Motivation 00	Introduction 000000 000000	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end

Reduced Rickart rings and skew nearlattices

Insa Cremer

University of Latvia

TACL 2017

Insa Cremer

University of Latvia

-

Motivation 00	Introduction 000000 000000	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end 000

2 Introduction

- Reduced Rickart rings
- Skew nearlattices

3 Constructing the strong semilattice of semigroups

- Singular skew nearlattices in a reduced Rickart ring
- The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring

University of Latvia

4 Back to the ring?

5 The end

Motivation 00	Introduction 000000 000000	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end

Outline

1 Motivation

2 Introduction

- Reduced Rickart rings
- Skew nearlattices
- 3 Constructing the strong semilattice of semigroups
 - Singular skew nearlattices in a reduced Rickart ring
 - The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring
- 4 Back to the ring?

5 The end

-

Motivation ●0	Introduction 000000 000000	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end

- Any m-domain ring can be decomposed into disjoint semigroups – see [Subrahmanyam 1960].
- It can be proved that reduced Rickart rings and m-domain rings are the same thing.
- Any reduced Rickart ring R has a structure of skew nearlattice – see [Cīrulis 2015].

Question

Insa Cremer

What happens to the skew nearlattice structure when we decompose the ring into semigroups?

Image: A math a math

Motivation		The strong semilattice of semigroups	Back to the ring?	The end
•0	000000	00 00000		

- Any m-domain ring can be decomposed into disjoint semigroups – see [Subrahmanyam 1960].
- It can be proved that reduced Rickart rings and m-domain rings are the same thing.
- Any reduced Rickart ring R has a structure of skew nearlattice – see [Cīrulis 2015].

Question

Insa Cremer

What happens to the skew nearlattice structure when we decompose the ring into semigroups?

Motivation		The strong semilattice of semigroups	Back to the ring?	The end
•0	000000	00 00000		

- Any m-domain ring can be decomposed into disjoint semigroups – see [Subrahmanyam 1960].
- It can be proved that reduced Rickart rings and m-domain rings are the same thing.
- Any reduced Rickart ring R has a structure of skew nearlattice – see [Cīrulis 2015].

Question

Insa Cremer

What happens to the skew nearlattice structure when we decompose the ring into semigroups?

Image: A math a math

Motivation		The strong semilattice of semigroups	Back to the ring?	The end
•0	000000	00 00000		

- Any m-domain ring can be decomposed into disjoint semigroups – see [Subrahmanyam 1960].
- It can be proved that reduced Rickart rings and m-domain rings are the same thing.
- Any reduced Rickart ring R has a structure of skew nearlattice – see [Cīrulis 2015].

Question

Insa Cremer

What happens to the skew nearlattice structure when we decompose the ring into semigroups?

Image: Image:

Motivation		The strong semilattice of semigroups	Back to the ring?	The end
•0	000000	00 00000		

- Any m-domain ring can be decomposed into disjoint semigroups – see [Subrahmanyam 1960].
- It can be proved that reduced Rickart rings and m-domain rings are the same thing.
- Any reduced Rickart ring R has a structure of skew nearlattice – see [Cīrulis 2015].

Question

What happens to the skew nearlattice structure when we decompose the ring into semigroups?

< □ > < 同 >

Motivation		The strong semilattice of semigroups	Back to the ring?	The end
00	000000 000000	00 00000		

Answers

• We get a structure of strong semilattice of semigroups.

- The semigroups are actually skew nearlattices.
- When we try to "reconstruct" a reduced Rickart ring from its strong semilattice of semigroups, we get a reduced Baer semigroup.

< 17 >

Motivation 0●	Introduction 000000 000000	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end 000

Answers

- We get a structure of strong semilattice of semigroups.
- The semigroups are actually skew nearlattices.
- When we try to "reconstruct" a reduced Rickart ring from its strong semilattice of semigroups, we get a reduced Baer semigroup.

< 17 >

Motivation		The strong semilattice of semigroups	Back to the ring?	The end
00	000000 000000	00 00000		

Answers

- We get a structure of strong semilattice of semigroups.
- The semigroups are actually skew nearlattices.
- When we try to "reconstruct" a reduced Rickart ring from its strong semilattice of semigroups, we get a reduced Baer semigroup.

< 口 > < 同

Insa Cremer

Motivation	Introduction	The strong semilattice of semigroups	Back to the ring?	The end
	000000 000000	00 00000		

Outline

1 Motivation

2 Introduction

- Reduced Rickart rings
- Skew nearlattices
- 3 Constructing the strong semilattice of semigroups
 - Singular skew nearlattices in a reduced Rickart ring
 - The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring
- 4 Back to the ring?

5 The end

-

Motivation	Introduction	The strong semilattice of semigroups	Back to the ring?	The end	
	••••• •••••	00 00000			
Reduced Rickart rings					

Definition

A semigroup S is called Baer semigroup iff for every $a \in S$ there are idempotents $e, f \in S$ such that, for all $x \in S$,

• ax = 0 iff ex = x,

• xa = 0 iff xf = x.

Definition

A unitary ring *R* whose multiplicative semigroup is a Baer semigroup is called a Rickart ring.

イロト イヨト イヨト

Motivation	Introduction	The strong semilattice of semigroups	Back to the ring?	The end	
	••••• •••••	00 00000			
Reduced Rickart rings					

Definition

A semigroup S is called Baer semigroup iff for every $a \in S$ there are idempotents $e, f \in S$ such that, for all $x \in S$,

•
$$ax = 0$$
 iff $ex = x$,

• xa = 0 iff xf = x.

Definition

A unitary ring *R* whose multiplicative semigroup is a Baer semigroup is called a Rickart ring.

イロト イヨト イヨト

Motivation	Introduction	The strong semilattice of semigroups	Back to the ring?	The end	
	••••• •••••	00 00000			
Reduced Rickart rings					

Definition

A semigroup S is called Baer semigroup iff for every $a \in S$ there are idempotents $e, f \in S$ such that, for all $x \in S$,

•
$$ax = 0$$
 iff $ex = x$,

•
$$xa = 0$$
 iff $xf = x$.

Definition

A unitary ring *R* whose multiplicative semigroup is a Baer semigroup is called a Rickart ring.

Image: A math a math

Motivation 00	Introduction •00000 000000	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end 000	
Reduced Rickart rings					

Definition

A semigroup S is called Baer semigroup iff for every $a \in S$ there are idempotents $e, f \in S$ such that, for all $x \in S$,

•
$$ax = 0$$
 iff $ex = x$,

•
$$xa = 0$$
 iff $xf = x$.

Definition

A unitary ring R whose multiplicative semigroup is a Baer semigroup is called a Rickart ring.

Image: Image:

University of Latvia

Motivation 00	Introduction 00000 00000	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end 000	
Reduced Rickart rings					

Definition

A ring is called reduced iff it has no non-zero nilpotent elements.

Proposition

On a reduced Rickart ring, the idempotents e and f from the definition are unique and coincide.

・ロト ・回ト ・ ヨト ・

University of Latvia

Insa Cremer

Motivation 00	Introduction 00000 00000	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end 000	
Reduced Rickart rings					

Definition

A ring is called reduced iff it has no non-zero nilpotent elements.

Proposition

On a reduced Rickart ring, the idempotents e and f from the definition are unique and coincide.

University of Latvia

Insa Cremer

Motivation 00	Introduction 00000 00000	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end 000	
Reduced Rickart rings					

Focal operation

Definition

For every a in a reduced Rickart ring R, let a' be the unique idempotent such that

$$ax = 0 \iff a'x = x$$

∃ >

University of Latvia

for all x. The operation ' is called focal operation.

Insa Cremer

Motivation 00	Introduction 000000 000000	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end 000
Deduced Distant				

Examples of reduced Rickart rings

$\blacksquare \mathbb{Z}$

Any Boolean ring

\square \mathbb{Z}_{pq} for prime numbers $p \neq q$

University of Latvia

Insa Cremer

Motivation 00	Introduction 000000 000000	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end 000
Poducod Dickort				

Examples of reduced Rickart rings

$\blacksquare \mathbb{Z}$

Any Boolean ring

\square \mathbb{Z}_{pq} for prime numbers $p \neq q$

Insa Cremer

Motivation 00	Introduction 000000 000000	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end
Reduced Rickart ri	ngs			

Image: Image:

-

University of Latvia

Examples of reduced Rickart rings

 $\blacksquare \mathbb{Z}$

- Any Boolean ring
- **•** \mathbb{Z}_{pq} for prime numbers $p \neq q$

Insa Cremer

Motivation 00	Introduction 000000 000000	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end 000	
Reduced Rickart rings					

Abian order

Proposition

On a reduced ring, the following relation is a partial order:

$$a \leq b$$
 iff $ab = a^2$

Definition

It is called the Abian order.

