STATES OF FREE PRODUCT ALGEBRAS

Sara Ugolini

University of Pisa, Department of Computer Science sara.ugolini@di.unipi.it

(joint work with Tommaso Flaminio and Lluis Godo)

TACL 2017

In Hájek's setting of mathematical fuzzy logic, BL (Basic Logic) plays a fundamental role, as the logic of all continuous t-norms.

Its algebraic semantics, the variety of BL-algebras, is generated by the class of BL-algebras on [0,1], which are defined by a continuous t-norm and its residuum.

In Hájek's setting of mathematical fuzzy logic, BL (Basic Logic) plays a fundamental role, as the logic of all continuous t-norms.

Its algebraic semantics, the variety of BL-algebras, is generated by the class of BL-algebras on [0,1], which are defined by a continuous t-norm and its residuum.

Three prominent axiomatic extensions, with corresponding algebraic semantics:

- Łukasiewicz logic (involutive), MV-algebras
- Gödel logic (contractive), Gödel algebras
- Product logic (cancellative), Product algebras

[Mostert-Shields Thm.]: a t-norm is continuous if and only if it can be built from the previous three ones by the construction of ordinal sum.

A BL-algebra is a (commutative, integral, pointed, bounded) residuated lattice $\mathbf{A}=(A,\odot,\rightarrow,\wedge,\vee,0,1)$ which satisfies the following equations:

$$\begin{array}{lcl} (x \to y) \lor (y \to x) & = & 1 \\ x \odot (x \to y) & = & x \land y \end{array} \qquad \mbox{(prelinearity)},$$

A BL-algebra is a (commutative, integral, pointed, bounded) residuated lattice $\mathbf{A} = (A, \odot, \rightarrow, \land, \lor, 0, 1)$ which satisfies the following equations:

$$\begin{array}{lcl} (x \to y) \lor (y \to x) & = & 1 \\ x \odot (x \to y) & = & x \land y \end{array} \qquad \mbox{(prelinearity)},$$

An MV-algebra A is an involutive BL-algebra: $\neg \neg x = x$.

A Gödel algebra **A** is a contractive BL-algebra: $x \cdot x = x$.

A product algebra ${\bf A}$ is a BL-algebra that satisfies: $x \wedge \neg x = 0$ and $\neg \neg x \to ((y \odot x \to z \odot x) \to (y \to z)) = 1$.

In what follows: $\neg x := x \to 0$, $x^n := x \odot \ldots \odot x$ (*n*-times), $x \oplus y = \neg(\neg x \odot \neg y)$.

$$\begin{array}{rcl} \text{Standard MV-algebra:} & [\mathbf{0},\mathbf{1}]_{\mathbf{L}} = ([0,1],\odot_{\mathbf{L}},\rightarrow_{\mathbf{L}},\min,\max,0,1) \\ & x \odot_{\mathbf{L}} y &= \max\{0,x+y-1\} \\ & x \to_{\mathbf{L}} y &= 1 \text{ if } x \leq y, \\ & 1-x+y \text{ otherwise.} \\ \\ \text{Standard G\"odel algebra:} & [\mathbf{0},\mathbf{1}]_{\mathbf{G}} = ([0,1],\odot_G,\rightarrow_G,\min,\max,0,1) \\ & x \odot_G y &= \min\{x,y\} \\ & x \to_G y &= 1 \text{ if } x \leq y, \\ & y \text{ otherwise.} \\ \\ \text{Standard product algebra:} & [\mathbf{0},\mathbf{1}]_{\mathbf{P}} = ([0,1],\odot_P,\rightarrow_P,\min,\max,0,1) \\ & x \odot_P y &= x \cdot y \\ & x \to_P y &= 1 \text{ if } x \leq y, \\ & y/x \text{ otherwise.} \\ \end{array}$$

Free Algebras

For L any of MV, Gödel and product logics, and $\mathbb L$ its algebraic semantics, let $\mathcal F_{\mathbb L}(n)$ be the free $\mathbb L$ -algebra over n generators, i.e. the Lindenbaum algebra of L-logic over n variables.

Free Algebras

For L any of MV, Gödel and product logics, and $\mathbb L$ its algebraic semantics, let $\mathcal F_{\mathbb L}(n)$ be the free $\mathbb L$ -algebra over n generators, i.e. the Lindenbaum algebra of L-logic over n variables.

