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Motivation

Any m-domain ring can be decomposed into
disjoint semigroups – see [Subrahmanyam 1960].

It can be proved that reduced Rickart rings and m-domain
rings are the same thing.

Any reduced Rickart ring R has a structure of skew nearlattice
– see [C̄ırulis 2015].

Question

What happens to the skew nearlattice structure when we
decompose the ring into semigroups?
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Answers

We get a structure of strong semilattice of semigroups.

The semigroups are actually skew nearlattices.

When we try to ”reconstruct” a reduced Rickart ring from its
strong semilattice of semigroups, we get a reduced Baer
semigroup.
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Reduced Rickart rings

Rickart rings

Definition

A semigroup S is called Baer semigroup iff for every a ∈ S there
are idempotents e, f ∈ S such that, for all x ∈ S ,

ax = 0 iff ex = x ,

xa = 0 iff xf = x .

Definition

A unitary ring R whose multiplicative semigroup is a Baer
semigroup is called a Rickart ring.
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Reduced Rickart rings

Reduced Rickart rings

Definition

A ring is called reduced iff it has no non-zero nilpotent elements.

Proposition

On a reduced Rickart ring, the idempotents e and f from the
definition are unique and coincide.
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Reduced Rickart rings

Focal operation

Definition

For every a in a reduced Rickart ring R, let a′ be the unique
idempotent such that

ax = 0 ⇐⇒ a′x = x

for all x . The operation ′ is called focal operation.
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Reduced Rickart rings

Examples of reduced Rickart rings

Z
Any Boolean ring

Zpq for prime numbers p 6= q
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Reduced Rickart rings

Abian order

Proposition

On a reduced ring, the following relation is a partial order:

a ≤ b iff ab = a2

Definition

It is called the Abian order.

A reduced Rickart ring ordered by the Abian order is a
semi-Boolean algebra. [Janowitz 1976]
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Reduced Rickart rings

Example: The Abian order of Z6 and the focal operation

Abian order of Z6

Lattice of
idempotents E

The focal operation.
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0
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Skew nearlattices

Nearlattices

Definition

A poset P is called nearlattice if

P is a meet-semilattice,

if x , y ∈ P have an upper bound, then they have the join (i.e.,
P is finitely bounded complete).
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Skew nearlattices

Natural order on a band

Definition

A semigroup is called band if all its elements are idempotent.

Let 〈S , ◦〉 be a band.

Let x ≤◦ y iff xy = x = yx .

Then ≤◦ is a partial order, called the natural order of the
band S .
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Skew nearlattices

Right skew nearlattices ([C̄ırulis 2015])

Definition

A (right) skew nearlattice is a partial algebra 〈S , ∗,∨〉 such that

There is a finitely bounded complete order ≤ on S

∨ is the respective partial join operation

∗ is an associative operation

x ∨ y = y if and only if x ∗ y = x .

The operation ∗ is idempotent.

The natural order on the band 〈S , ∗〉 is ≤.
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Skew nearlattices

Example: Partial functions

Let I ,V be sets.

Let F(I,V) be the set of partial functions from I to V .

For partial functions f , g , define

f
←−∩ g := g |dom(f )∩dom(g).

Then 〈F(I,V),
←−∩〉 is a band.

The union of sets is their join with respect to the natural
order of the band.

〈F(I,V),
←−∩ ,∪〉 is a skew nearlattice.
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Skew nearlattices

Example in a Rickart ring ([C̄ırulis 2015])

Let R be a reduced Rickart ring.

Define the skew meet:

a
←−∧ b := a′′b

.

〈R,
←−∧〉 is a band.

Its natural order coincides with the Abian order.

Let ∨ be the respective partial join.

Then
〈

R,∨,←−∧
〉

is a right skew nearlattice.
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Skew nearlattices

Right zero bands and right singular skew nearlattices

Definition

A band 〈S , ◦〉 is called right zero band if

x ◦ y = y

for all x , y ∈ S .

A skew nearlattice 〈S , ∗,∨〉 is called right singular if its band
reduct 〈S , ∗〉 is right zero.
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The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring

Homomorphisms of skew nearlattices

Definition

Let 〈A, ∗A,∨A〉 and 〈B, ∗B ,∨B〉 be skew nearlattices.

A map f : A→ B is called homomorphism of skew
nearlattices if

f : 〈A, ∗A〉 −→ 〈B, ∗B〉 is a semigroup homomorphism,
whenever x , y ∈ A have the join, so do their images, and

f (x ∨ y) = f (x) ∨ f (y).
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Strong semilattice of semigroups

Definition (Clifford)

Let T be a meet-semilattice,

Let {〈As , ∗s〉 | s ∈ T} be a family of disjoint semigroups,

Suppose that, for all s, t ∈ T with s ≤ t, there are semigroup
homomorphisms f t

s : At → As such that

f t
t are the identity maps

if r ≤ s ≤ t, then f s
r f t

s = f t
r .

Let A :=
⋃

s∈T As .

For x ∈ As , y ∈ Atdefine x
←−∧ y := f s

s∧t (x) ∗s∧t f t
s∧t (y) .

The algebra
〈

A,
←−∧

〉
is called a strong semilattice of the

semigroups {As}s∈T .
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The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring

Multiplicative skew nearlattices

Definition

A partial algebra 〈S , ∗,∨, ·〉 will be called multiplicative skew
nearlattice if

〈S , ∗,∨〉 is a skew nearlattice,

〈S , ·〉 is a monoid.
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The strong semilattice of multiplicative skew nearlattices in a reduced Rickart ring

Multiplicative skew nearlattices in a reduced Rickart ring

Theorem

Let R be a reduced Rickart ring.

Let U be the set of non-zero divisors.

Let e be an idempotent.

Let a
←−∧ b := a′′b.

Then 〈eU,
←−∧ ,∨, ·〉 is a multiplicative right singular skew

nearlattice.

Moreover,
〈

R,
←−∧ , ·

〉
is a strong semilattice of the

multiplicative skew nearlattices
〈

eU,∨,←−∧ , ·
〉

.
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A construction in the opposite direction

Let T be a meet semilattice.

For all s ∈ T , let 〈As , ·s , ∗s ,∨s , es〉 be disjoint partial algebras
such that

〈As , ·s , es〉 are monoids,
A0 = {e0},
〈As , ∗s ,∨s〉 are right singular skew nearlattices,
there are homomorphisms f t

s : At → As for all s ≤ t,
these homomorphisms induce a strong semilattice of
multiplicative skew nearlattices.

Let A =
⋃

s∈T As .
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Back to the ring?

Proposition

If T a Boolean lattice, then A is a reduced Baer semigroup with

x · y := f s
s∧t (x) ·s∧t f t

s∧t (y) ,

0 := e0,

1 := e1.
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Open problems

What about Rickart rings which are not reduced?

Probably also C-rings have the same structure.

Let 〈R,+, ·,−,′ , 0, 1〉 be a reduced Rickart ring.

Recall that R admits a structure of strong semilattice of
multiplicative skew nearlatttices {eU}e∈E .
We can construct a Baer semigroup from it.
Is this Baer semigroup it isomorphic to the reduct 〈R, ·,′ , 0, 1〉?
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Thank you for your attention

Questions?
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