 A reduced Rickart ring ordered by the Abian order is a semi-Boolean algebra. [Janowitz 1976]

・ロト ・回ト ・ 回ト ・

Motivation 00	Introduction 000000 000000	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end 000	
Reduced Rickart rings					

Abian order

Proposition

On a reduced ring, the following relation is a partial order:

$$a \leq b$$
 iff $ab = a^2$

Definition

It is called the Abian order.

 A reduced Rickart ring ordered by the Abian order is a semi-Boolean algebra. [Janowitz 1976]

イロト イヨト イヨト

University of Latvia

Motivation 00	Introduction 000000 000000	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end 000	
Reduced Rickart rings					

Abian order

Proposition

On a reduced ring, the following relation is a partial order:

$$a \leq b$$
 iff $ab = a^2$

Definition

It is called the Abian order.

 A reduced Rickart ring ordered by the Abian order is a semi-Boolean algebra. [Janowitz 1976]

・ロト ・回 ・ ・ ヨト

University of Latvia

000000 00000	000

Example: The Abian order of \mathbb{Z}_6 and the focal operation

University of Latvia

< □ > < 同 >

Insa Cremer

000000 00000	000

Example: The Abian order of \mathbb{Z}_6 and the focal operation

University of Latvia

< □ > < 同 >

Insa Cremer

Motivation	Introduction	The strong semilattice of semigroups	Back to the ring?	The end
	000000 000000	00 00000		

Example: The Abian order of \mathbb{Z}_6 and the focal operation

Insa Cremer

Motivation	Introduction	The strong semilattice of semigroups	Back to the ring?	The end
	000000	00 00000		
Skew nearlattices				

Definition

A poset P is called nearlattice if

P is a meet-semilattice,

if $x, y \in P$ have an upper bound, then they have the join (i.e., P is finitely bounded complete).

< 17 ▶

University of Latvia

Insa Cremer

Motivation	Introduction	The strong semilattice of semigroups	Back to the ring?	The end
	000000	00 00000		
Skew nearlattices				

Definition

A poset P is called nearlattice if

P is a meet-semilattice,

if $x, y \in P$ have an upper bound, then they have the join (i.e., P is finitely bounded complete).

< 17 ▶

University of Latvia

Insa Cremer

Motivation	Introduction	The strong semilattice of semigroups	Back to the ring?	The end
	000000 000000	00 00000		
Skew nearlattices				

Definition

A poset P is called nearlattice if

P is a meet-semilattice,

• if $x, y \in P$ have an upper bound, then they have the join (i.e., P is finitely bounded complete).

< A

Motivation	Introduction	The strong semilattice of semigroups	Back to the ring?	The end
	000000	00 00000		000
Skew nearlattice	e			

Definition

A semigroup is called band if all its elements are idempotent.

- Let $\langle S, \circ \rangle$ be a band.
- Let $x \leq_{\circ} y$ iff xy = x = yx.
- Then ≤₀ is a partial order, called the natural order of the band S.

Motivation 00	Introduction ○○○○○○ ○●○○○○	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end 000
Skew nearlattices	=			

Definition

A semigroup is called **band** if all its elements are idempotent.

- Let $\langle S, \circ \rangle$ be a band.
- Let $x \leq_{\circ} y$ iff xy = x = yx.
- Then ≤₀ is a partial order, called the natural order of the band S.

イロト イヨト イヨト

Motivation 00	Introduction ○○○○○○ ○●○○○○	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end 000
Skew nearlattices	=			

Definition

A semigroup is called **band** if all its elements are idempotent.

• Let $\langle S, \circ \rangle$ be a band.

• Let
$$x \leq_{\circ} y$$
 iff $xy = x = yx$.

■ Then ≤₀ is a partial order, called the natural order of the band S.

・ロト ・回 ・ ・ ヨト

University of Latvia

Insa Cremer

Motivation 00	Introduction ○○○○○○ ○●○○○○	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end 000
Skew nearlattices	=			

Definition

A semigroup is called band if all its elements are idempotent.

- Let $\langle S, \circ \rangle$ be a band.
- Let $x \leq_{\circ} y$ iff xy = x = yx.
- Then ≤₀ is a partial order, called the natural order of the band S.

Motivation	Introduction	The strong semilattice of semigroups	Back to the ring?	The end
	000000 000000	00 00000		

Skew nearlattices

Right skew nearlattices ([Cīrulis 2015])

Definition

A (right) skew nearlattice is a partial algebra $\langle S, *, \lor \rangle$ such that

- There is a finitely bounded complete order \leq on *S*
- ∨ is the respective partial join operation
- * is an associative operation
- $x \lor y = y$ if and only if x * y = x.
- The operation * is idempotent.
- The natural order on the band $\langle S, * \rangle$ is \leq .
| Motivation | Introduction | The strong semilattice of semigroups | Back to the ring? | The end |
|------------|------------------|--------------------------------------|-------------------|---------|
| | 000000
000000 | 00
00000 | | |

Right skew nearlattices ([Cīrulis 2015])

Definition

A (right) skew nearlattice is a partial algebra $\langle S, *, \lor \rangle$ such that

- There is a finitely bounded complete order \leq on S
- \blacksquare \lor is the respective partial join operation
- * is an associative operation
- $x \lor y = y$ if and only if x * y = x.
- The operation * is idempotent.
- The natural order on the band $\langle S, * \rangle$ is \leq .

Motivation	Introduction	The strong semilattice of semigroups	Back to the ring?	The end
	000000 000000	00 00000		

Right skew nearlattices ([Cīrulis 2015])

Definition

A (right) skew nearlattice is a partial algebra $\langle S, *, \vee \rangle$ such that

イロト イヨト イヨト

University of Latvia

- There is a finitely bounded complete order \leq on S
- ∨ is the respective partial join operation
- * is an associative operation
- $x \lor y = y$ if and only if x * y = x.
- The operation * is idempotent.
- The natural order on the band $\langle S, * \rangle$ is \leq .

Motivation	Introduction	The strong semilattice of semigroups	Back to the ring?	The end
	000000 000000	00 00000		

Right skew nearlattices ([Cīrulis 2015])

Definition

A (right) skew nearlattice is a partial algebra $\langle S, *, \vee \rangle$ such that

- There is a finitely bounded complete order \leq on S
- ∨ is the respective partial join operation
- * is an associative operation

• $x \lor y = y$ if and only if x * y = x.

- The operation * is idempotent.
- The natural order on the band $\langle S, * \rangle$ is \leq .

・ロト ・日子・ ・ 日下

Motivation	Introduction	The strong semilattice of semigroups	Back to the ring?	The end
	000000 000000	00 00000		

Right skew nearlattices ([Cīrulis 2015])

Definition

A (right) skew nearlattice is a partial algebra $\langle S, *, \vee \rangle$ such that

University of Latvia

- There is a finitely bounded complete order \leq on S
- ∨ is the respective partial join operation
- * is an associative operation

•
$$x \lor y = y$$
 if and only if $x * y = x$.

■ The operation * is idempotent.

• The natural order on the band $\langle S, * \rangle$ is \leq .

Motivation	Introduction	The strong semilattice of semigroups	Back to the ring?	The end
	000000 00000	00 00000		

Right skew nearlattices ([Cīrulis 2015])

Definition

A (right) skew nearlattice is a partial algebra $\langle S, *, \vee \rangle$ such that

・ロト ・回ト ・ヨト

University of Latvia

- There is a finitely bounded complete order \leq on S
- ∨ is the respective partial join operation
- * is an associative operation

•
$$x \lor y = y$$
 if and only if $x * y = x$.

The operation * is idempotent.

The natural order on the band $\langle S, * \rangle$ is \leq .