Since $[0,1]_L$ is generic for the variety, $\mathcal{F}_{\mathbb{L}}(n)$ is, up to isomorphisms, the subalgebra of all functions $[0,1]^n \to [0,1]$ generated by the projection maps $\pi_1,\ldots,\pi_n:[0,1]^n \to [0,1]$, with operations defined componentwise by the standard ones.

Free Algebras

For L any of MV, Gödel and product logics, and $\mathbb L$ its algebraic semantics, let $\mathcal F_{\mathbb L}(n)$ be the free $\mathbb L$ -algebra over n generators, i.e. the Lindenbaum algebra of L-logic over n variables.

Since $[0,1]_L$ is generic for the variety, $\mathcal{F}_L(n)$ is, up to isomorphisms, the subalgebra of all functions $[0,1]^n \to [0,1]$ generated by the projection maps $\pi_1,\ldots,\pi_n:[0,1]^n \to [0,1]$, with operations defined componentwise by the standard ones.

Thus, every element of $f\in\mathcal{F}_{\mathbb{L}}(n)$ can be regarded as a function $f:[0,1]^n\to[0,1].$ For example, for product logic:

STATES OF MV AND GÖDEL ALGEBRAS

[Mundici, 95]: Given any MV-algebra $\mathbf{A}=(A,\odot,\rightarrow,\wedge,\vee,0,1)$, a state of \mathbf{A} is a map $s:A\rightarrow [0,1]$ such that:

- (I) s(1) = 1,
- (II) if $a \odot b = 0$, then $s(a \oplus b) = s(a) + s(b)$.

STATES OF MV AND GÖDEL ALGEBRAS

[Mundici, 95]: Given any MV-algebra $\mathbf{A}=(A,\odot,\rightarrow,\wedge,\vee,0,1)$, a state of \mathbf{A} is a map $s:A\rightarrow [0,1]$ such that:

- (I) s(1) = 1,
- (II) if $a \odot b = 0$, then $s(a \oplus b) = s(a) + s(b)$.

[Aguzzoli-Gerla-Marra, 2008]: Let $\mathcal{F}_{\mathbb{G}}(n)$ be the free Gödel algebra on n generators. A state of $\mathcal{F}_{\mathbb{G}}(n)$ is a map $s: \mathcal{F}_{\mathbb{G}}(n) \to [0,1]$ such that:

- (I) s(0) = 0 and s(1) = 1,
- (II) $f \leq g$ implies $s(f) \leq s(g)$
- (III) $s(f \vee g) = s(f) + s(g) s(f \wedge g)$
- (IV) if f,g,h are either join-irreducible elements or equal to 0, and satisfy f < g < h, then s(f) = s(g) implies s(g) = s(h).

Integral representation

Let $\mathcal{F}(n)$ be the free Gödel (or MV) algebra on n generators. Let s be a state on $\mathcal{F}(n)$. Then there exists a (unique) regular Borel probability measure μ on $[0,1]^n$ such that, for any $f\in\mathcal{F}(n)$,

$$s(f) = \int_{[0,1]^n} f \mathrm{d}\mu.$$

For MV-algebras, Kroupa-Panti Theorem ['06 - '09] establishes an integral representation theorem for states of any MV-algebra.

STATES OF PRODUCT LOGIC

Our aim is to introduce and study states for product logic, the remaining fundamental many-valued logic for which such a notion is still lacking.

In particular, we will study states of $\mathcal{F}_{\mathbb{P}}(n)$, the free product algebra over n generators, i.e. the Lindenbaum algebra of product logic over n variables.

Since every element of $f\in\mathcal{F}_{\mathbb{P}}(n)$ can be regarded as a function $f:[0,1]^n\to[0,1]$ we will refer to them as *product functions*.

$\mathcal{F}_{\mathbb{P}}(1)$

The lattice of the free Product algebra with one generator $\mathcal{F}_{\mathbb{P}}(1)$:

$\mathcal{F}_{\mathbb{P}}(1)$

The lattice of the free Product algebra with one generator $\mathcal{F}_{\mathbb{P}}(1)$:

$\mathcal{F}_{\mathbb{P}}(1)$

Notice: product functions are not continuous; the Boolean atoms $\neg x$ and $\neg \neg x$ determine a partition of the domain, given by the areas where they assume value 0 or 1.

