INFINITARY PROPOSITIONAL LOGICS AND SUBDIRECT REPRESENTATION

Tomáš Lávička¹ and Carles Noguera¹

¹Institute of Information Theory and Automation Czech Academy of Sciences

Topology, Algebra, and Categories in Logic

Praha, 28 June 2017

THEOREM (BIRKHOFF'S SUBDIRECT REPRESENTATION)

Let $\mathbb V$ be a variety and $\mathbb Q$ a quasivariety, then

 $\mathbb{V} = P_{SD}(\mathbb{V}_{SI}) \quad \text{ and } \quad \mathbb{Q} = P_{SD}(\mathbb{Q}_{RSI})$

 $\mathbb{V}_{SI} \dots$ subdirectly irreducible algebras in \mathbb{V} $\mathbb{Q}_{RSI} \dots$ relatively subdirectly irreducible algebras in \mathbb{Q} $\mathbf{P}_{SD} \dots$ operator for subdirect products THEOREM (BIRKHOFF'S SUBDIRECT REPRESENTATION)

Let \mathbb{V} be a variety and \mathbb{Q} a quasivariety, then

 $\mathbb{V} = P_{SD}(\mathbb{V}_{SI}) \quad \text{ and } \quad \mathbb{Q} = P_{SD}(\mathbb{Q}_{RSI})$

 $\mathbb{V}_{SI} \dots$ subdirectly irreducible algebras in \mathbb{V} $\mathbb{Q}_{RSI} \dots$ relatively subdirectly irreducible algebras in \mathbb{Q} $\mathbf{P}_{SD} \dots$ operator for subdirect products

In abstract algebraic logic this amounts to

THEOREM

If L is a finitary logic then

 $\mathbf{MOD}^*(\mathbf{L}) = \mathbf{P_{SD}}(\mathbf{MOD}^*(\mathbf{L})_{RSI})$

PRELIMINARIES: LOGIC

A language is a pair of

- 1. \mathcal{L} an algebraic signature
- 2. Var an infinite set of variables

PRELIMINARIES: LOGIC

A language is a pair of

- 1. \mathcal{L} an algebraic signature
- 2. Var an infinite set of variables

 $Fm_{\mathcal{L}}(X)$ a free algebra with generator X $Fm_{\mathcal{L}} = Fm_{\mathcal{L}}(Var)$ a set of formulas

A language is a pair of

- 1. \mathcal{L} an algebraic signature
- 2. Var an infinite set of variables

 $Fm_{\mathcal{L}}(X)$ a free algebra with generator X

 $\mathit{Fm}_{\mathcal{L}} = \mathit{Fm}_{\mathcal{L}}(\mathit{Var})$ a set of formulas

 $\begin{array}{ll} \varphi \vdash_{L} \varphi & (reflexivity) \\ \Gamma \vdash_{L} \varphi \Rightarrow \Gamma, \Delta \vdash_{L} \varphi & (monotonicity) \\ \Gamma \vdash_{L} \Delta \text{ and } \Delta \vdash_{L} \varphi \Rightarrow \Gamma \vdash_{L} \varphi & (cut) \\ \Gamma \vdash_{L} \varphi \Rightarrow \sigma \Gamma \vdash_{L} \sigma \varphi \text{ for each substitution } \sigma & (structurality) \end{array}$

L is finitary if whenever $\Gamma \vdash_{L} \varphi$ then $\Gamma' \vdash_{L} \varphi$ for a finite $\Gamma' \subseteq \Gamma$

An \mathcal{L} -matrix is a pair $\langle A, F \rangle$ with A an \mathcal{L} -algebra and $F \subseteq A$

An \mathcal{L} -matrix is a pair $\langle A, F \rangle$ with A an \mathcal{L} -algebra and $F \subseteq A$

Given a class of \mathcal{L} -matrices \mathbb{K} ,

the corresponding semantical consequence relation is:

$$\Gamma \models_{\mathbb{K}} \varphi \quad \Longleftrightarrow \quad \text{for every } \langle \boldsymbol{A}, F \rangle \in \mathbb{K}, \text{ and } v \in \text{Hom}(\boldsymbol{Fm}_{\mathcal{L}}, \boldsymbol{A})$$

$$\text{if } v[\Gamma] \subseteq F \text{ then } v(\varphi) \in F$$

An \mathcal{L} -matrix is a pair $\langle A, F \rangle$ with A an \mathcal{L} -algebra and $F \subseteq A$

Given a class of \mathcal{L} -matrices \mathbb{K} ,

the corresponding semantical consequence relation is:

$$\begin{split} \Gamma \models_{\mathbb{K}} \varphi & \iff & \text{for every } \langle \boldsymbol{A}, F \rangle \in \mathbb{K}, \, \text{and} \, v \in \operatorname{Hom}(Fm_{\mathcal{L}}, \boldsymbol{A}) \\ & \text{if } v[\Gamma] \subseteq F \text{ then } v(\varphi) \in F \end{split}$$

 $\models_{\mathbb{K}}$ is a logic.