Motivation	Introduction	The strong semilattice of semigroups	Back to the ring?	The end
	000000 000000	00 00000		

Right skew nearlattices ([Cīrulis 2015])

Definition

A (right) skew nearlattice is a partial algebra $\langle S, *, \vee \rangle$ such that

<ロ> <同> <同> <同> < 同>

University of Latvia

- There is a finitely bounded complete order \leq on S
- \blacksquare \lor is the respective partial join operation
- * is an associative operation

•
$$x \lor y = y$$
 if and only if $x * y = x$.

The operation * is idempotent.

• The natural order on the band $\langle S, * \rangle$ is \leq .

Motivation 00	Introduction 000000 000000	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end
Skew nearlattices				

Let I, V be sets.

• Let $\mathcal{F}(\mathcal{I}, \mathcal{V})$ be the set of partial functions from I to V.

■ For partial functions *f*, *g*, define

$$f \stackrel{\leftarrow}{\cap} g := g|_{\operatorname{dom}(f) \cap \operatorname{dom}(g)}$$

- Then $\langle \mathcal{F}(\mathcal{I}, \mathcal{V}), \overleftarrow{\cap} \rangle$ is a band.
- The union of sets is their join with respect to the natural order of the band.
- $\langle \mathcal{F}(\mathcal{I}, \mathcal{V}), \overleftarrow{\cap}, \cup \rangle$ is a skew nearlattice.

Insa Cremer

Motivation 00	Introduction	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end
Skew nearlattices				

- Let *I*, *V* be sets.
- Let $\mathcal{F}(\mathcal{I}, \mathcal{V})$ be the set of partial functions from I to V.
- For partial functions *f*, *g*, define

$$f \overleftarrow{\cap} g := g|_{\operatorname{dom}(f) \cap \operatorname{dom}(g)}$$

- Then $\langle \mathcal{F}(\mathcal{I}, \mathcal{V}), \overleftarrow{\cap} \rangle$ is a band.
- The union of sets is their join with respect to the natural order of the band.
- $\langle \mathcal{F}(\mathcal{I}, \mathcal{V}), \overleftarrow{\cap}, \cup \rangle$ is a skew nearlattice.

Insa Cremer

Motivation	Introduction	The strong semilattice of semigroups	The end
	000000 000000	00 00000	000
Skew nearlattices			

- Let *I*, *V* be sets.
- Let $\mathcal{F}(\mathcal{I}, \mathcal{V})$ be the set of partial functions from I to V.
- For partial functions *f*, *g*, define

$$f \overleftarrow{\cap} g := g|_{\operatorname{dom}(f) \cap \operatorname{dom}(g)}$$
.

- Then $\langle \mathcal{F}(\mathcal{I}, \mathcal{V}), \overleftarrow{\cap} \rangle$ is a band.
- The union of sets is their join with respect to the natural order of the band.
- $\langle \mathcal{F}(\mathcal{I}, \mathcal{V}), \overleftarrow{\cap}, \cup \rangle$ is a skew nearlattice.

Insa Cremer

Motivation 00	Introduction 000000 000000	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end
Skew nearlattices				

- Let I, V be sets.
- Let $\mathcal{F}(\mathcal{I}, \mathcal{V})$ be the set of partial functions from I to V.
- For partial functions *f*, *g*, define

$$f \overleftarrow{\cap} g := g|_{\operatorname{dom}(f) \cap \operatorname{dom}(g)}$$
.

- Then $\langle \mathcal{F}(\mathcal{I}, \mathcal{V}), \overleftarrow{\cap} \rangle$ is a band.
- The union of sets is their join with respect to the natural order of the band.
- $\langle \mathcal{F}(\mathcal{I}, \mathcal{V}), \overleftarrow{\cap}, \cup \rangle$ is a skew nearlattice.

Insa Cremer

<ロ> <同> <同> <同> < 同>

Motivation	Introduction	The strong semilattice of semigroups	The end
	000000 000000	00 00000	000
Skew nearlattices			

- Let I, V be sets.
- Let $\mathcal{F}(\mathcal{I}, \mathcal{V})$ be the set of partial functions from I to V.
- For partial functions *f*, *g*, define

$$f \overleftarrow{\cap} g := g|_{\operatorname{dom}(f) \cap \operatorname{dom}(g)}$$

・ロン ・回 と ・ 回 と ・

University of Latvia

- Then $\langle \mathcal{F}(\mathcal{I}, \mathcal{V}), \overleftarrow{\cap} \rangle$ is a band.
- The union of sets is their join with respect to the natural order of the band.
- $\langle \mathcal{F}(\mathcal{I}, \mathcal{V}), \overleftarrow{\cap}, \cup \rangle$ is a skew nearlattice.

Motivation	Introduction	The strong semilattice of semigroups	The end
	000000 000000	00 00000	000
Skew nearlattices			

- Let I, V be sets.
- Let $\mathcal{F}(\mathcal{I}, \mathcal{V})$ be the set of partial functions from I to V.
- For partial functions *f*, *g*, define

$$f \overleftarrow{\cap} g := g|_{\operatorname{dom}(f) \cap \operatorname{dom}(g)}$$

イロン イヨン イヨン イ

University of Latvia

- Then $\langle \mathcal{F}(\mathcal{I}, \mathcal{V}), \overleftarrow{\cap} \rangle$ is a band.
- The union of sets is their join with respect to the natural order of the band.
- $\langle \mathcal{F}(\mathcal{I}, \mathcal{V}), \overleftarrow{\cap}, \cup \rangle$ is a skew nearlattice.

Motivation	Introduction	The strong semilattice of semigroups	Back to the ring?	The end
	000000 000000	00 00000		000
Skew pearlattices				

• Let *R* be a reduced Rickart ring.

Define the skew meet:

 $a \overleftarrow{\wedge} b := a'' b$

< ⊡ > < ∃ >

University of Latvia

• $\langle R, \overleftarrow{\wedge} \rangle$ is a band.

- Its natural order coincides with the Abian order.
- Let \lor be the respective partial join.
- Then $\langle R, \lor, \overleftarrow{\land} \rangle$ is a right skew nearlattice.

Motivation 00	Introduction	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end
Skew nearlattices				

- Let R be a reduced Rickart ring.
- Define the skew meet:

 $a \overleftarrow{\wedge} b := a'' b$

Image: A math a math

University of Latvia

• $\langle R, \overleftarrow{\wedge} \rangle$ is a band.

- Its natural order coincides with the Abian order.
- Let \lor be the respective partial join.

• Then $\langle R, \lor, \overleftarrow{\land} \rangle$ is a right skew nearlattice.

Motivation 00	Introduction ○○○○○○ ○○○○○○	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end
Skew nearlattices	5			

- Let R be a reduced Rickart ring.
- Define the skew meet:

 $a \overleftarrow{\wedge} b := a'' b$

Image: A math a math

University of Latvia

• $\langle R, \overleftarrow{\wedge} \rangle$ is a band.

- Its natural order coincides with the Abian order.
- Let \lor be the respective partial join.
- Then $\langle R, \lor, \overleftarrow{\land} \rangle$ is a right skew nearlattice.

Motivation 00	Introduction ○○○○○○ ○○○○○○	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end
Skew nearlattices	5			

- Let R be a reduced Rickart ring.
- Define the skew meet:

$$a \overleftarrow{\wedge} b \coloneqq a'' b$$

・ロン ・回 と ・ 回 と ・

University of Latvia

•
$$\langle R, \overleftarrow{\wedge} \rangle$$
 is a band.

.

- Its natural order coincides with the Abian order.
- Let \lor be the respective partial join.
- Then $\langle R, \lor, \overleftarrow{\land} \rangle$ is a right skew nearlattice.

Motivation 00	Introduction ○○○○○○ ○○○○○○	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end
Skew nearlattices	5			

- Let R be a reduced Rickart ring.
- Define the skew meet:

$$a\overleftarrow{\wedge}b \coloneqq a''b$$

・ロト ・日子・ ・ 日下

University of Latvia

•
$$\langle R, \overleftarrow{\wedge} \rangle$$
 is a band.

.

- Its natural order coincides with the Abian order.
- Let \lor be the respective partial join.
- Then $\langle R, \lor, \overleftarrow{\land} \rangle$ is a right skew nearlattice.