FREE PRODUCT ALGEBRAS

In the following, we will denote with:

- p_{ϵ} , with $\epsilon \in \Sigma$, the Boolean atoms of $\mathcal{F}_{\mathbb{P}}(n)$;
- G_{ϵ} the part of the domain where p_{ϵ} has value 1 and 0 outside. The G_{ϵ} 's, with $\epsilon \in \Sigma$, form a partition of $[0,1]^n$.

FREE PRODUCT ALGEBRAS

In the following, we will denote with:

- p_{ϵ} , with $\epsilon \in \Sigma$, the Boolean atoms of $\mathcal{F}_{\mathbb{P}}(n)$;
- G_{ϵ} the part of the domain where p_{ϵ} has value 1 and 0 outside. The G_{ϵ} 's, with $\epsilon \in \Sigma$, form a partition of $[0,1]^n$.

Product functions are not continuous, like the fuctions of the free MV-algebra, nor in a finite number, as the functions of the free n-generated Gödel algebra.

12/26

FREE PRODUCT ALGEBRAS

In the following, we will denote with:

- p_{ϵ} , with $\epsilon \in \Sigma$, the Boolean atoms of $\mathcal{F}_{\mathbb{P}}(n)$;
- G_{ϵ} the part of the domain where p_{ϵ} has value 1 and 0 outside. The G_{ϵ} 's, with $\epsilon \in \Sigma$, form a partition of $[0,1]^n$.

Product functions are not continuous, like the fuctions of the free MV-algebra, nor in a finite number, as the functions of the free n-generated Gödel algebra. But:

FACT

Every product function $f:[0,1]^n \to [0,1]$ is such that, for every $\epsilon \in \Sigma$, its restriction f_{ϵ} to G_{ϵ} is continuous.

In fact, f_{ϵ} is either 0 or a piecewise monomial function (i.e. $g(x_1, \dots x_n) = 1 \wedge x_1^{m_1} \dots x_n^{m_n}$, with $m_i \in \mathbb{Z}$) [Cintula, Gerla].

STATES OF $\mathcal{F}_{\mathbb{P}}(n)$

DEFINITION

A state of $\mathcal{F}_{\mathbb{P}}(n)$ is a map $s:\mathcal{F}_{\mathbb{P}}(n)\to [0,1]$ satisfying the following conditions:

- S1. s(1) = 1 and s(0) = 0,
- S2. $s(f \land g) + s(f \lor g) = s(f) + s(g)$,
- S3. If $f \leq g$, then $s(f) \leq s(g)$,
- S4. If $f \neq 0$, then s(f) = 0 implies $s(\neg \neg f) = 0$.

STATES OF $\mathcal{F}_{\mathbb{P}}(n)$

DEFINITION

A state of $\mathcal{F}_{\mathbb{P}}(n)$ is a map $s:\mathcal{F}_{\mathbb{P}}(n)\to [0,1]$ satisfying the following conditions:

- S1. s(1) = 1 and s(0) = 0,
- S2. $s(f \land g) + s(f \lor g) = s(f) + s(g)$,
- S3. If $f \leq g$, then $s(f) \leq s(g)$,
- S4. If $f \neq 0$, then s(f) = 0 implies $s(\neg \neg f) = 0$.

Notice that:

- S2: a state is a Birkhoff's lattice valuation
- S4: only property (indirectly) involving the monoidal operation

CONDITION S4

Recall:
$$\neg \neg f(x) = \begin{cases} 1, & \text{if } f(x) > 0 \\ 0, & \text{if } f(x) = 0 \end{cases}$$

$$s(f) = 0$$
 implies $s(\neg \neg f) = 0$.

