Lawson topology as the space of located subsets

Tatsuji Kawai

Universtà di Padova

TACL 2017, Prague June 26–30
The space of located subsets

We are interested in spaces of the located subsets of some structures.

Examples

- Extended Dedekind reals \((L, U)\), i.e. extended with \(+\infty, -\infty\).
 - \(q \in U \iff (\exists q' < q) q' \in U\),
 - \(p \in L \iff (\exists p' > p) p' \in L\),
 - \(L \cap U = \emptyset\),
 - \(p < q \implies p \notin U \lor q \in U\) (locatedness).

An extended Dedekind reals \((L, U)\) is equivalent to a located (possibly unbounded) upper real \(U\).

- \(q \in U \iff (\exists q' < q) q' \in U\),
- \(p < q \implies p \notin U \lor q \in U\) (locatedness)

- Compact (including \(\emptyset\)) subsets of a compact metric space \((X, d)\) with the Hausdorff metric whose values are in the extended reals.

\[
d(A, B) = \max \left\{ \sup_{a \in A} \inf_{b \in B} d(a, b), \sup_{b \in B} \inf_{a \in A} d(a, b) \right\}.
\]
1. Is there a geometric theory (over some given structure) whose models are the located subsets of that structure?

2. If so, what is the locale presented by the theory?

A **geometric theory** $T = (P, R)$ over a set P of propositional symbols is a set R of axioms of the form

$$p_0 \land \cdots \land p_{n-1} \vdash \bigvee_{i \in I} q^i_0 \land \cdots \land q^i_{n_i-1}.$$

A **model** (ideal) of T is subset $\alpha \subseteq P$ such that

$$\{p_0, \ldots, p_{n-1}\} \subseteq \alpha \implies (\exists i \in I) \{q^i_0, \ldots, q^i_{n_i-1}\} \subseteq \alpha$$

for all axioms $p_0 \land \cdots \land p_{n-1} \vdash \bigvee_{i \in I} q^i_0 \land \cdots \land q^i_{n_i-1}$ in T.

Outline

1. Located subsets of continuous lattices
2. Examples of located subsets
3. Spaces of located subsets
4. Lawson topologies
An **continuous cover** is a structure $S = (S, \triangleleft, \text{wb})$ where $\triangleleft \subseteq S \times \text{Pow}(S)$ is a **cover** satisfying

$$
\begin{align*}
 a \in U & \quad \Rightarrow \quad a \triangleleft U, \\
 a \triangleleft U & \quad \Rightarrow \quad a \triangleleft V, \\
 U \triangleleft V & \quad \overset{\text{def}}{\iff} \quad (\forall a \in U) a \triangleleft V,
\end{align*}
$$

and wb is function $\text{wb} : S \rightarrow \text{Pow}(S)$ such that

1. $a \triangleleft \text{wb}(a)$,
2. $(\forall b \in \text{wb}(a)) b \ll a$.

Here, \ll is the **way-below** relation:

$$
a \ll b \overset{\text{def}}{\iff} (\forall U \subseteq S) [b \triangleleft U \implies (\exists A \in \text{Fin}(U)) a \triangleleft A].
$$

We have $a \ll b \iff (\exists A \in \text{Fin}(S)) a \triangleleft A \land A \subseteq \text{wb}(b)$.

The $\text{Sat}(S) \overset{\text{def}}{=} \{ A U \mid U \subseteq S \}$ where $A U = \{ a \in S \mid a \triangleleft U \}$ forms a **continuous lattice** with a base $\{ A B \mid B \in \text{Fin}(S) \}$.

A **perfect map** between continuous covers $S = (S, \sqsubseteq, \text{wb})$ and $S' = (S', \sqsubseteq', \text{wb}')$ is a relation $r \subseteq S \times S'$ such that

1. $a \sqsubseteq' U \implies r^\rightarrow \{a\} \sqsubseteq r^\rightarrow U$

2. $a \ll' b \implies r^\rightarrow \{a\} \ll r^\rightarrow \{b\}$

Let CCov be the category of continuous covers and perfect maps.

