States of free product algebras

Sara Ugolini
University of Pisa, Department of Computer Science sara.ugolini@di.unipi.it
(joint work with Tommaso Flaminio and Lluis Godo)

TACL 2017

BACKGROUND

In Hájek's setting of mathematical fuzzy logic, BL (Basic Logic) plays a fundamental role, as the logic of all continuous t-norms.
Its algebraic semantics, the variety of BL-algebras, is generated by the class of BL-algebras on $[0,1]$, which are defined by a continuous t -norm and its residuum.

BACKGROUND

In Hájek's setting of mathematical fuzzy logic, BL (Basic Logic) plays a fundamental role, as the logic of all continuous t-norms.

Its algebraic semantics, the variety of BL-algebras, is generated by the class of BL-algebras on $[0,1]$, which are defined by a continuous t -norm and its residuum.

Three prominent axiomatic extensions, with corresponding algebraic semantics:

- Łukasiewicz logic (involutive), MV-algebras
- Gödel logic (contractive), Gödel algebras
- Product logic (cancellative), Product algebras
[Mostert-Shields Thm.]: a t-norm is continuous if and only if it can be built from the previous three ones by the construction of ordinal sum.

BACKGROUND

A BL-algebra is a (commutative, integral, pointed, bounded) residuated lattice $\mathbf{A}=(A, \odot, \rightarrow, \wedge, \vee, 0,1)$ which satisfies the following equations:

$$
\begin{array}{lll}
(x \rightarrow y) \vee(y \rightarrow x) & =1 & \text { (prelinearity) } \\
x \odot(x \rightarrow y) & =x \wedge y & \text { (divisibility). }
\end{array}
$$

Background

A BL-algebra is a (commutative, integral, pointed, bounded) residuated lattice $\mathbf{A}=(A, \odot, \rightarrow, \wedge, \vee, 0,1)$ which satisfies the following equations:

$$
\begin{array}{lll}
(x \rightarrow y) \vee(y \rightarrow x) & =1 & \text { (prelinearity) } \\
x \odot(x \rightarrow y) & =x \wedge y & \text { (divisibility) }
\end{array}
$$

An MV-algebra A is an involutive BL-algebra: $\neg \neg x=x$.
A Gödel algebra \mathbf{A} is a contractive BL-algebra: $x \cdot x=x$.
A product algebra \mathbf{A} is a BL-algebra that satisfies: $x \wedge \neg x=0$ and $\neg \neg x \rightarrow((y \odot x \rightarrow z \odot x) \rightarrow(y \rightarrow z))=1$.

In what follows: $\neg x:=x \rightarrow 0, x^{n}:=x \odot \ldots \odot x$ (n-times), $x \oplus y=\neg(\neg x \odot \neg y)$.

BACKGROUND

Standard MV-algebra: $[\mathbf{0}, \mathbf{1}]_{Ł}=\left([0,1], \odot_{\mathfrak{Ł}}, \rightarrow_{Ł}, \min , \max , 0,1\right)$

$$
\begin{aligned}
x \odot_{Ł} y= & \max \{0, x+y-1\} \\
x \rightarrow_{\mathrm{Ł}} y= & 1 \text { if } x \leq y, \\
& 1-x+y \text { otherwise. }
\end{aligned}
$$

Standard Gödel algebra: $[\mathbf{0}, \mathbf{1}]_{\mathbf{G}}=\left([0,1], \odot_{G}, \rightarrow_{G}, \min , \max , 0,1\right)$

$$
\begin{aligned}
x \odot_{G} y= & \min \{x, y\} \\
x \rightarrow_{G} y= & 1 \text { if } x \leq y, \\
& y \text { otherwise } .
\end{aligned}
$$

Standard product algebra: $[\mathbf{0}, \mathbf{1}]_{\mathbf{P}}=\left([0,1], \odot_{P}, \rightarrow_{P}, \min , \max , 0,1\right)$

$$
\begin{aligned}
x \odot_{P} y= & x \cdot y \\
x \rightarrow_{P} y= & 1 \text { if } x \leq y \\
& y / x \text { otherwise. }
\end{aligned}
$$

Free Algebras

For L any of MV, Gödel and product logics, and \mathbb{L} its algebraic semantics, let $\mathcal{F}_{\mathbb{L}}(n)$ be the free \mathbb{L}-algebra over n generators, i.e. the Lindenbaum algebra of L-logic over n variables.