STATES ON $\mathcal{F}_{\mathbb{P}}(n)$: SOME PROPERTIES

For any state $s: \mathcal{F}_{\mathbb{P}}(n) \to [0,1]$ the following properties hold:

- (I) s restricted to $\mathscr{B}(\mathcal{F}_{\mathbb{P}}(n))$ is a (finitely additive) probability measure
- (II) $s(f \vee \neg f) = s(f) + s(\neg f)$
- (III) $s(f \leftrightarrow g) = s(f \rightarrow g) + s(g \rightarrow f) 1$
- (IV) $s(\neg f) + s(\neg \neg f) = 1$

STATES ON $\mathcal{F}_{\mathbb{P}}(1)$

- if $s(\neg x) = \alpha$, and $s(\neg \neg x) = \beta$ then $\alpha + \beta = 1$;
- either $s(\neg \neg x) = s(x) = s(x^n) = 0$ for all n, or all of them are positive;
- $s(x^n) \le s(x^m)$, whenever $n \ge m$;
- $s(x^n \vee \neg x) = s(x^n) + s(\neg x)$.

Idea : we will first define the integral over the G_ϵ 's.

Idea : we will first define the integral over the G_{ϵ} 's.

Each G_{ϵ} is a Borel subset of $[0,1]^n$, σ -locally compact and Hausdorff. σ -locally compact: it can be approximated by an increasing sequence of compact subsets G_{ϵ}^q , with $q \in \mathcal{Q}$.

Idea : we will first define the integral over the G_{ϵ} 's.

Each G_{ϵ} is a Borel subset of $[0,1]^n$, σ -locally compact and Hausdorff. σ -locally compact: it can be approximated by an increasing sequence of compact subsets G_{ϵ}^q , with $q \in \mathcal{Q}$.

$$G_{\epsilon} = \prod_{i=1}^{n} B_i$$
, where $B_i = (0,1]$ or $B_i = \{0\}$

$$G_{\epsilon}^q = \prod_{i=1}^n B_i^q$$
, where $B_i = [q, 1]$ or $B_i = \{0\}$

17/26

Idea : we will first define the integral over the G_ϵ 's.

Each G_{ϵ} is a Borel subset of $[0,1]^n$, σ -locally compact and Hausdorff. σ -locally compact: it can be approximated by an increasing sequence of compact subsets G_{ϵ}^q , with $q \in \mathcal{Q}$.

Tool:

THEOREM (RIESZ REPRESENTATION THEOREM)

Let X be a locally compact Hausdorff space, and let $\sigma:\mathscr{C}(X)\to\mathbb{R}$ be a positive linear functional on the space $\mathscr{C}(X)$ of continuous functions with compact support. Then there is a unique regular Borel measure μ on X such that

$$\sigma(f) = \int_X f \mathrm{d}\mu$$

for each $f \in \mathscr{C}(X)$.

Towards an integral representation

Given a state $s:\mathcal{F}_{\mathbb{P}}(n)\to [0,1]$, define $s_\epsilon:\mathcal{F}_{\mathbb{P}}(n)_{|G_\epsilon}\to [0,1]$ by

$$s_{\epsilon}(g_{\epsilon}) = \frac{s(g \wedge p_{\epsilon})}{s(p_{\epsilon})}$$

(1) for each $q\in [0,1]_Q$, consider its induced map s^q_ϵ 's on product functions restricted to the G^q_ϵ 's

Given a state $s:\mathcal{F}_\mathbb{P}(n) \to [0,1]$, define $s_\epsilon:\mathcal{F}_\mathbb{P}(n)_{|G_\epsilon} \to [0,1]$ by

$$s_{\epsilon}(g_{\epsilon}) = \frac{s(g \wedge p_{\epsilon})}{s(p_{\epsilon})}$$

(1) for each $q\in[0,1]_Q$, consider its induced map s^q_ϵ 's on product functions restricted to the G^q_ϵ 's

Given a state $s:\mathcal{F}_\mathbb{P}(n) \to [0,1]$, define $s_\epsilon:\mathcal{F}_\mathbb{P}(n)_{|G_\epsilon} \to [0,1]$ by

$$s_{\epsilon}(g_{\epsilon}) = \frac{s(g \wedge p_{\epsilon})}{s(p_{\epsilon})}$$

(1) for each $q\in[0,1]_Q$, consider its induced map s^q_ϵ 's on product functions restricted to the G^q_ϵ 's