Remark

A perfect map $S \to S'$ between continuous covers corresponds to a Scott continuous map $f : \text{Sat}(S) \to \text{Sat}(S')$ that has a left adjoint.
Fix a continuous cover $S = (S, \prec, \text{wb})$. A subset $V \subseteq S$ is **splitting** if

$$a \prec U \& a \in V \implies (\exists b \in U) b \in V.$$

Lemma. A subset $V \subseteq S$ is splitting iff

1. $a \prec \{a_0, \ldots, a_{n-1}\} \& a \in V \implies (\exists i < n) a_i \in V,$
2. $a \in V \implies (\exists b \ll a) b \in V.$
Located subsets of continuous covers

Fix a continuous cover $S = (S, \prec, \text{wb})$. A subset $V \subseteq S$ is **splitting** if

$$a \prec U \& a \in V \implies (\exists b \in U) b \in V.$$

Lemma. A subset $V \subseteq S$ is splitting iff

1. $a \prec \{a_0, \ldots, a_{n-1}\} \& a \in V \implies (\exists i < n) a_i \in V,$
2. $a \in V \implies (\exists b \ll a) b \in V.$

A splitting subset $V \subseteq S$ is a **located** if $a \ll b \implies a \notin V \lor b \in V$.

Lemma. A subset $V \subseteq S$ is located iff $a \in \text{wb}(b) \implies a \notin V \lor b \in V$.

Located subsets of continuous covers

Fix a continuous cover $S = (S, \triangleleft, \text{wb})$. A subset $V \subseteq S$ is splitting if

$$a \triangleleft U \& a \in V \implies (\exists b \in U) b \in V.$$

Lemma. A subset $V \subseteq S$ is splitting iff

1. $a \triangleleft \{a_0, \ldots, a_{n-1}\} \& a \in V \implies (\exists i < n) a_i \in V,$
2. $a \in V \implies (\exists b \ll a) b \in V.$

A splitting subset $V \subseteq S$ is a located if $a \ll b \implies a \notin V \lor b \in V.$

Lemma. A subset $V \subseteq S$ is located iff $a \in \text{wb}(b) \implies a \notin V \lor b \in V.$

Proposition. “The located subsets of S” $= \text{CCov}(1, S).$
Examples
Examples of located subsets

Example (Scott topology on $\text{Pow}(\mathbb{N})$)

$\mathcal{P}\omega = (\text{Fin}(\mathbb{N}), \triangleleft_\omega, \text{wb})$ where

\[
A \triangleleft_\omega U \iff (\exists B \in U) B \subseteq A,
\]

\[
\text{wb}(A) \overset{\text{def}}{=} \{ B \in \text{Fin}(S) \mid A \subseteq B \}.
\]

- $V \subseteq \text{Fin}(\mathbb{N})$ is splitting iff it is closed downwards w.r.t. \subseteq.
- A splitting subset V is located iff it is detachable (NB. $A \ll A$).
Examples of located subsets

Example (Scott topology on the bounded upper reals)

\[\mathcal{R}^u = (\mathbb{Q}, \triangleleft_u, \text{wb}) \]

where

\[q \triangleleft_u U \overset{\text{def}}{\iff} (\forall p < q) \ (\exists q' \in U) \ p < q', \]

\[\text{wb}(q) \overset{\text{def}}{=} \{ p \in \mathbb{Q} | p < q \}. \]

- \(V \subseteq \mathbb{Q} \) is splitting iff it is an upper real, i.e.

\[q \in V \iff (\exists p < q) \ p \in V. \]

- A splitting subset \(V \) is located iff it is a located upper real (extended real), i.e.

\[p < q \implies p \notin V \lor q \in V. \]
Examples of located subsets

Example (Binary tree \mathcal{C} (Formal Cantor space))

$\mathcal{C} = (\{0, 1\}^\ast, \triangleleft_{\mathcal{C}}, \text{wb})$ where

\[
a \triangleleft_{\mathcal{C}} U \overset{\text{def}}{\iff} (\exists k \in \mathbb{N}) (\forall c \in a[k]) (\exists b \in U) b \triangleleft c
\]

$\iff U$ is a uniform bar of a.

\[
a[k] \overset{\text{def}}{=} \{ a \ast b \mid |b| = k \},
\]

\[
\text{wb}(a) \overset{\text{def}}{=} \{ b \in \{0, 1\}^\ast \mid a \triangleleft b \}.
\]

$\triangleright V \subseteq \{0, 1\}^\ast$ is splitting iff $a \in V \iff (\exists i \in \{0, 1\}) a \ast \langle i \rangle \in V$.