Motivation 00	Introduction ○○○○○○ ○○○○○○	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end
Skew nearlattices	5			

- Let *R* be a reduced Rickart ring.
- Define the skew meet:

$$a \overleftarrow{\wedge} b \coloneqq a'' b$$

・ロト ・回ト ・ ヨト ・

University of Latvia

•
$$\langle R, \overleftarrow{\wedge} \rangle$$
 is a band.

.

- Its natural order coincides with the Abian order.
- Let \lor be the respective partial join.

• Then
$$\langle R, \lor, \overleftarrow{\land} \rangle$$
 is a right skew nearlattice.

Motivation 00	Introduction	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end 000

Right zero bands and right singular skew nearlattices

Definition

• A band $\langle S, \circ \rangle$ is called right zero band if

$$x \circ y = y$$

for all $x, y \in S$.

■ A skew nearlattice (S,*, ∨) is called right singular if its band reduct (S,*) is right zero.

Image: A math a math

University of Latvia

Insa Cremer

Motivation 00	Introduction ○○○○○○ ○○○○○●	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end 000
Skew nearlattices				

Right zero bands and right singular skew nearlattices

Definition

• A band $\langle S, \circ \rangle$ is called right zero band if

$$x \circ y = y$$

for all $x, y \in S$.

■ A skew nearlattice (S,*, ∨) is called right singular if its band reduct (S,*) is right zero.

Image: A math a math

University of Latvia

Insa Cremer

Motivation 00	Introduction ○○○○○○ ○○○○○●	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end 000
Skew nearlattices				

Right zero bands and right singular skew nearlattices

Definition

• A band $\langle S, \circ \rangle$ is called right zero band if

$$x \circ y = y$$

for all $x, y \in S$.

A skew nearlattice (S, *, ∨) is called right singular if its band reduct (S, *) is right zero.

Image: A math a math

University of Latvia

Insa Cremer

Motivation		The strong semilattice of semigroups	Back to the ring?	The end
	000000	00 00000		

Outline

1 Motivation

2 Introduction

- Reduced Rickart rings
- Skew nearlattices

3 Constructing the strong semilattice of semigroups

- Singular skew nearlattices in a reduced Rickart ring
- The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring
- 4 Back to the ring?

5 The end

Motivation		The strong semilattice of semigroups	Back to the ring?	The end
	000000	•• •••		
Cincular alterna	here have a sectored	Distant size		

Proposition

- Let R be a reduced Rickart ring.
- Let U be the set of non-zero divisors.
- Let e be an idempotent.

• Let
$$a \wedge b := a''b$$
.

• Then $\langle eU, \overleftarrow{\wedge}, \vee \rangle$ is a right singular skew nearlattice.

University of Latvia

Insa Cremer

Motivation		The strong semilattice of semigroups	Back to the ring?	The end
	000000	•• •••		
Cincular alterna	here have a sectored	Distant size		

Proposition

- Let R be a reduced Rickart ring.
- Let U be the set of non-zero divisors.
- Let e be an idempotent.

• Let
$$a \wedge b := a''b$$
.

• Then $\langle eU, \overleftarrow{\wedge}, \vee \rangle$ is a right singular skew nearlattice.

University of Latvia

Insa Cremer

Motivation		The strong semilattice of semigroups	Back to the ring?	The end
	000000	00 00000		
Singular skow ne	arlattices in a reduced	Rickart ring		

Proposition

- Let R be a reduced Rickart ring.
- Let U be the set of non-zero divisors.
- Let e be an idempotent.
- Let $a \overleftarrow{\wedge} b \coloneqq a'' b$.
- Then $\langle eU, \overleftarrow{\wedge}, \lor \rangle$ is a right singular skew nearlattice.

University of Latvia

Insa Cremer

Motivation		The strong semilattice of semigroups	Back to the ring?	The end
	000000	00 00000		
Singular skow ne	arlattices in a reduced	Rickart ring		

Proposition

- Let R be a reduced Rickart ring.
- Let U be the set of non-zero divisors.
- Let e be an idempotent.
- Let $a \overleftarrow{\wedge} b := a'' b$.
- Then $\langle eU, \overleftarrow{\wedge}, \lor \rangle$ is a right singular skew nearlattice.

< ∃ >

University of Latvia

Insa Cremer

Motivation		The strong semilattice of semigroups	Back to the ring?	The end
	000000 000000	• o •••••		
Singular skew ne	arlattices in a reduced	Rickart ring		

Proposition

- Let R be a reduced Rickart ring.
- Let U be the set of non-zero divisors.
- Let e be an idempotent.

• Let
$$a \overleftarrow{\wedge} b \coloneqq a''b$$
.

• Then $\langle eU, \overleftarrow{\wedge}, \vee \rangle$ is a right singular skew nearlattice.

< 17 ▶

< ∃ >

University of Latvia

Insa Cremer

Motivation		The strong semilattice of semigroups	Back to the ring?	The end
	000000 000000	• o •••••		
Singular skew ne	arlattices in a reduced	Rickart ring		

Proposition

- Let R be a reduced Rickart ring.
- Let U be the set of non-zero divisors.
- Let e be an idempotent.

• Let
$$a \overleftarrow{\wedge} b \coloneqq a''b$$
.

• Then $\langle eU, \overleftarrow{\wedge}, \vee \rangle$ is a right singular skew nearlattice.

< □ > < 同 >

-∢ ≣ →

University of Latvia

The strong semilattice of semigroups 00

Singular skew nearlattices in a reduced Rickart ring

Example: The singular skew nearlattices $\langle eU, \overleftarrow{\wedge}, \lor angle$ in \mathbb{Z}_6

- Abian order of \mathbb{Z}_6
- Lattice of idempotents E
- The set of non-zero
- The other right

< □ > < 同 >

Reduced Rickart rings and skew nearlattices

Insa Cremer

 Motivation
 Introduction
 The strong semilattice of semigroups
 Back to the ring?
 The end

 00
 000000
 00000
 000
 000
 000

 00
 00000
 00000
 000
 000

Singular skew nearlattices in a reduced Rickart ring

Example: The singular skew nearlattices $\langle eU, \overleftarrow{\wedge}, \lor \rangle$ in \mathbb{Z}_6

- Abian order of \mathbb{Z}_6
- Lattice of idempotents E
- The set of non-zero divisors U
- The other right singular skew nearlatttices eU

Image: Image:

Reduced Rickart rings and skew nearlattices

Insa Cremer

 Motivation
 Introduction
 The strong semilattice of semigroups
 Back to the ring?
 The end

 00
 000000
 00000
 000
 000
 000

 000000
 00000
 00000
 000
 000

Singular skew nearlattices in a reduced Rickart ring

Example: The singular skew nearlattices $\langle eU, \overleftarrow{\wedge}, \vee \rangle$ in \mathbb{Z}_6

- Abian order of \mathbb{Z}_6
- Lattice of idempotents E
- The set of non-zero divisors U
- The other right singular skew nearlatttices eU

< 何

Reduced Rickart rings and skew nearlattices

Insa Cremer

Motivation		The strong semilattice of semigroups	Back to the ring?	The end
	000000 000000	00 ●0000		
The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring				

Definition

- Let $\langle A, *_A, \lor_A \rangle$ and $\langle B, *_B, \lor_B \rangle$ be skew nearlattices.
- A map $f : A \rightarrow B$ is called homomorphism of skew nearlattices if
 - $f : \langle A, *_A \rangle \longrightarrow \langle B, *_B \rangle$ is a semigroup homomorphism, ■ whenever $x, y \in A$ have the join, so do their images, and

 $f(x \vee y) = f(x) \vee f(y).$

University of Latvia

・ロト ・回ト ・ 回ト ・

Insa Cremer

Motivation		The strong semilattice of semigroups	Back to the ring?	The end
	000000	00 •0000		
The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring				

Definition

- Let $\langle A, *_A, \lor_A \rangle$ and $\langle B, *_B, \lor_B \rangle$ be skew nearlattices.
- A map $f : A \rightarrow B$ is called homomorphism of skew nearlattices if
 - $f : \langle A, *_A \rangle \longrightarrow \langle B, *_B \rangle$ is a semigroup homomorphism, ■ whenever $x, y \in A$ have the join, so do their images, and

 $f(x \vee y) = f(x) \vee f(y).$

University of Latvia

(ロ) (回) (E) (E)