Free Algebras

For L any of MV, Gödel and product logics, and \mathbb{L} its algebraic semantics, let $\mathcal{F}_{\mathbb{L}}(n)$ be the free \mathbb{L}-algebra over n generators, i.e. the Lindenbaum algebra of L-logic over n variables.

Since $[0,1]_{L}$ is generic for the variety, $\mathcal{F}_{\mathbb{L}}(n)$ is, up to isomorphisms, the subalgebra of all functions $[0,1]^{n} \rightarrow[0,1]$ generated by the projection maps $\pi_{1}, \ldots, \pi_{n}:[0,1]^{n} \rightarrow[0,1]$, with operations defined componentwise by the standard ones.

Free algebras

For L any of MV, Gödel and product logics, and \mathbb{L} its algebraic semantics, let $\mathcal{F}_{\mathbb{L}}(n)$ be the free \mathbb{L}-algebra over n generators, i.e. the Lindenbaum algebra of L-logic over n variables.

Since $[0,1]_{L}$ is generic for the variety, $\mathcal{F}_{\mathbb{L}}(n)$ is, up to isomorphisms, the subalgebra of all functions $[0,1]^{n} \rightarrow[0,1]$ generated by the projection maps $\pi_{1}, \ldots, \pi_{n}:[0,1]^{n} \rightarrow[0,1]$, with operations defined componentwise by the standard ones.

Thus, every element of $f \in \mathcal{F}_{\mathbb{L}}(n)$ can be regarded as a function $f:[0,1]^{n} \rightarrow[0,1]$. For example, for product logic:
formula product function

$$
\varphi=p \odot(q \wedge r) \quad f_{\varphi}(x, y, z)=x \cdot \min (y, z)
$$

States of MV and Gödel algebras

[Mundici, 95]: Given any MV-algebra $\mathbf{A}=(A, \odot, \rightarrow, \wedge, \vee, 0,1)$, a state of \mathbf{A} is a map $s: A \rightarrow[0,1]$ such that:
(I) $s(1)=1$,
(II) if $a \odot b=0$, then $s(a \oplus b)=s(a)+s(b)$.

States of MV and Gödel algebras

[Mundici, 95]: Given any MV-algebra $\mathbf{A}=(A, \odot, \rightarrow, \wedge, \vee, 0,1)$, a state of \mathbf{A} is a map $s: A \rightarrow[0,1]$ such that:
(I) $s(1)=1$,
(II) if $a \odot b=0$, then $s(a \oplus b)=s(a)+s(b)$.
[Aguzzoli-Gerla-Marra, 2008]: Let $\mathcal{F}_{\mathbb{G}}(n)$ be the free Gödel algebra on n generators. A state of $\mathcal{F}_{\mathbb{G}}(n)$ is a map $s: \mathcal{F}_{\mathbb{G}}(n) \rightarrow[0,1]$ such that:
(I) $s(0)=0$ and $s(1)=1$,
(II) $f \leq g$ implies $s(f) \leq s(g)$
(III) $s(f \vee g)=s(f)+s(g)-s(f \wedge g)$
(Iv) if f, g, h are either join-irreducible elements or equal to 0 , and satisfy $f<g<h$, then $s(f)=s(g)$ implies $s(g)=s(h)$.

Integral Representation

Let $\mathcal{F}(n)$ be the free Gödel (or MV) algebra on n generators. Let s be a state on $\mathcal{F}(n)$. Then there exists a (unique) regular Borel probability measure μ on $[0,1]^{n}$ such that, for any $f \in \mathcal{F}(n)$,

$$
s(f)=\int_{[0,1]^{n}} f \mathrm{~d} \mu
$$

For MV-algebras, Kroupa-Panti Theorem ['06-'09] establishes an integral representation theorem for states of any MV-algebra.