\triangleright A splitting subset V is located iff it is detachable (NB. $a \ll a$), i.e. it is a (possibly empty) “spread”.
Examples of located subsets

Example (Locally compact metric spaces, Palmgren (2007))

Given a (Bishop) locally compact metric space \((X, d)\), its **localic completion** is the continuous cover \(\mathcal{M}(X) = (M_X, \triangleleft_X, \text{wb})\) where

- \(M_X \overset{\text{def}}{=} X \times \mathbb{Q}^+ = \{\,(b(x, \varepsilon)) \mid x \in X \& \varepsilon \in \mathbb{Q}^+\} \) with an order \(b(x, \varepsilon)_X < b(y, \delta) \overset{\text{def}}{=} d(x, y) + \varepsilon < \delta\).

- \(a \triangleleft_X U \overset{\text{def}}{=} (\forall b <_X a) (\exists A \in \text{Fin}(U)) (\exists \theta \in \mathbb{Q}^+) b \sqsubseteq_\theta A, b \sqsubseteq_\theta A \overset{\text{def}}{=} (\forall b(x, \varepsilon) <_X b) \varepsilon < \theta \rightarrow (\exists a \in A) b(x, \varepsilon) <_X a.\)

- \(\text{wb}(a) \overset{\text{def}}{=} \{b \in M_X \mid b <_X a\}.\)
Examples of located subsets

Proposition

- A splitting subset $V \subseteq M_X$ corresponds to a closed subset

 $$X_V \overset{\text{def}}{=} \{ x \in X \mid (\forall b(y, \delta) \in M_X) \, d(x, y) < \delta \rightarrow b(y, \delta) \in V \} .$$

 A closed subset $Y \subseteq X$ corresponds to a splitting subset

 $$V_Y \overset{\text{def}}{=} \{ b(x, \varepsilon) \in M_X \mid (\exists y \in Y) \, d(x, y) < \varepsilon \} .$$

 The correspondence is bijective.

- (Coquand, Palmgren, and Spitters (2011)) A splitting subset $V \subseteq M_X$ is located iff $X_V \subseteq X$ is semi-located, i.e. for each $x \in X$, the distance

 $$d(x, X_V) \overset{\text{def}}{=} \{ q \in \mathbb{Q}^>0 \mid (\exists y \in X_V) \, d(x, y) < q \}$$

 is a located upper real.
The space of located subsets
A **geometric theory** $T = (P, R)$ over a set P of propositional symbols is a set R of axioms of the form

$$p_0 \land \cdots \land p_{n-1} \vdash \bigvee_{i \in I} q_0^i \land \cdots \land q_{n_i-1}^i.$$

A **model** (ideal) of T is subset $\alpha \subseteq P$ such that

$$\{p_0, \ldots, p_{n-1}\} \subseteq \alpha \implies (\exists i \in I) \{q_0^i, \ldots, q_{n_i-1}^i\} \subseteq \alpha$$

for all axioms $p_0 \land \cdots \land p_{n-1} \vdash \bigvee_{i \in I} q_0^i \land \cdots \land q_{n_i-1}^i$ in T.

Problem. Given a continuous cover S, find a geometric theory T_L whose models are the located subsets of S.
Example (Theory of splitting subsets)

Let \(S = (S, \triangleleft, \text{wb}) \) be a continuous cover.

Recall that \(V \subseteq S \) is splitting iff

1. \(a \triangleleft \{a_0, \ldots, a_{n-1}\} \text{ and } a \in V \implies (\exists i < n) a_i \in V, \)
2. \(a \in V \implies (\exists b \ll a) b \in V. \)

Thus, splitting subsets of \(S \) are the models of a geometric theory over \(S \) with the following axioms:

\[
a \vdash \bigvee_{b \ll a} b, \quad a \vdash \bigvee_{k<n} a_k \quad (a \triangleleft \{a_0, \ldots, a_{n-1}\})
\]
Example (Theory of splitting subsets)

Let $S = (S, \triangleleft, \text{wb})$ be a continuous cover.