Insa Cremer

Motivation		The strong semilattice of semigroups	Back to the ring?	The end
	000000 000000	00 ●0000		
The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring				

Definition

- Let $\langle A, *_A, \lor_A \rangle$ and $\langle B, *_B, \lor_B \rangle$ be skew nearlattices.
- A map $f : A \rightarrow B$ is called homomorphism of skew nearlattices if

f: ⟨A,*_A⟩ → ⟨B,*_B⟩ is a semigroup homomorphism,
 whenever x, y ∈ A have the join, so do their images, and

 $f(x \vee y) = f(x) \vee f(y).$

Insa Cremer

University of Latvia

Image: A math a math

Motivation		The strong semilattice of semigroups	Back to the ring?	The end
	000000	00 ●0000		
The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring				

Definition

- Let $\langle A, *_A, \lor_A \rangle$ and $\langle B, *_B, \lor_B \rangle$ be skew nearlattices.
- A map $f : A \rightarrow B$ is called homomorphism of skew nearlattices if
 - $f: \langle A, *_A \rangle \longrightarrow \langle B, *_B \rangle$ is a semigroup homomorphism,

whenever $x, y \in A$ have the join, so do their images, and

 $f(x \vee y) = f(x) \vee f(y).$

Insa Cremer

University of Latvia

Image: A math a math

Motivation		The strong semilattice of semigroups	Back to the ring?	The end
	000000	00		
	000000			
The strong semil	attice of multiplicative :	skew nearlattices in a reduced Rickart ring		

Definition

- Let $\langle A, *_A, \vee_A \rangle$ and $\langle B, *_B, \vee_B \rangle$ be skew nearlattices.
- A map $f : A \rightarrow B$ is called homomorphism of skew nearlattices if
 - $f: \langle A, *_A \rangle \longrightarrow \langle B, *_B \rangle$ is a semigroup homomorphism,
 - whenever $x, y \in A$ have the join, so do their images, and

$$f(x \vee y) = f(x) \vee f(y).$$

Image: A math a math

University of Latvia

Insa Cremer
Motivation		The strong semilattice of semigroups	Back to the ring?	The end	
	000000 000000	00 0●000			
The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring					

Definition (Clifford)

- Let *T* be a meet-semilattice,
- Let $\{\langle A_s, *_s \rangle \mid s \in T\}$ be a family of disjoint semigroups,
- Suppose that, for all $s, t \in T$ with $s \leq t$, there are semigroup homomorphisms $f_s^t : A_t \to A_s$ such that
- f_t^t are the identity maps

• if
$$r \leq s \leq t$$
, then $f_r^s f_s^t = f_r^t$.

- Let $A := \bigcup_{s \in T} A_s$.
- For $x \in A_s, y \in A_t$ define $x \overleftarrow{\wedge} y \coloneqq f_{s \wedge t}^s(x) *_{s \wedge t} f_{s \wedge t}^t(y)$.
- The algebra $\langle A, \overleftarrow{\wedge} \rangle$ is called a strong semilattice of the

semigroups { A

Insa Cremer

University of Latvia

Motivation		The strong semilattice of semigroups	Back to the ring?	The end		
	000000 000000	00 0●000				
The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring						

Definition (Clifford)

■ Let *T* be a meet-semilattice,

- Let $\{\langle A_s, *_s \rangle \mid s \in T\}$ be a family of disjoint semigroups,
- Suppose that, for all $s, t \in T$ with $s \leq t$, there are semigroup homomorphisms $f_s^t : A_t \to A_s$ such that
- f_t^t are the identity maps

• if
$$r \leq s \leq t$$
, then $f_r^s f_s^t = f_r^t$.

- Let $A := \bigcup_{s \in T} A_s$.
- For $x \in A_s, y \in A_t$ define $x \overleftarrow{\wedge} y \coloneqq f_{s \wedge t}^s(x) *_{s \wedge t} f_{s \wedge t}^t(y)$.
- The algebra $\langle A, \overleftarrow{\wedge} \rangle$ is called a strong semilattice of the

semigroups { A

Insa Cremer

University of Latvia

Motivation		The strong semilattice of semigroups	Back to the ring?	The end		
	000000 000000	00 0●000				
The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring						

Definition (Clifford)

- Let *T* be a meet-semilattice,
- Let $\{\langle A_s, *_s \rangle \mid s \in T\}$ be a family of disjoint semigroups,
- Suppose that, for all $s, t \in T$ with $s \leq t$, there are semigroup homomorphisms $f_s^t : A_t \to A_s$ such that
- f_t^t are the identity maps
- if $r \leq s \leq t$, then $f_r^s f_s^t = f_r^t$.
- Let $A := \bigcup_{s \in T} A_s$.
- For $x \in A_s, y \in A_t$ define $x \overleftarrow{\wedge} y \coloneqq f_{s \wedge t}^s(x) *_{s \wedge t} f_{s \wedge t}^t(y)$.
- The algebra $\left\langle {\cal A}, \overleftarrow{\wedge}
 ight
 angle$ is called a strong semilattice of the

semigroups { A

Insa Cremer

University of Latvia

Motivation		The strong semilattice of semigroups	Back to the ring?	The end		
	000000 000000	00 0●000				
The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring						

Definition (Clifford)

- Let *T* be a meet-semilattice,
- Let $\{\langle A_s, *_s \rangle \mid s \in T\}$ be a family of disjoint semigroups,
- Suppose that, for all $s, t \in T$ with $s \leq t$, there are semigroup homomorphisms $f_s^t : A_t \to A_s$ such that
- f_t^t are the identity maps
- if $r \leq s \leq t$, then $f_r^s f_s^t = f_r^t$.
- Let $A := \bigcup_{s \in T} A_s$.
- For $x \in A_s, y \in A_t$ define $x \overleftarrow{\wedge} y \coloneqq f_{s \wedge t}^s(x) *_{s \wedge t} f_{s \wedge t}^t(y)$.
- The algebra $\left\langle {\cal A}, \overleftarrow{\wedge}
 ight
 angle$ is called a strong semilattice of the

semigroups { A

Insa Cremer

University of Latvia

Motivation		The strong semilattice of semigroups	Back to the ring?	The end	
	000000				
The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring					

Definition (Clifford)

- Let *T* be a meet-semilattice,
- Let $\{\langle A_s, *_s \rangle \mid s \in T\}$ be a family of disjoint semigroups,
- Suppose that, for all $s, t \in T$ with $s \leq t$, there are semigroup homomorphisms $f_s^t : A_t \to A_s$ such that
- f_t^t are the identity maps
- if $r \leq s \leq t$, then $f_r^s f_s^t = f_r^t$.
- Let $A := \bigcup_{s \in T} A_s$.
- For $x \in A_s, y \in A_t$ define $x \overleftarrow{\wedge} y \coloneqq f_{s \wedge t}^s(x) *_{s \wedge t} f_{s \wedge t}^t(y)$.
- The algebra $\langle A, \overleftarrow{\wedge} \rangle$ is called a strong semilattice of the

semigroups { A

Insa Cremer

University of Latvia

Motivation		The strong semilattice of semigroups	Back to the ring?	The end	
	000000 000000	00 0●000			
The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring					

Definition (Clifford)

- Let *T* be a meet-semilattice,
- Let $\{\langle A_s, *_s \rangle \mid s \in T\}$ be a family of disjoint semigroups,
- Suppose that, for all $s, t \in T$ with $s \leq t$, there are semigroup homomorphisms $f_s^t : A_t \to A_s$ such that
- *f*^t_t are the identity maps

• if
$$r \leq s \leq t$$
, then $f_r^s f_s^t = f_r^t$.