Given a state $s:\mathcal{F}_{\mathbb{P}}(n)\to [0,1]$, define $s_{\epsilon}:\mathcal{F}_{\mathbb{P}}(n)_{|G_{\epsilon}}\to [0,1]$ by

$$s_{\epsilon}(g_{\epsilon}) = \frac{s(g \wedge p_{\epsilon})}{s(p_{\epsilon})}$$

(1) for each $q\in[0,1]_Q$, consider its induced map s^q_ϵ 's on product functions restricted to the G^q_ϵ 's

Given a state $s:\mathcal{F}_{\mathbb{P}}(n)\to [0,1]$, define $s_{\epsilon}:\mathcal{F}_{\mathbb{P}}(n)_{|G_{\epsilon}}\to [0,1]$ by

$$s_{\epsilon}(g_{\epsilon}) = \frac{s(g \wedge p_{\epsilon})}{s(p_{\epsilon})}$$

(1) for each $q\in [0,1]_Q$, consider its induced map s^q_ϵ 's on product functions restricted to the G^q_ϵ 's

Given a state $s:\mathcal{F}_{\mathbb{P}}(n)\to [0,1]$, define $s_\epsilon:\mathcal{F}_{\mathbb{P}}(n)_{|G_\epsilon}\to [0,1]$ by

$$s_{\epsilon}(g_{\epsilon}) = \frac{s(g \wedge p_{\epsilon})}{s(p_{\epsilon})}$$

(1) for each $q\in [0,1]_Q$, consider its induced map s^q_ϵ 's on product functions restricted to the G^q_ϵ 's

Continuous functions on G^q_ϵ can be uniformly approximated by linear combinations of the functions of $\mathcal{F}_\mathbb{P}(n)$ restricted to such subsets:

Given a state $s:\mathcal{F}_{\mathbb{P}}(n)\to [0,1]$, define $s_{\epsilon}:\mathcal{F}_{\mathbb{P}}(n)_{|G_{\epsilon}}\to [0,1]$ by

$$s_{\epsilon}(g_{\epsilon}) = \frac{s(g \wedge p_{\epsilon})}{s(p_{\epsilon})}$$

(1) for each $q\in [0,1]_Q$, consider its induced map s^q_ϵ 's on product functions restricted to the G^q_ϵ 's

Continuous functions on G^q_ϵ can be uniformly approximated by linear combinations of the functions of $\mathcal{F}_{\mathbb{P}}(n)$ restricted to such subsets:

- (2) extend s^q_{ϵ} to a monotone linear functional τ^q_{ϵ} on the linear span Λ^q_{ϵ} of $\mathcal{F}_{\mathbb{P}}(n)$ over G^q_{ϵ} .
- (3) uniformly approximate continuous functions $\mathscr{C}(G^q_\epsilon)$ by sequences in Λ^q_ϵ
- (4) suitably extend au_{ϵ}^q to a linear functional on $\mathscr{C}(G^q_{\epsilon})$

Towards an integral representation

Given a state $s:\mathcal{F}_{\mathbb{P}}(n)\to [0,1]$, define $s_{\epsilon}:\mathcal{F}_{\mathbb{P}}(n)_{|G_{\epsilon}}\to [0,1]$ by

$$s_{\epsilon}(g_{\epsilon}) = \frac{s(g \wedge p_{\epsilon})}{s(p_{\epsilon})}$$

(1) for each $q \in [0,1]_Q$, consider its induced map s^q_ϵ 's on product functions restricted to the G^q_ϵ 's

Continuous functions on G^q_ϵ can be uniformly approximated by linear combinations of the functions of $\mathcal{F}_{\mathbb{P}}(n)$ restricted to such subsets:

- (2) extend s^q_{ϵ} to a monotone linear functional τ^q_{ϵ} on the linear span Λ^q_{ϵ} of $\mathcal{F}_{\mathbb{P}}(n)$ over G^q_{ϵ} .
- (3) uniformly approximate continuous functions $\mathscr{C}(G^q_\epsilon)$ by sequences in Λ^q_ϵ
- (4) suitably extend τ^q_ϵ to a linear functional on $\mathscr{C}(G^q_\epsilon)$
- (5) apply Riesz theorem at the level of G^q_ϵ and get a unique Borel probability measure μ^q_ϵ representing τ^q_ϵ

INTEGRAL REPRESENTATION FOR STATES ON PRODUCT FUNCTIONS

Now:

• as q goes to 0, the μ_{ϵ}^q 's converge to a unique Borel measure μ_{ϵ} representing s_{ϵ} , over each G_{ϵ} .