Recall that $V \subseteq S$ is splitting iff

1. $a \triangleleft \{a_0, \ldots, a_{n-1}\} \land a \in V \implies (\exists i < n) a_i \in V,$

2. $a \in V \implies (\exists b \ll a) b \in V.$

Thus, splitting subsets of S are the models of a geometric theory over S with the following axioms:

$$a \vdash \bigvee_{b \ll a} b, \quad a \vdash \bigvee_{k < n} a_k \quad (a \triangleleft \{a_0, \ldots, a_{n-1}\})$$

Non-example (Located subsets)

A locatedness $a \ll b \implies a \notin V \lor b \in V$ is not geometric.

A naive approach requires non-geometric axiom:

$$\top \vdash (a \rightarrow \bot) \lor b \quad (a \ll b)$$

where $\top \overset{\text{def}}{=} \land \emptyset.$
Example (Theory of extended Dedekind reals)

- Consider $\mathcal{R}^u = (\mathbb{Q}, <_u, \text{wb})$ whose located subsets are the located (unbounded) upper reals.

- A located upper real is equivalent to an extended Dedekind real (L, U), a pair of disjoint lower and upper reals that is located: $p < q \iff p \in L \lor q \in U$.
Example (Theory of extended Dedekind reals)

Consider $\mathcal{R}^u = (\mathbb{Q}, \vartriangleleft_u, \text{wb})$ whose located subsets are the located (unbounded) upper reals.

A located upper real is equivalent to an extended Dedekind real (L, U), a pair of disjoint lower and upper reals that is located:

$$p < q \implies p \in L \lor q \in U.$$

Extended Dedekind reals are the models of a theory T_D over the propositional symbols $\{ (p, +\infty) \mid p \in \mathbb{Q} \} \cup \{ (\neg\infty, q) \mid q \in \mathbb{Q} \}$ with the following axioms:

$$\neg\infty, q \vdash \bigvee_{q' < q} (\neg\infty, q')$$

$$\neg\infty, q \vdash (\neg\infty, q') \quad (q < q')$$

Dual axioms for $(p, +\infty)$

$$q, +\infty) \land (\neg\infty, q) \vdash \bot$$

$$\top \vdash (p, +\infty) \land (\neg\infty, q) \quad (p < q),$$

$$\top \overset{\text{def}}{=} \land \emptyset, \quad \bot \overset{\text{def}}{=} \lor \emptyset.$$
Let $S = (S, \triangleleft, \text{wb})$ be a continuous cover. A **cut** of S is a pair (L, U) of subsets of S such that

1. $a \triangleleft \{a_0, \ldots, a_{n-1}\} \& a \in U \implies (\exists k < n) a_k \in U,$
2. $a \in U \implies (\exists b \ll a) b \in U,$
3. $a \triangleleft \{a_0, \ldots, a_{n-1}\} \& \{a_0, \ldots, a_{n-1}\} \subseteq L \implies a \in L,$
4. $a \in L \implies (\exists \{a_0, \ldots, a_{n-1}\} \gg a) \{a_0, \ldots, a_{n-1}\} \subseteq L,$
5. $L \cap U = \emptyset,$
6. $a \ll b \implies a \in L \lor b \in U.$
Let $S = (S, <, \text{wb})$ be a continuous cover. A **cut** of S is a pair (L, U) of subsets of S such that

1. $a < \{a_0, \ldots, a_{n-1}\} \& a \in U \implies (\exists k < n) a_k \in U,$
2. $a \in U \implies (\exists b \ll a) b \in U,$
3. $a < \{a_0, \ldots, a_{n-1}\} \& \{a_0, \ldots, a_{n-1}\} \subseteq L \implies a \in L,$
4. $a \in L \implies (\exists \{a_0, \ldots, a_{n-1}\} \gg a) \{a_0, \ldots, a_{n-1}\} \subseteq L,$
5. $L \cap U = \emptyset,$
6. $a \ll b \implies a \in L \lor b \in U.$

Proposition

There exists a bijective correspondence between the located subsets of S and the cuts of S given by

$$V \mapsto (L_V, V),$$

$$L_V \overset{\text{def}}{=} \{a \in S \mid (\exists \{a_0, \ldots, a_{n-1}\} \gg a) (\forall k < n) a_k \notin V\}.$$
The theory of located subsets