States of PRODUCT LOGIC

Our aim is to introduce and study states for product logic, the remaining fundamental many-valued logic for which such a notion is still lacking.

In particular, we will study states of $\mathcal{F}_{\mathbb{P}}(n)$, the free product algebra over n generators, i.e. the Lindenbaum algebra of product logic over n variables.

Since every element of $f \in \mathcal{F}_{\mathbb{P}}(n)$ can be regarded as a function $f:[0,1]^{n} \rightarrow[0,1]$ we will refer to them as product functions.
$\mathcal{F}_{\mathbb{P}}(1)$

The lattice of the free Product algebra with one generator $\mathcal{F}_{\mathbb{P}}(1)$:

$\mathcal{F}_{\mathbb{P}}(1)$

The lattice of the free Product algebra with one generator $\mathcal{F}_{\mathbb{P}}(1)$:

$\mathcal{F}_{\mathbb{P}}(1)$

Notice: product functions are not continuous; the Boolean atoms $\neg x$ and $\neg \neg x$ determine a partition of the domain, given by the areas where they assume value 0 or 1 .

Free product algebras

In the following, we will denote with:

- p_{ϵ}, with $\epsilon \in \Sigma$, the Boolean atoms of $\mathcal{F}_{\mathbb{P}}(n)$;
- G_{ϵ} the part of the domain where p_{ϵ} has value 1 and 0 outside. The G_{ϵ} 's, with $\epsilon \in \Sigma$, form a partition of $[0,1]^{n}$.

FREE PRODUCT ALGEBRAS

In the following, we will denote with:

- p_{ϵ}, with $\epsilon \in \Sigma$, the Boolean atoms of $\mathcal{F}_{\mathbb{P}}(n)$;
- G_{ϵ} the part of the domain where p_{ϵ} has value 1 and 0 outside. The G_{ϵ} 's, with $\epsilon \in \Sigma$, form a partition of $[0,1]^{n}$.

Product functions are not continuous, like the fuctions of the free MV-algebra, nor in a finite number, as the functions of the free n-generated Gödel algebra.

FREE PRODUCT ALGEBRAS

In the following, we will denote with:

- p_{ϵ}, with $\epsilon \in \Sigma$, the Boolean atoms of $\mathcal{F}_{\mathbb{P}}(n)$;
- G_{ϵ} the part of the domain where p_{ϵ} has value 1 and 0 outside. The G_{ϵ} 's, with $\epsilon \in \Sigma$, form a partition of $[0,1]^{n}$.

Product functions are not continuous, like the fuctions of the free MV-algebra, nor in a finite number, as the functions of the free n-generated Gödel algebra. But:
FACT
Every product function $f:[0,1]^{n} \rightarrow[0,1]$ is such that, for every $\epsilon \in \Sigma$, its restriction f_{ϵ} to G_{ϵ} is continuous.

In fact, f_{ϵ} is either 0 or a piecewise monomial function (i.e. $g\left(x_{1}, \ldots x_{n}\right)=1 \wedge x_{1}^{m_{1}} \ldots x_{n}^{m_{n}}$, with $\left.m_{i} \in \mathbb{Z}\right)$ [Cintula, Gerla].

States of $\mathcal{F}_{\mathbb{P}}(n)$

Definition

A state of $\mathcal{F}_{\mathbb{P}}(n)$ is a map $s: \mathcal{F}_{\mathbb{P}}(n) \rightarrow[0,1]$ satisfying the following conditions:

S1. $s(1)=1$ and $s(0)=0$,
S2. $s(f \wedge g)+s(f \vee g)=s(f)+s(g)$,
S3. If $f \leq g$, then $s(f) \leq s(g)$,
S4. If $f \neq 0$, then $s(f)=0$ implies $s(\neg \neg f)=0$.