- Let $A := \bigcup_{s \in T} A_s$.
- For $x \in A_s, y \in A_t$ define $x \overleftarrow{\wedge} y \coloneqq f_{s \wedge t}^s(x) *_{s \wedge t} f_{s \wedge t}^t(y)$.
- The algebra $\left\langle {\cal A}, \overleftarrow{\wedge}
 ight
 angle$ is called a strong semilattice of the

semigroups { A

Motivation		The strong semilattice of semigroups	Back to the ring?	The end		
	000000 000000	00 0●000				
The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring						

Definition (Clifford)

- Let *T* be a meet-semilattice,
- Let $\{\langle A_s, *_s \rangle \mid s \in T\}$ be a family of disjoint semigroups,
- Suppose that, for all $s, t \in T$ with $s \le t$, there are semigroup homomorphisms $f_s^t : A_t \to A_s$ such that
- *f*^t_t are the identity maps
- if $r \leq s \leq t$, then $f_r^s f_s^t = f_r^t$.
- Let $A := \bigcup_{s \in T} A_s$.
- For $x \in A_s, y \in A_t$ define $x \overleftarrow{\wedge} y \coloneqq f_{s \wedge t}^s(x) *_{s \wedge t} f_{s \wedge t}^t(y)$.
- The algebra $\langle A, \overleftarrow{\wedge} \rangle$ is called a strong semilattice of the

Motivation		The strong semilattice of semigroups	Back to the ring?	The end		
	000000 000000	00 0●000				
The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring						

Definition (Clifford)

- Let *T* be a meet-semilattice,
- Let $\{\langle A_s, *_s \rangle \mid s \in T\}$ be a family of disjoint semigroups,
- Suppose that, for all $s, t \in T$ with $s \le t$, there are semigroup homomorphisms $f_s^t : A_t \to A_s$ such that
- *f*^t_t are the identity maps

• if
$$r \leq s \leq t$$
, then $f_r^s f_s^t = f_r^t$

- Let $A := \bigcup_{s \in T} A_s$.
- For $x \in A_s, y \in A_t$ define $x \overleftarrow{\wedge} y \coloneqq f_{s \wedge t}^s(x) *_{s \wedge t} f_{s \wedge t}^t(y)$.
- The algebra $\langle A, \overleftarrow{\wedge} \rangle$ is called a strong semilattice of the

semigroups {

Insa Cremer

University of Latvia

Motivation		The strong semilattice of semigroups	Back to the ring?	The end		
	000000 000000	00 0●000				
The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring						

Definition (Clifford)

- Let *T* be a meet-semilattice,
- Let $\{\langle A_s, *_s \rangle \mid s \in T\}$ be a family of disjoint semigroups,
- Suppose that, for all $s, t \in T$ with $s \le t$, there are semigroup homomorphisms $f_s^t : A_t \to A_s$ such that
- *f*^t_t are the identity maps

• if
$$r \leq s \leq t$$
, then $f_r^s f_s^t = f_r^t$

- Let $A := \bigcup_{s \in T} A_s$.
- For $x \in A_s, y \in A_t$ define $x \overleftarrow{\wedge} y \coloneqq f_{s \wedge t}^s(x) *_{s \wedge t} f_{s \wedge t}^t(y)$.
- The algebra $\langle A, \overleftarrow{\wedge} \rangle$ is called a strong semilattice of the semigroups $\{A_s\}_{s \in T}$.

Insa Cremer

University of Latvia

Motivation		The strong semilattice of semigroups	Back to the ring?	The end		
	000000 000000					
The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring						

Multiplicative skew nearlattices

Definition

A partial algebra $\langle S,*,\vee,\cdot\rangle$ will be called multiplicative skew nearlattice if

- $\langle S, *, \lor \rangle$ is a skew nearlattice,
- $\langle S, \cdot \rangle$ is a monoid.

・ロ・・雪・・雪・・雪・ 今今や

University of Latvia

Insa Cremer

Motivation		The strong semilattice of semigroups	Back to the ring?	The end		
	000000 000000					
The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring						

Multiplicative skew nearlattices

Definition

A partial algebra $\langle S,*,\vee,\cdot\rangle$ will be called multiplicative skew nearlattice if

$$\langle S, *, \lor
angle$$
 is a skew nearlattice,

• $\langle S, \cdot \rangle$ is a monoid.

・ロ・・型・・型・・型・・型・・ロ・
・ののの
・

University of Latvia

Insa Cremer

Motivation		The strong semilattice of semigroups	Back to the ring?	The end		
	000000 000000					
The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring						

Multiplicative skew nearlattices

Definition

A partial algebra $\langle S,*,\vee,\cdot\rangle$ will be called multiplicative skew nearlattice if

$$\langle S, *, \lor
angle$$
 is a skew nearlattice,

•
$$\langle S, \cdot
angle$$
 is a monoid.

University of Latvia

・ロト ・回ト ・ 回ト ・

- . . - . . .

Insa Cremer

Motivation		The strong semilattice of semigroups	Back to the ring?	The end	
	000000 000000				
The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring					

Theorem

- Let R be a reduced Rickart ring.
- Let U be the set of non-zero divisors.
- Let e be an idempotent.
- Let $a \overleftarrow{\wedge} b \coloneqq a'' b$.
- Then ⟨eU, ∕∧, ∨, ·⟩ is a multiplicative right singular skew nearlattice.
- Moreover, $\left\langle R,\overleftarrow{\wedge},\cdot\right
 angle$ is a strong semilattice of the

multiplicative skew nearlattices $\langle eU, \lor, \overleftarrow{\wedge}, \cdot \rangle$.

Image: A math a math

Motivation		The strong semilattice of semigroups	Back to the ring?	The end	
	000000 000000				
The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring					

Theorem

- Let R be a reduced Rickart ring.
- Let U be the set of non-zero divisors.
- Let e be an idempotent.
- Let $a \overleftarrow{\wedge} b \coloneqq a'' b$.
- Then ⟨eU, ∕∧, ∨, ·⟩ is a multiplicative right singular skew nearlattice.
- Moreover, $\left\langle R,\overleftarrow{\wedge},\cdot\right
 angle$ is a strong semilattice of the

multiplicative skew nearlattices $\langle eU, \lor, \overleftarrow{\wedge}, \cdot \rangle$.

Image: A math a math

Motivation		The strong semilattice of semigroups	Back to the ring?	The end	
	000000				
The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring					

Theorem

- Let R be a reduced Rickart ring.
- Let U be the set of non-zero divisors.
- Let e be an idempotent.
- Let $a \overleftarrow{\wedge} b \coloneqq a'' b$.
- Then ⟨eU, ∕∧, ∨, ·⟩ is a multiplicative right singular skew nearlattice.
- Moreover, $\left\langle R,\overleftarrow{\wedge},\cdot\right
 angle$ is a strong semilattice of the

multiplicative skew nearlattices $\langle eU, \lor, \overleftarrow{\wedge}, \cdot \rangle$.

Motivation		The strong semilattice of semigroups	Back to the ring?	The end	
	000000				
The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring					

Theorem

- Let R be a reduced Rickart ring.
- Let U be the set of non-zero divisors.
- Let e be an idempotent.
- Let $a \overleftarrow{\wedge} b \coloneqq a'' b$.
- Then ⟨eU, ∕∧, ∨, ·⟩ is a multiplicative right singular skew nearlattice.
- Moreover, $\langle R, \overleftarrow{\wedge}, \cdot \rangle$ is a strong semilattice of the

multiplicative skew nearlattices $\langle eU, \lor, \overleftarrow{\wedge}, \cdot \rangle$.

<ロ> (日) (日) (日) (日)

Motivation		The strong semilattice of semigroups	Back to the ring?	The end	
	000000				
The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring					

Theorem

- Let R be a reduced Rickart ring.
- Let U be the set of non-zero divisors.
- Let e be an idempotent.
- Let $a \overleftarrow{\wedge} b \coloneqq a''b$.
- Then ⟨eU, ∧, ∨, ·⟩ is a multiplicative right singular skew nearlattice.
- Moreover, $\left\langle R,\overleftarrow{\wedge},\cdot
 ight
 angle$ is a strong semilattice of the

multiplicative skew nearlattices $\langle eU, \lor, \overleftarrow{\wedge}, \cdot \rangle$.

Motivation		The strong semilattice of semigroups	Back to the ring?	The end	
	000000				
The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring					

Theorem

- Let R be a reduced Rickart ring.
- Let U be the set of non-zero divisors.
- Let e be an idempotent.
- Let $a \overleftarrow{\wedge} b \coloneqq a''b$.
- Then ⟨eU, ∕∧, ∨, ·⟩ is a multiplicative right singular skew nearlattice.
- Moreover, $\left\langle R,\overleftarrow{\wedge},\cdot
 ight
 angle$ is a strong semilattice of the

multiplicative skew nearlattices $\langle eU, \lor, \overleftarrow{\wedge}, \cdot \rangle$.