Given a continuous cover S, define a geometric theory T_L over a propositional symbols $P = \{l(a) \mid a \in S\} \cup \{u(a) \mid a \in S\}$ consisting of axioms:

\[
\begin{align*}
 u(a) & \vdash \bigvee_{k<n} u(a_k) & (a \lhd \{a_0, \ldots, a_{n-1}\}) \\
 u(a) & \vdash \bigvee_{b \ll a} u(b) \\
 l(a_0) \land \cdots \land l(a_{n-1}) & \vdash l(a) & (a \lhd \{a_0, \ldots, a_{n-1}\}) \\
 l(a) & \vdash \bigvee_{\{a_0, \ldots, a_{n-1}\} \gg a} l(a_0) \land \cdots \land l(a_{n-1}) \\
 l(a) \land u(a) & \vdash \bot \\
 \top & \vdash l(a) \lor u(b)
\end{align*}
\]

A model $\alpha \subseteq P$ corresponds to a cut of S via

\[
\alpha \mapsto (\{a \mid l(a) \in \alpha\}, \{a \mid u(a) \in \alpha\}).
\]
Lawson topologies
A **formal topology** S is a triple $S = (S, \triangleleft, \leq)$ where (S, \leq) is a preorder and $\triangleleft \subseteq S \times \text{Pow}(S)$ is called a **cover** on S such that

\[
\frac{a \in U}{\triangleleft U' }, \quad \frac{a \leq b}{\triangleleft b' }, \quad \frac{a \triangleleft U \quad U \triangleleft V}{\triangleleft V }, \quad \frac{a \triangleleft U \quad a \triangleleft V}{\triangleleft U \downarrow V },
\]

for all $a, b \in S$ and $U, V \subseteq S$ where

\[
U \downarrow V \overset{\text{def}}{=} \downarrow U \cap \downarrow V = \{ c \in S \mid (\exists a \in U) (\exists b \in V) c \leq a \land c \leq b \}.
\]

A geometric theory T over propositional symbols P determines a formal topology S_T that corresponds to the frame presented by the theory T.
Let \(S \) be a continuous cover, and let \(\mathcal{L}(S) \) be the formal topology associated with the geometric theory \(T_\mathcal{L} \); call \(\mathcal{L}(S) \) the space of located subsets of \(S \).

Theory \(T_\mathcal{L} \)

\[
\begin{align*}
\mathbf{u}(a) & \vdash \bigvee_{k<n} \mathbf{u}(a_k) \quad (a \ll \{a_0, \ldots, a_{n-1}\}) \\
\mathbf{u}(a) & \vdash \bigvee_{b\ll a} \mathbf{u}(b) \\
\mathbf{l}(a_0) \wedge \cdots \wedge \mathbf{l}(a_{n-1}) & \vdash \mathbf{l}(a) \quad (a \ll \{a_0, \ldots, a_{n-1}\}) \\
\mathbf{l}(a) & \vdash \bigvee_{\{a_0, \ldots, a_{n-1}\} \gg a} \mathbf{l}(a_0) \wedge \cdots \wedge \mathbf{l}(a_{n-1}) \\
\mathbf{l}(a) \wedge \mathbf{u}(a) & \vdash \bot \\
\top & \vdash \mathbf{l}(a) \vee \mathbf{u}(b) \quad (a \ll b)
\end{align*}
\]
The space of located subsets

Let \mathcal{S} be a continuous cover, and let $\mathcal{L}(\mathcal{S})$ be the formal topology associated with the geometric theory $T_{\mathcal{L}}$; call $\mathcal{L}(\mathcal{S})$ the space of located subsets of \mathcal{S}.

Theory $T_{\mathcal{L}}$

\[
\mathbf{u}(a) \vdash \bigvee_{k<n} \mathbf{u}(a_k) \quad (a \triangleleft \{a_0, \ldots, a_{n-1}\})
\]

\[
\mathbf{u}(a) \vdash \bigvee_{b \ll a} \mathbf{u}(b)
\]

\[
\mathbf{l}(a_0) \land \cdots \land \mathbf{l}(a_{n-1}) \vdash \mathbf{l}(a) \quad (a \triangleleft \{a_0, \ldots, a_{n-1}\})
\]

\[
\mathbf{l}(a) \vdash \bigvee_{\{a_0, \ldots, a_{n-1}\} \gg a} \mathbf{l}(a_0) \land \cdots \land \mathbf{l}(a_{n-1})
\]

\[
\mathbf{l}(a) \land \mathbf{u}(a) \vdash \bot
\]

\[
\top \vdash \mathbf{l}(a) \lor \mathbf{u}(b)
\]
The space of located subsets

Let S be a continuous cover, and let $\mathcal{L}(S)$ be the formal topology associated with the geometric theory $T_{\mathcal{L}}$; call $\mathcal{L}(S)$ the space of located subsets of S.