States of $\mathcal{F}_{\mathbb{P}}(n)$

Definition
A state of $\mathcal{F}_{\mathbb{P}}(n)$ is a map $s: \mathcal{F}_{\mathbb{P}}(n) \rightarrow[0,1]$ satisfying the following conditions:
S1. $s(1)=1$ and $s(0)=0$,
S2. $s(f \wedge g)+s(f \vee g)=s(f)+s(g)$,
S3. If $f \leq g$, then $s(f) \leq s(g)$,
S4. If $f \neq 0$, then $s(f)=0$ implies $s(\neg \neg f)=0$.
Notice that:
S2: a state is a Birkhoff's lattice valuation
S4: only property (indirectly) involving the monoidal operation

Condition S4

$$
\text { Recall: } \neg \neg f(x)= \begin{cases}1, & \text { if } f(x)>0 \\ 0, & \text { if } f(x)=0\end{cases}
$$

$s(f)=0$ implies $s(\neg \neg f)=0$.

States on $\mathcal{F}_{\mathbb{P}}(n)$: SOME PROPERTIES

For any state $s: \mathcal{F}_{\mathbb{P}}(n) \rightarrow[0,1]$ the following properties hold:
(I) s restricted to $\mathscr{B}\left(\mathcal{F}_{\mathbb{P}}(n)\right)$ is a (finitely additive) probability measure
(II) $s(f \vee \neg f)=s(f)+s(\neg f)$
(III) $s(f \leftrightarrow g)=s(f \rightarrow g)+s(g \rightarrow f)-1$
(IV) $s(\neg f)+s(\neg \neg f)=1$

States on $\mathcal{F}_{\mathbb{P}}(1)$

- if $s(\neg x)=\alpha$, and $s(\neg \neg x)=\beta$ then $\alpha+\beta=1$;
- either $s(\neg \neg x)=s(x)=s\left(x^{n}\right)=0$ for all n, or all of them are positive;
- $s\left(x^{n}\right) \leq s\left(x^{m}\right)$, whenever $n \geq m$;
- $s\left(x^{n} \vee \neg x\right)=s\left(x^{n}\right)+s(\neg x)$.

Towards an integral Representation

Idea : we will first define the integral over the G_{ϵ} 's.

TOWARDS AN INTEGRAL REPRESENTATION

Idea : we will first define the integral over the G_{ϵ} 's.
Each G_{ϵ} is a Borel subset of $[0,1]^{n}, \sigma$-locally compact and Hausdorff. σ-locally compact: it can be approximated by an increasing sequence of compact subsets G_{ϵ}^{q}, with $q \in \mathcal{Q}$.

TOWARDS AN INTEGRAL REPRESENTATION

Idea : we will first define the integral over the G_{ϵ} 's.
Each G_{ϵ} is a Borel subset of $[0,1]^{n}, \sigma$-locally compact and Hausdorff. σ-locally compact: it can be approximated by an increasing sequence of compact subsets G_{ϵ}^{q}, with $q \in \mathcal{Q}$.

$$
\begin{gathered}
\mathrm{G}_{\varepsilon} \mathrm{G}_{\varepsilon}^{3 / 4} \mathrm{G}_{\varepsilon}^{1 / 2} \mathrm{G}_{\varepsilon}^{1 / 3} \\
G_{\epsilon}=\prod_{i=1}^{n} B_{i}, \text { where } B_{i}=(0,1] \text { or } B_{i}=\{0\} \\
G_{\epsilon}^{q}=\prod_{i=1}^{n} B_{i}^{q}, \text { where } B_{i}=[q, 1] \text { or } B_{i}=\{0\}
\end{gathered}
$$

TowARDS AN INTEGRAL REPRESENTATION

Idea : we will first define the integral over the G_{ϵ} 's.
Each G_{ϵ} is a Borel subset of $[0,1]^{n}, \sigma$-locally compact and Hausdorff. σ-locally compact: it can be approximated by an increasing sequence of compact subsets G_{ϵ}^{q}, with $q \in \mathcal{Q}$.