INTEGRAL REPRESENTATION FOR STATES ON PRODUCT FUNCTIONS

Now:

- as q goes to 0, the μ_{ϵ}^q 's converge to a unique Borel measure μ_{ϵ} representing s_{ϵ} , over each G_{ϵ} .
- We suitably glue together the μ_{ϵ} to define μ on $[0,1]^n$.

INTEGRAL REPRESENTATION FOR STATES ON PRODUCT FUNCTIONS

Now:

- as q goes to 0, the μ_{ϵ}^q 's converge to a unique Borel measure μ_{ϵ} representing s_{ϵ} , over each G_{ϵ} .
- We suitably glue together the μ_{ϵ} to define μ on $[0,1]^n$.

THEOREM

For every state s of $\mathcal{F}_{\mathbb{P}}(n)$ there is a unique regular Borel probability measure μ on $[0,1]^n$, such that for every $f \in \mathcal{F}_{\mathbb{P}}(n)$:

$$s(f) = \int_{[0,1]^n} f \, \mathrm{d}\mu.$$

STATE SPACE AND ITS EXTREMAL POINTS

 $\mathcal{S}(n)$: set of all states of $\mathcal{F}_{\mathbb{P}}(n)$ $\mathcal{H}(n)$: set of product logic homomorphisms of $\mathcal{F}_{\mathbb{P}}(n)$ into $[0,1]_P$ $\mathcal{M}(n)$: set of all regular Borel probability measures on $[0,1]^n$

The state space $\mathcal{S}(n)$ results to be a closed convex subset of $[0,1]^{\mathcal{F}_{\mathbb{P}}(n)}$. Moreover, the map $\delta: \mathcal{S}(n) \to \mathcal{M}(n)$ such that $\delta(s) = \mu$ is bijective and affine.

THEOREM

The following are equivalent for a state $s: \mathcal{F}_{\mathbb{P}}(n) \to [0,1]$:

- (I) s is extremal;
- (II) $\delta(s)$ is a Dirac measure;
- (III) $s \in \mathcal{H}(n)$.

STATE SPACE AND ITS EXTREMAL POINTS

Thus, via Krein-Milman Theorem we obtain the following:

COROLLARY

For every $n \in \mathbb{N}$, the state space S(n) is the convex closure of the set of product homomorphisms from $\mathcal{F}_{\mathbb{P}}(n)$ into $[0,1]_P$.

STATE SPACE AND ITS EXTREMAL POINTS

Thus, via Krein-Milman Theorem we obtain the following:

COROLLARY

For every $n \in \mathbb{N}$, the state space S(n) is the convex closure of the set of product homomorphisms from $\mathcal{F}_{\mathbb{P}}(n)$ into $[0,1]_P$.

Close analogy with MV and Gödel.

MV: The state space of an MV-algebra ${\bf A}$ is a compact convex space generated by its extremal states, that coincide with the homomorphisms of ${\bf A}$ to $[0,1]_{\frac{1}{4}}$.

Gödel: States of $\mathcal{F}_{\mathbb{G}}(n)$ are precisely the convex combinations of finitely many truth value assignments.

• Our axiomatization of states characterizes Lebesgue integral of the functions belonging to the free n-generated product algebra with respect to Borel probability measures on $[0,1]^n$.

- Our axiomatization of states characterizes Lebesgue integral of the functions belonging to the free n-generated product algebra with respect to Borel probability measures on $[0,1]^n$.
- Every state belongs to the convex closure of product logic valuations.

- Our axiomatization of states characterizes Lebesgue integral of the functions belonging to the free n-generated product algebra with respect to Borel probability measures on $[0,1]^n$.
- Every state belongs to the convex closure of product logic valuations.
- States of (all) product algebras?

- Our axiomatization of states characterizes Lebesgue integral of the functions belonging to the free n-generated product algebra with respect to Borel probability measures on $[0,1]^n$.
- Every state belongs to the convex closure of product logic valuations.
- States of (all) product algebras?
- States of (free) BL-algebras?