Theory $T_{\mathcal{L}}$

$$u(a) \vdash \bigvee_{k \leq n} u(a_k) \quad (a \ll \{a_0, \ldots, a_{n-1}\})$$

$$u(a) \vdash \bigvee_{b \ll a} u(b)$$

$$l(a_0) \land \cdots \land l(a_{n-1}) \vdash l(a) \quad (a \ll \{a_0, \ldots, a_{n-1}\})$$

$$l(a) \vdash \bigvee_{\{a_0, \ldots, a_{n-1}\} \gg a} l(a_0) \land \cdots \land l(a_{n-1})$$

$$l(a) \land u(a) \vdash \bot$$

$$\top \vdash l(a) \lor u(b) \quad (a \ll b)$$
The space of located subsets

Let S be a continuous cover, and let $\mathcal{L}(S)$ be the formal topology associated with the geometric theory $T_\mathcal{L}$; call $\mathcal{L}(S)$ the space of located subsets of S.

Theory $T_\mathcal{L}$

\[u(a) \vdash \bigvee_{k<n} u(a_k) \quad (a \prec \{a_0, \ldots, a_{n-1}\}) \]

\[u(a) \vdash \bigvee_{b \ll a} u(b) \]

\[l(a_0) \land \cdots \land l(a_{n-1}) \vdash l(a) \quad (a \prec \{a_0, \ldots, a_{n-1}\}) \]

\[l(a) \vdash \bigvee_{\{a_0, \ldots, a_{n-1}\} \gg a} l(a_0) \land \cdots \land l(a_{n-1}) \]

\[l(a) \land u(a) \vdash \bot \]

\[\top \vdash l(a) \lor u(b) \quad (a \ll b) \]
A formal topology $S = (S, \triangleleft, \leq)$ is **regular** if

$$a \triangleleft \{b \in S \mid b \ll a\},$$

where $a \ll b \overset{\text{def}}{\iff} S \triangleleft a^* \cup \{b\}$ and $b^* \overset{\text{def}}{=} \{c \in S \mid b \downarrow c \ll \emptyset\}$.

A formal topology S is **compact** if

$$S \triangleleft U \implies (\exists A \in \text{Fin}(U)) S \triangleleft A.$$

Lemma (Johnstone (1982))

*Every compact regular formal topology $S = (S, \triangleleft, \leq)$ is a continuous cover $(S, \triangleleft, \text{wb})$ with $\text{wb}(a) \overset{\text{def}}{=} \{b \in S \mid b \ll a\}$.***

Lemma

*Continuous maps between compact regular formal topologies are perfect. Hence, the category \textbf{KReg} of compact regular formal topologies and continuous maps is a full subcategory of \textbf{CCov}.***
Proposition

1. $\mathcal{L}(S)$ is a compact regular formal topology.

2. There exists a perfect map $\iota_S : \mathcal{L}(S) \to S$ such that for any compact regular formal topology S' and a perfect map $r : S' \to S$, there exists a unique continuous map $\tilde{r} : S' \to \mathcal{L}(S)$ such that

\[
\begin{array}{ccc}
\mathcal{L}(S) & \xleftarrow{\exists! \tilde{r}} & S' \\
\downarrow \iota_S & & \downarrow r \\
S & \xleftarrow{r} & \\
\end{array}
\]

Theorem

The construction $\mathcal{L}(S)$ is the right adjoint to the forgetful functor $K\text{Reg} \to \text{CCov}$.
Lawson topology

Classically, the right adjoint to the forgetful functor $\text{KReg} \to \text{CCov}$ is given by the Lawson topologies on continuous lattices.

Theorem. $\mathcal{L}(S)$ represents the Lawson topology on $\text{Sat}(S)$.