<ロ> (日) (日) (日) (日)

Motivation		The strong semilattice of semigroups	Back to the ring?	The end	
	000000				
The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring					

Theorem

- Let R be a reduced Rickart ring.
- Let U be the set of non-zero divisors.
- Let e be an idempotent.
- Let $a \overleftarrow{\wedge} b := a'' b$
- Then $\langle eU, \overleftarrow{\wedge}, \lor, \cdot \rangle$ is a multiplicative right singular skew nearlattice.
- Moreover, $\langle R, \overleftarrow{\wedge}, \cdot \rangle$ is a strong semilattice of the multiplicative skew nearlattices $\langle eU, \lor, \overleftarrow{\wedge}, \cdot \rangle$.

<ロ> (日) (日) (日) (日)

Motivation		The strong semilattice of semigroups	Back to the ring?	The end	
	000000	00000			
The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring					

- Abian order of \mathbb{Z}_6
- Lattice of idempotents E
- The set of non-zero divisors U
- The other right singular skew nearlatttices eU
- The homomorphisms of skew nearlattices

Reduced Rickart rings and skew nearlattices

Motivation		The strong semilattice of semigroups	Back to the ring?	The end	
	000000 000000	00 00000●			
The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring					

- Abian order of \mathbb{Z}_6
- Lattice of idempotents E
- The set of non-zero divisors U
- The other right singular skew nearlatttices eU
- The homomorphisms of skew nearlattices

< 一型

University of Latvia

Insa Cremer

Motivation		The strong semilattice of semigroups	Back to the ring?	The end	
	000000	00			
	000000	00000			
The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring					

- Abian order of \mathbb{Z}_6
- Lattice of idempotents E
- The set of non-zero divisors U
- The other right singular skew nearlatttices eU
- The homomorphisms of skew nearlattices

Insa Cremer

Motivation		The strong semilattice of semigroups	Back to the ring?	The end	
	000000 000000	00 00000●			
The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring					

- Abian order of \mathbb{Z}_6
- Lattice of idempotents E
- The set of non-zero divisors U
- The other right singular skew nearlatttices eU
- The homomorphisms of skew nearlattices

< 何

Motivation		The strong semilattice of semigroups	Back to the ring?	The end	
	000000 000000	00 00000●			
The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring					

- Abian order of \mathbb{Z}_6
- Lattice of idempotents E
- The set of non-zero divisors U
- The other right singular skew nearlatttices eU
- The homomorphisms of skew nearlattices

< 17 >

University of Latvia

Insa Cremer

Motivation		The strong semilattice of semigroups	Back to the ring?	The end
	000000 000000	00 00000●		
The strong semi	lattice of multiplicative	skew nearlattices in a reduced Rickart ring		

- Abian order of \mathbb{Z}_6
- Lattice of idempotents E
- The set of non-zero divisors U
- The other right singular skew nearlatttices eU
- The homomorphisms of skew nearlattices

< 17 >

University of Latvia

Insa Cremer

Motivation		The strong semilattice of semigroups	Back to the ring?	The end
	000000 000000	00 00000●		
The strong semi	lattice of multiplicative	skew nearlattices in a reduced Rickart ring		

- Abian order of \mathbb{Z}_6
- Lattice of idempotents E
- The set of non-zero divisors U
- The other right singular skew nearlatttices eU
- The homomorphisms of skew nearlattices

< A

Reduced Rickart rings and skew nearlattices

Motivation 00	Introduction 000000 000000	The strong semilattice of semigroups 00 00000	Back to the ring? ○○	The end 000

Outline

1 Motivation

2 Introduction

- Reduced Rickart rings
- Skew nearlattices

3 Constructing the strong semilattice of semigroups

- Singular skew nearlattices in a reduced Rickart ring
- The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring

4 Back to the ring?

5 The end

-

Motivation		The strong semilattice of semigroups	Back to the ring?	The end
	000000 000000	00 00000	0	

■ Let *T* be a meet semilattice.

- For all s ∈ T, let (A_s, ·_s, *_s, ∨_s, e_s) be disjoint partial algebras such that
 - $\langle A_s, \cdot_s, e_s \rangle$ are monoids,
 - $A_0 = \{e_0\},\$
 - $\langle A_s, *_s, \vee_s \rangle$ are right singular skew nearlattices,
 - there are homomorphisms $f_s^t : A_t \to A_s$ for all $s \leq t$,
 - these homomorphisms induce a strong semilattice of multiplicative skew nearlattices.

• Let $A = \bigcup_{s \in T} A_s$.

< ロ > < 回 > < 回 > <</p>

Motivation		The strong semilattice of semigroups	Back to the ring?	The end
	000000 000000	00 00000	•0	

- Let T be a meet semilattice.
- For all s ∈ T, let (A_s, ·_s, *_s, ∨_s, e_s) be disjoint partial algebras such that
 - $\langle A_s, \cdot_s, e_s \rangle$ are monoids,

•
$$A_0 = \{e_0\},$$

- $\langle A_s, *_s, \vee_s \rangle$ are right singular skew nearlattices,
- there are homomorphisms f_s^t : $A_t \to A_s$ for all $s \leq t$,
- these homomorphisms induce a strong semilattice of multiplicative skew nearlattices.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

University of Latvia

• Let $A = \bigcup_{s \in T} A_s$.

Motivation		The strong semilattice of semigroups	Back to the ring?	The end
	000000 000000	00 00000	•0	

- Let T be a meet semilattice.
- For all s ∈ T, let (A_s, ·_s, *_s, ∨_s, e_s) be disjoint partial algebras such that
 - $\langle A_s, \cdot_s, e_s \rangle$ are monoids,
 - $A_0 = \{e_0\},\$
 - $\langle A_s, *_s, \vee_s \rangle$ are right singular skew nearlattices,
 - there are homomorphisms f_s^t : $A_t \to A_s$ for all $s \leq t$,
 - these homomorphisms induce a strong semilattice of multiplicative skew nearlattices.

• Let $A = \bigcup_{s \in T} A_s$.

Motivation		The strong semilattice of semigroups	Back to the ring?	The end
	000000 000000	00 00000	•0	

- Let T be a meet semilattice.
- For all $s \in T$, let $\langle A_s, \cdot_s, *_s, \vee_s, e_s \rangle$ be disjoint partial algebras such that
 - $\langle A_s, \cdot_s, e_s \rangle$ are monoids,
 - $A_0 = \{e_0\},\$
 - $\langle A_s, *_s, \vee_s \rangle$ are right singular skew nearlattices,
 - there are homomorphisms f_s^t : $A_t \to A_s$ for all $s \leq t$,
 - these homomorphisms induce a strong semilattice of multiplicative skew nearlattices.

• Let $A = \bigcup_{s \in T} A_s$.

Motivation		The strong semilattice of semigroups	Back to the ring?	The end
	000000	00 00000	0	

- Let *T* be a meet semilattice.
- For all s ∈ T, let (A_s, ·_s, *_s, ∨_s, e_s) be disjoint partial algebras such that
 - $\langle A_s, \cdot_s, e_s \rangle$ are monoids,
 - $A_0 = \{e_0\},\$
 - $\langle A_s, *_s, \vee_s \rangle$ are right singular skew nearlattices,
 - there are homomorphisms f_s^t : $A_t \to A_s$ for all $s \leq t$,
 - these homomorphisms induce a strong semilattice of multiplicative skew nearlattices.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

University of Latvia

• Let $A = \bigcup_{s \in T} A_s$.

Motivation		The strong semilattice of semigroups	Back to the ring?	The end
	000000	00 00000	0	

- Let *T* be a meet semilattice.
- For all s ∈ T, let (A_s, ·_s, *_s, ∨_s, e_s) be disjoint partial algebras such that
 - $\langle A_s, \cdot_s, e_s \rangle$ are monoids,
 - $A_0 = \{e_0\},\$
 - $\langle A_s, *_s, \vee_s \rangle$ are right singular skew nearlattices,
 - there are homomorphisms f_s^t : $A_t o A_s$ for all $s \le t$,
 - these homomorphisms induce a strong semilattice of multiplicative skew nearlattices.

イロト イヨト イヨト

University of Latvia

• Let $A = \bigcup_{s \in T} A_s$.

