧ · · · ∧ l(an−1)

l(a) ∧ u(a) ` ⊥
> ` l(a) ∨ u(b) (a� b)

A model α ⊆ P corresponds to a cut of S via

α 7→ ({a | l(a) ∈ α} , {a | u(a) ∈ α}) .
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Formal topology

A formal topology S is a triple S = (S, � ,≤) where (S,≤) is a
preorder and � ⊆ S× Pow(S) is called a cover on S such that

a ∈ U
a � U

,
a ≤ b
a � b

,
a � U U � V

a � V
,

a � U a � V
a � U ↓ V

,

for all a, b ∈ S and U,V ⊆ S where

U ↓ V def
= ↓U ∩ ↓V = {c ∈ S | (∃a ∈ U) (∃b ∈ V) c ≤ a & c ≤ b} .

A geometric theory T over propositional symbols P determines a formal
topology ST that corresponds to the frame presented by the theory T .
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The space of located subsets

Let S be a continuous cover, and let L(S) be the formal topology
associated with the geometric theory TL; call L(S) the space of
located subsets of S.

Theory TL

u(a) `
∨
k<n

u(ak) (a � {a0, . . . , an−1})

u(a) `
∨
b�a

u(b)

l(a0) ∧ · · · ∧ l(an−1) ` l(a) (a � {a0, . . . , an−1})

l(a) `
∨

{a0,...,an−1}�a

l(a0) ∧ · · · ∧ l(an−1)

l(a) ∧ u(a) ` ⊥
> ` l(a) ∨ u(b) (a� b)
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Compact regular formal topologies

A formal topology S = (S, � ,≤) is regular if

a � {b ∈ S | b ≪ a} ,

where a ≪ b def⇐⇒ S � a∗ ∪ {b} and b∗ def
= {c ∈ S | b ↓ c � ∅}.

A formal topology S is compact if

S � U =⇒ (∃A ∈ Fin(U)) S � A.

Lemma (Johnstone (1982))
Every compact regular formal topology S = (S, � ,≤) is a continuous
cover (S, � ,wb) with wb(a) def

= {b ∈ S | b ≪ a} .

Lemma
Continuous maps between compact regular formal topologies are
perfect. Hence, the category KReg of compact regular formal
topologies and continuous maps is a full subcategory of CCov.
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Universal property

Proposition

1. L(S) is a compact regular formal topology.
2. There exists a perfect map ιS : L(S)→ S such that for any

compact regular formal topology S ′ and a perfect map r : S ′ → S,
there exists a unique continuous map r̃ : S ′ → L(S) such that

L(S)
ιS
��

S ′∃! r̃oo

r
yyS

Theorem
The construction L(S) is the right adjoint to the forgetful functor
KReg→ CCov.
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Lawson topology

Classically, the right adjoint to the forgetful functor KReg→ CCov is
given by the Lawson topologies on continuous lattices.

Theorem. L(S) represents the Lawson topology on Sat(S).
Theorem. The monad KL on KReg induced by the adjunction is
naturally isomorphic to the Vietoris monad on KReg.

3a `
∨
k<n

3ak (a � {a0, . . . , an−1})

3a `
∨
b�a

3b

> `
∨
{2A | A ∈ Fin S}

2A ` 2B (A � B)

2A ∧2B `
∨
{2C | C� A & C� B}

2A ∧3a `
∨
{3b | b ∈ A ↓ a}

2(A ∪ {a}) ` 2A ∨3a.
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Summary

I The notion located subset for continuous cover captures
well-known examples of located subsets.

I Located subsets can be characterised geometrically by the notion
of cuts.

I The space L(S) of located subsets of a continuous cover S is the
Lawson topology on S.

I The monad on KReg induced by the construction L(−) is the
Vietoris monad on KReg.

26 / 27



References

Thierry Coquand, Erik Palmgren, and Bas Spitters. Metric
complements of overt closed sets. MLQ Math. Log. Q., 57(4):
373–378, 2011.

Erik Palmgren. A constructive and functorial embedding of locally
compact metric spaces into locales. Topology Appl., 154:
1854–1880, 2007.

Giovanni Sambin. Intuitionistic formal spaces — a first communication.
In D. Skordev, editor, Mathematical Logic and its Applications,
volume 305, pages 187–204. Plenum Press, 1987.

Bas Spitters. Locatedness and overt sublocales. Ann. Pure Appl.
Logic, 162(1):36–54, 2010.

Steven Vickers. Localic completion of generalized metric spaces I.
Theory Appl. Categ., 14(15):328–356, 2005.

Peter. T. Johnstone. Stone Spaces. Cambridge University Press, 1982.

27 / 27


	Located subsets of continuous lattices
	Examples of located subsets
	Spaces of located subsets
	Lawson topologies