Theorem. The monad K_L on KReg induced by the adjunction is naturally isomorphic to the Vietoris monad on KReg.

\[\Diamond a \vdash \bigvee_{k < n} \Diamond a_k \quad (a \triangleleft \{a_0, \ldots, a_{n-1}\}) \]

\[\Diamond a \vdash \bigvee_{b \ll a} \Diamond b \]

\[\top \vdash \bigvee \{\Box A \mid A \in \text{Fin} S\} \]

\[\Box A \vdash \Box B \quad (A \triangleleft B) \]

\[\Box A \land \Box B \vdash \bigvee \{\Box C \mid C \ll A \land C \ll B\} \]

\[\Box A \land \Diamond a \vdash \bigvee \{\Diamond b \mid b \in A \downarrow a\} \]

\[\Box (A \cup \{a\}) \vdash \Box A \lor \Diamond a. \]
Lawson topology

Classically, the right adjoint to the forgetful functor $\textbf{KReg} \to \textbf{CCov}$ is given by the Lawson topologies on continuous lattices.

Theorem. $\mathcal{L}(S)$ represents the Lawson topology on $\text{Sat}(S)$.

Theorem. The monad $K_{\mathcal{L}}$ on \textbf{KReg} induced by the adjunction is naturally isomorphic to the Vietoris monad on \textbf{KReg}.

\[
\diamond a \vdash \bigvee_{k<n} \diamond a_k \quad \quad (a \rhd \{a_0, \ldots, a_{n-1}\})
\]

\[
\diamond a \vdash \bigvee_{b \ll a} \diamond b
\]

\[
\top \vdash \bigvee \{\square A \mid A \in \text{Fin} S\}
\]

\[
\square A \vdash \square B \quad \quad (A \rhd B)
\]

\[
\square A \land \square B \vdash \bigvee \{\square C \mid C \ll A \land C \ll B\}
\]

\[
\square A \land \diamond a \vdash \bigvee \{\diamond b \mid b \in A \downarrow a\}
\]

\[
\square (A \cup \{a\}) \vdash \square A \lor \diamond a.
\]
Lawson topology

Classically, the right adjoint to the forgetful functor $\text{KReg} \to \text{CCov}$ is given by the Lawson topologies on continuous lattices.

Theorem. $\mathcal{L}(S)$ represents the Lawson topology on $\text{Sat}(S)$.

Theorem. The monad $K_{\mathcal{L}}$ on KReg induced by the adjunction is naturally isomorphic to the Vietoris monad on KReg.

\[
\diamond a \vdash \bigvee_{k<n} \diamond a_k \\
\diamond a \vdash \bigvee_{b \ll a} \diamond b \\
\top \vdash \bigvee \{\square A \mid A \in \text{Fin } S\} \\
\square A \vdash \square B \\
\square A \land \square B \vdash \bigvee \{\square C \mid C \ll A \land C \ll B\} \\
\square A \land \diamond a \vdash \bigvee \{\diamond b \mid b \in A \downarrow a\} \\
\square (A \cup \{a\}) \vdash \square A \lor \diamond a.
\]
Lawson topology

Classically, the right adjoint to the forgetful functor $\mathbf{KReg} \to \mathbf{CCov}$ is given by the Lawson topologies on continuous lattices.

Theorem. $\mathcal{L}(S)$ represents the Lawson topology on $\text{Sat}(S)$.

Theorem. The monad $K_{\mathcal{L}}$ on \mathbf{KReg} induced by the adjunction is naturally isomorphic to the Vietoris monad on \mathbf{KReg}.

\[
\Diamond a \vdash \bigvee_{k<n} \Diamond a_k \quad (a \triangleleft \{a_0, \ldots, a_{n-1}\})
\]

\[
\Diamond a \vdash \bigvee_{b \ll a} \Diamond b
\]

\[
\top \vdash \bigvee \{\Box A \mid A \in \text{Fin} \, S\}
\]

\[
\Box A \vdash \Box B \quad (A \triangleleft B)
\]

\[
\Box A \land \Box B \vdash \bigvee \{\Box C \mid C \ll A \land C \ll B\}
\]

\[
\Box A \land \Diamond a \vdash \bigvee \{\Diamond b \mid b \in A \downarrow a\}
\]

\[
\Box (A \cup \{a\}) \vdash \Box A \lor \Diamond a.
\]
The notion located subset for continuous cover captures well-known examples of located subsets.

Located subsets can be characterised geometrically by the notion of cuts.

The space $\mathcal{L}(S)$ of located subsets of a continuous cover S is the Lawson topology on S.

The monad on \textbf{KReg} induced by the construction $\mathcal{L}(-)$ is the Vietoris monad on \textbf{KReg}.