Tool:
Theorem (Riesz Representation theorem)
Let X be a locally compact Hausdorff space, and let $\sigma: \mathscr{C}(X) \rightarrow \mathbb{R}$ be a positive linear functional on the space $\mathscr{C}(X)$ of continuous functions with compact support. Then there is a unique regular Borel measure μ on X such that

$$
\sigma(f)=\int_{X} f \mathrm{~d} \mu
$$

for each $f \in \mathscr{C}(X)$.

TOWARDS AN INTEGRAL REPRESENTATION

Given a state $s: \mathcal{F}_{\mathbb{P}}(n) \rightarrow[0,1]$, define $s_{\epsilon}: \mathcal{F}_{\mathbb{P}}(n)_{\mid G_{\epsilon}} \rightarrow[0,1]$ by

$$
s_{\epsilon}\left(g_{\epsilon}\right)=\frac{s\left(g \wedge p_{\epsilon}\right)}{s\left(p_{\epsilon}\right)}
$$

(1) for each $q \in[0,1]_{Q}$, consider its induced map s_{ϵ}^{q} 's on product functions restricted to the G_{ϵ}^{q} 's

TowARDS AN INTEGRAL REPRESENTATION

Given a state $s: \mathcal{F}_{\mathbb{P}}(n) \rightarrow[0,1]$, define $s_{\epsilon}: \mathcal{F}_{\mathbb{P}}(n)_{\mid G_{\epsilon}} \rightarrow[0,1]$ by

$$
s_{\epsilon}\left(g_{\epsilon}\right)=\frac{s\left(g \wedge p_{\epsilon}\right)}{s\left(p_{\epsilon}\right)}
$$

(1) for each $q \in[0,1]_{Q}$, consider its induced map s_{ϵ}^{q} 's on product functions restricted to the G_{ϵ}^{q} 's

TowARDS AN INTEGRAL REPRESENTATION

Given a state $s: \mathcal{F}_{\mathbb{P}}(n) \rightarrow[0,1]$, define $s_{\epsilon}: \mathcal{F}_{\mathbb{P}}(n)_{\mid G_{\epsilon}} \rightarrow[0,1]$ by

$$
s_{\epsilon}\left(g_{\epsilon}\right)=\frac{s\left(g \wedge p_{\epsilon}\right)}{s\left(p_{\epsilon}\right)}
$$

(1) for each $q \in[0,1]_{Q}$, consider its induced map s_{ϵ}^{q} 's on product functions restricted to the G_{ϵ}^{q} 's

TowARDS AN INTEGRAL REPRESENTATION

Given a state $s: \mathcal{F}_{\mathbb{P}}(n) \rightarrow[0,1]$, define $s_{\epsilon}: \mathcal{F}_{\mathbb{P}}(n)_{\mid G_{\epsilon}} \rightarrow[0,1]$ by

$$
s_{\epsilon}\left(g_{\epsilon}\right)=\frac{s\left(g \wedge p_{\epsilon}\right)}{s\left(p_{\epsilon}\right)}
$$

(1) for each $q \in[0,1]_{Q}$, consider its induced map s_{ϵ}^{q} 's on product functions restricted to the G_{ϵ}^{q} 's

TowARDS AN INTEGRAL REPRESENTATION

Given a state $s: \mathcal{F}_{\mathbb{P}}(n) \rightarrow[0,1]$, define $s_{\epsilon}: \mathcal{F}_{\mathbb{P}}(n)_{\mid G_{\epsilon}} \rightarrow[0,1]$ by

$$
s_{\epsilon}\left(g_{\epsilon}\right)=\frac{s\left(g \wedge p_{\epsilon}\right)}{s\left(p_{\epsilon}\right)}
$$

(1) for each $q \in[0,1]_{Q}$, consider its induced map s_{ϵ}^{q} 's on product functions restricted to the G_{ϵ}^{q} 's

TowARDS AN INTEGRAL REPRESENTATION

Given a state $s: \mathcal{F}_{\mathbb{P}}(n) \rightarrow[0,1]$, define $s_{\epsilon}: \mathcal{F}_{\mathbb{P}}(n)_{\mid G_{\epsilon}} \rightarrow[0,1]$ by

$$
s_{\epsilon}\left(g_{\epsilon}\right)=\frac{s\left(g \wedge p_{\epsilon}\right)}{s\left(p_{\epsilon}\right)}
$$