Motivation		The strong semilattice of semigroups	Back to the ring?	The end
	000000	00 00000	•0	

- Let *T* be a meet semilattice.
- For all s ∈ T, let (A_s, ·_s, *_s, ∨_s, e_s) be disjoint partial algebras such that
 - $\langle A_s, \cdot_s, e_s \rangle$ are monoids,

•
$$A_0 = \{e_0\},\$$

- $\langle A_s, *_s, \vee_s \rangle$ are right singular skew nearlattices,
- there are homomorphisms f_s^t : $A_t o A_s$ for all $s \le t$,
- these homomorphisms induce a strong semilattice of multiplicative skew nearlattices.

• Let $A = \bigcup_{s \in T} A_s$.

・ロト ・日子・ ・ 日下

Motivation		The strong semilattice of semigroups	Back to the ring?	The end
	000000	00 00000	0	

- Let T be a meet semilattice.
- For all $s \in T$, let $\langle A_s, \cdot_s, *_s, \vee_s, e_s \rangle$ be disjoint partial algebras such that
 - $\langle A_s, \cdot_s, e_s \rangle$ are monoids,

•
$$A_0 = \{e_0\},\$$

- $\langle A_s, *_s, \vee_s \rangle$ are right singular skew nearlattices,
- there are homomorphisms f_s^t : $A_t o A_s$ for all $s \le t$,
- these homomorphisms induce a strong semilattice of multiplicative skew nearlattices.

• Let
$$A = \bigcup_{s \in T} A_s$$
.

Motivation 00	Introduction 000000 000000	The strong semilattice of semigroups 00 00000	Back to the ring? ○●	The end 000

Back to the ring?

Proposition

If T a Boolean lattice, then A is a reduced Baer semigroup with $x \cdot y := f_{s \wedge t}^{s}(x) \cdot_{s \wedge t} f_{s \wedge t}^{t}(y),$ $0 := e_{0},$ $1 := e_{1}.$

Insa Cremer

University of Latvia

▲□ > ▲圖 > ▲ 圖 > ▲ 圖
Motivation 00	Introduction 000000 000000	The strong semilattice of semigroups 00 00000	Back to the ring? ○●	The end 000

Back to the ring?

Proposition

If T a Boolean lattice, then A is a reduced Baer semigroup with $x \cdot y := f_{s \wedge t}^{s}(x) \cdot_{s \wedge t} f_{s \wedge t}^{t}(y),$ $0 := e_{0},$ $1 := e_{1}.$

Insa Cremer

University of Latvia

▲□▶ ▲□▶ ▲ □▶ ▲

Motivation 00	Introduction 000000 000000	The strong semilattice of semigroups 00 00000	Back to the ring? ○●	The end 000

Back to the ring?

Proposition

If T a Boolean lattice, then A is a reduced Baer semigroup with $x \cdot y \coloneqq f_{s \wedge t}^{s}(x) \cdot_{s \wedge t} f_{s \wedge t}^{t}(y),$ $0 \coloneqq e_{0},$ $1 \coloneqq e_{1}.$

Insa Cremer

University of Latvia

・ロト ・日下・ ・ 田下・

Motivation 00	Introduction 000000 000000	The strong semilattice of semigroups 00 00000	Back to the ring? ○●	The end 000

Back to the ring?

Proposition

If T a Boolean lattice, then A is a reduced Baer semigroup with $x \cdot y \coloneqq f_{s \wedge t}^{s}(x) \cdot_{s \wedge t} f_{s \wedge t}^{t}(y),$ $0 \coloneqq e_{0},$ $1 \coloneqq e_{1}.$

Insa Cremer

University of Latvia

・ロ・・ 日本・ ・ 田 ・ ・

Motivation 00	Introduction 000000 000000	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end

Outline

1 Motivation

2 Introduction

- Reduced Rickart rings
- Skew nearlattices

3 Constructing the strong semilattice of semigroups

- Singular skew nearlattices in a reduced Rickart ring
- The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring

4 Back to the ring?

5 The end

-

Motivation 00	Introduction 000000 000000	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end ●00

What about Rickart rings which are not reduced?

Probably also C-rings have the same structure.

• Let $\langle R, +, \cdot, -, ', 0, 1 \rangle$ be a reduced Rickart ring.

- Recall that R admits a structure of strong semilattice of multiplicative skew nearlatttices {eU}_{ref}.
- We can construct a Baer semigroup from it.
- Is this Baer semigroup it isomorphic to the reduct $(R, \cdot, ', 0, 1)$?

Reduced Rickart rings and skew nearlattices

-∢ ≣ ▶

Motivation 00	Introduction 000000 000000	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end ●00

What about Rickart rings which are not reduced? Probably also C-rings have the same structure.

• Let $\langle R, +, \cdot, -, \prime, 0, 1 \rangle$ be a reduced Rickart ring.

- Recall that R admits a structure of strong semilattice of multiplicative skew nearlatttices {eU}_{eCE}.
- We can construct a Baer semigroup from it
- Is this Baer semigroup it isomorphic to the reduct $(R, \cdot, ', 0, 1)$?

-∢ ≣ ▶

Motivation 00	Introduction 000000 000000	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end ●00

- What about Rickart rings which are not reduced?
 - Probably also C-rings have the same structure.
- Let $\langle R, +, \cdot, -, ', 0, 1 \rangle$ be a reduced Rickart ring.
 - Recall that R admits a structure of strong semilattice of multiplicative skew nearlatttices {eU}_{e∈E}.
 - We can construct a Baer semigroup from it.
 - Is this Baer semigroup it isomorphic to the reduct $\langle R, \cdot, ', 0, 1 \rangle$?

.∋...>

University of Latvia

Motivation 00	Introduction 000000 000000	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end ●00

- What about Rickart rings which are not reduced?
 - Probably also C-rings have the same structure.
- Let $\langle R, +, \cdot, -, ', 0, 1 \rangle$ be a reduced Rickart ring.
 - Recall that R admits a structure of strong semilattice of multiplicative skew nearlatttices {eU}_{e∈E}.
 - We can construct a Baer semigroup from it.
 - Is this Baer semigroup it isomorphic to the reduct $\langle R, \cdot, ', 0, 1 \rangle$?

Motivation 00	Introduction 000000 000000	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end ●00

- What about Rickart rings which are not reduced?
 - Probably also C-rings have the same structure.
- Let $\langle R, +, \cdot, -, ', 0, 1 \rangle$ be a reduced Rickart ring.
 - Recall that R admits a structure of strong semilattice of multiplicative skew nearlatttices {eU}_{e∈E}.
 - We can construct a Baer semigroup from it.
 - Is this Baer semigroup it isomorphic to the reduct $\langle R, \cdot, ', 0, 1 \rangle$?

Motivation 00	Introduction 000000 000000	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end ●00

- What about Rickart rings which are not reduced?
 - Probably also C-rings have the same structure.
- Let $\langle R, +, \cdot, -, ', 0, 1 \rangle$ be a reduced Rickart ring.
 - Recall that R admits a structure of strong semilattice of multiplicative skew nearlatttices {eU}_{e∈E}.
 - We can construct a Baer semigroup from it.
 - Is this Baer semigroup it isomorphic to the reduct $\langle R, \cdot, ', 0, 1 \rangle$?

Motivation 00	Introduction 000000 000000	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end ○●○

References I

N. V. Subrahmanyam

Structure theory for a generealized Boolean ring *Mathematische Annalen 141(4), 1960, 297-310.*

J. Cīrulis

Knowledge representation systems and skew nearlattices *Proceedings of the Potsdam Conference 2003*, Contributions to general algebra 16, Verlag Johannes Heyn, Klagenfurt, 2003.

J. Cīrulis

Relatively orthocomplemented skew nearlattices in Rickart rings

Demonstratio Mathematica 48(4), 2015, 493-508.

A B > A B >

Insa Cremer

Motivation		The strong semilattice of semigroups	Back to the ring?	The end
	000000 000000	00 00000		000

References II

I. Cremer

On reduced Rickart rings (Latvian), Master thesis *University of Latvia, 2016*

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → �� ♡ ♥ ♡ ♥

University of Latvia

Insa Cremer

Motivation 00	Introduction 000000 000000	The strong semilattice of semigroups 00 00000	Back to the ring? 00	The end ○O●

Thank you for your attention

Questions?

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ のへで

University of Latvia

Insa Cremer