(1) for each $q \in[0,1]_{Q}$, consider its induced map s_{ϵ}^{q} 's on product functions restricted to the G_{ϵ}^{q} 's

Continuous functions on G_{ϵ}^{q} can be uniformly approximated by linear combinations of the functions of $\mathcal{F}_{\mathbb{P}}(n)$ restricted to such subsets:

TowARDS AN INTEGRAL REPRESENTATION

Given a state $s: \mathcal{F}_{\mathbb{P}}(n) \rightarrow[0,1]$, define $s_{\epsilon}: \mathcal{F}_{\mathbb{P}}(n)_{\mid G_{\epsilon}} \rightarrow[0,1]$ by

$$
s_{\epsilon}\left(g_{\epsilon}\right)=\frac{s\left(g \wedge p_{\epsilon}\right)}{s\left(p_{\epsilon}\right)}
$$

(1) for each $q \in[0,1]_{Q}$, consider its induced map s_{ϵ}^{q} 's on product functions restricted to the G_{ϵ}^{q} 's

Continuous functions on G_{ϵ}^{q} can be uniformly approximated by linear combinations of the functions of $\mathcal{F}_{\mathbb{P}}(n)$ restricted to such subsets:
(2) extend s_{ϵ}^{q} to a monotone linear functional τ_{ϵ}^{q} on the linear span Λ_{ϵ}^{q} of $\mathcal{F}_{\mathbb{P}}(n)$ over G_{ϵ}^{q}.
(3) uniformly approximate continuous functions $\mathscr{C}\left(G_{\epsilon}^{q}\right)$ by sequences in Λ_{ϵ}^{q}
(4) suitably extend τ_{ϵ}^{q} to a linear functional on $\mathscr{C}\left(G_{\epsilon}^{q}\right)$

TowARDS AN INTEGRAL REPRESENTATION

Given a state $s: \mathcal{F}_{\mathbb{P}}(n) \rightarrow[0,1]$, define $s_{\epsilon}: \mathcal{F}_{\mathbb{P}}(n)_{\mid G_{\epsilon}} \rightarrow[0,1]$ by

$$
s_{\epsilon}\left(g_{\epsilon}\right)=\frac{s\left(g \wedge p_{\epsilon}\right)}{s\left(p_{\epsilon}\right)}
$$

(1) for each $q \in[0,1]_{Q}$, consider its induced map s_{ϵ}^{q} 's on product functions restricted to the G_{ϵ}^{q} 's

Continuous functions on G_{ϵ}^{q} can be uniformly approximated by linear combinations of the functions of $\mathcal{F}_{\mathbb{P}}(n)$ restricted to such subsets:
(2) extend s_{ϵ}^{q} to a monotone linear functional τ_{ϵ}^{q} on the linear span Λ_{ϵ}^{q} of $\mathcal{F}_{\mathbb{P}}(n)$ over G_{ϵ}^{q}.
(3) uniformly approximate continuous functions $\mathscr{C}\left(G_{\epsilon}^{q}\right)$ by sequences in Λ_{ϵ}^{q}
(4) suitably extend τ_{ϵ}^{q} to a linear functional on $\mathscr{C}\left(G_{\epsilon}^{q}\right)$
(5) apply Riesz theorem at the level of G_{ϵ}^{q} and get a unique Borel probability measure μ_{ϵ}^{q} representing τ_{ϵ}^{q}

Integral representation for states on PRODUCT FUNCTIONS

Now:

- as q goes to 0 , the μ_{ϵ}^{q} 's converge to a unique Borel measure μ_{ϵ} representing s_{ϵ}, over each G_{ϵ}.

InTEGRAL REPRESENTATION FOR STATES ON PRODUCT FUNCTIONS

Now:

- as q goes to 0 , the μ_{ϵ}^{q} 's converge to a unique Borel measure μ_{ϵ} representing s_{ϵ}, over each G_{ϵ}.
- We suitably glue together the μ_{ϵ} to define μ on $[0,1]^{n}$.

InTEGRAL REPRESENTATION FOR STATES ON PRODUCT FUNCTIONS

Now:

- as q goes to 0 , the μ_{ϵ}^{q} 's converge to a unique Borel measure μ_{ϵ} representing s_{ϵ}, over each G_{ϵ}.
- We suitably glue together the μ_{ϵ} to define μ on $[0,1]^{n}$.

Theorem

For every state s of $\mathcal{F}_{\mathbb{P}}(n)$ there is a unique regular Borel probability measure μ on $[0,1]^{n}$, such that for every $f \in \mathcal{F}_{\mathbb{P}}(n)$:

$$
s(f)=\int_{[0,1]^{n}} f \mathrm{~d} \mu .
$$

STATE SPACE AND ITS EXTREMAL POINTS

$\mathcal{S}(n)$: set of all states of $\mathcal{F}_{\mathbb{P}}(n)$
$\mathcal{H}(n)$: set of product logic homomorphisms of $\mathcal{F}_{\mathbb{P}}(n)$ into $[0,1]_{P}$
$\mathcal{M}(n)$: set of all regular Borel probability measures on $[0,1]^{n}$
The state space $\mathcal{S}(n)$ results to be a closed convex subset of $[0,1]^{\mathcal{F}_{\mathbb{P}}(n)}$. Moreover, the map $\delta: \mathcal{S}(n) \rightarrow \mathcal{M}(n)$ such that $\delta(s)=\mu$ is bijective and affine.

Theorem
The following are equivalent for a state $s: \mathcal{F}_{\mathbb{P}}(n) \rightarrow[0,1]$:
(I) s is extremal;
(II) $\delta(s)$ is a Dirac measure;
(III) $s \in \mathcal{H}(n)$.

STATE SPACE AND ITS EXTREMAL POINTS

Thus, via Krein-Milman Theorem we obtain the following:
Corollary
For every $n \in \mathbb{N}$, the state space $\mathcal{S}(n)$ is the convex closure of the set of product homomorphisms from $\mathcal{F}_{\mathbb{P}}(n)$ into $[0,1]_{P}$.

STATE SPACE AND ITS EXTREMAL POINTS

Thus, via Krein-Milman Theorem we obtain the following:
Corollary
For every $n \in \mathbb{N}$, the state space $\mathcal{S}(n)$ is the convex closure of the set of product homomorphisms from $\mathcal{F}_{\mathbb{P}}(n)$ into $[0,1]_{P}$.

Close analogy with MV and Gödel.
MV: The state space of an MV-algebra \mathbf{A} is a compact convex space generated by its extremal states, that coincide with the homomorphisms of \mathbf{A} to $[0,1]_{\boldsymbol{t}}$.
Gödel: States of $\mathcal{F}_{\mathbb{G}}(n)$ are precisely the convex combinations of finitely many truth value assignments.

Conclusions and future work

- Our axiomatization of states characterizes Lebesgue integral of the functions belonging to the free n-generated product algebra with respect to Borel probability measures on $[0,1]^{n}$.

Conclusions and future work

- Our axiomatization of states characterizes Lebesgue integral of the functions belonging to the free n-generated product algebra with respect to Borel probability measures on $[0,1]^{n}$.
- Every state belongs to the convex closure of product logic valuations.

Conclusions and future work

- Our axiomatization of states characterizes Lebesgue integral of the functions belonging to the free n-generated product algebra with respect to Borel probability measures on $[0,1]^{n}$.
- Every state belongs to the convex closure of product logic valuations.
- States of (all) product algebras?

Conclusions and future work

- Our axiomatization of states characterizes Lebesgue integral of the functions belonging to the free n-generated product algebra with respect to Borel probability measures on $[0,1]^{n}$.
- Every state belongs to the convex closure of product logic valuations.
- States of (all) product algebras?
- States of (free) BL-algebras?