A matrix **A** is a model of L, $\mathbf{A} \in \mathbf{MOD}(L)$, if $\vdash_L \subseteq \models_{\mathbf{A}}$ $\Gamma \vdash_L \varphi \iff \Gamma \models_{\mathbf{MOD}(L)} \varphi$ (completeness) Let L be a logic.

 $\mathbf{MOD}^*(\mathrm{L}) = \{ \langle A, F \rangle \in \mathbf{MOD}(\mathrm{L}) \, : \, \langle A, F \rangle \text{ is reduced } (\Omega_A(F) = \mathrm{Id}_A) \}$

 $\mathbf{MOD}^*(L)_{RFSI} = {\mathbf{A} \in \mathbf{MOD}^*(L) :$

is finitely subdirectly irreducible relative to $\boldsymbol{\textbf{MOD}}^{*}(L)\}$

 $\mathbf{MOD}^*(\mathbf{L})_{\mathrm{RSI}} = \{\mathbf{A} \in \mathbf{MOD}^*(\mathbf{L}) :$

is subdirectly irreducible relative to $\boldsymbol{MOD}^*(L)\}$

Let L be a logic.

 $\mathbf{MOD}^*(\mathbf{L}) = \{ \langle \mathbf{A}, F \rangle \in \mathbf{MOD}(\mathbf{L}) : \langle \mathbf{A}, F \rangle \text{ is reduced } (\Omega_{\mathbf{A}}(F) = \mathrm{Id}_{\mathbf{A}}) \}$ $\mathbf{MOD}^*(\mathbf{L})_{\mathrm{RFSI}} = \{ \mathbf{A} \in \mathbf{MOD}^*(\mathbf{L}) :$

is finitely subdirectly irreducible relative to $\textbf{MOD}^*(L)\}$

$$\label{eq:MOD} \begin{split} \textbf{MOD}^*(L)_{RSI} &= \{ \textbf{A} \in \textbf{MOD}^*(L) \ : \\ \text{is subdirectly irreducible relative to } \textbf{MOD}^*(L) \} \end{split}$$

L is called R(F)SI-complete when

 $\Gamma \vdash_{\mathcal{L}} \varphi \quad \Longleftrightarrow \quad \Gamma \models_{\mathbf{MOD}^*(\mathcal{L})_{\mathcal{R}(\mathcal{F})SI}} \varphi$

L is called (finitely) subdirectly representable when

 $\textbf{MOD}^*(L) = \textbf{P}_{\textbf{SD}}(\textbf{MOD}^*(L)_{R(F)SI})$

IPEP AND CIPEP

Closure systems in AAL: Let L be a logic.

1. For every algebra A, the closure system of all L-filters is

$$\mathcal{F}i_{\mathcal{L}}(A) = \{F \subseteq A : \langle A, F \rangle \in \mathbf{MOD}(\mathcal{L})\}$$

2. Th(L) is the closure system of all L-theories (deductively closed sets of formulas).

IPEP AND CIPEP

Closure systems in AAL: Let L be a logic.

1. For every algebra A, the closure system of all L-filters is

 $\mathcal{F}i_{\mathcal{L}}(\mathbf{A}) = \{F \subseteq A : \langle \mathbf{A}, F \rangle \in \mathbf{MOD}(\mathcal{L})\}$

- 2. Th(L) is the closure system of all L-theories (deductively closed sets of formulas).
- Let C be a closure system on a set A.
 - B ⊆ C is a basis of C when every X ∈ C is an intersection of members from B.
 - ► $X \in C$ is (completely) \cap -prime if it is (completely) \cap -irreducible in C.
 - C has the (completely) intersection-prime extension property, (C)IPEP, if the (completely) ∩-prime members form a basis of C.

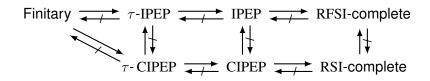
IPEP AND CIPEP

Closure systems in AAL: Let L be a logic.

1. For every algebra A, the closure system of all L-filters is

 $\mathcal{F}i_{\mathbb{L}}(A) = \{F \subseteq A : \langle A, F \rangle \in \mathbf{MOD}(\mathbb{L})\}$

- 2. Th(L) is the closure system of all L-theories (deductively closed sets of formulas).
- Let C be a closure system on a set A.
 - B ⊆ C is a basis of C when every X ∈ C is an intersection of members from B.
 - ► $X \in C$ is (completely) \cap -prime if it is (completely) \cap -irreducible in C.
 - C has the (completely) intersection-prime extension property, (C)IPEP, if the (completely) ∩-prime members form a basis of C.
- L has (C)IPEP if Th(L) does.
- L has the transferred (C)IPEP, τ -(C)IPEP, if $\mathcal{F}i_{L}(A)$ has (C)IPEP for every algebra A.



Finitary
$$\rightarrow \tau$$
-IPEP $\rightarrow I$ PEP $\rightarrow RFSI$ -complete
 τ -CIPEP $\rightarrow CIPEP \rightarrow RSI$ -complete

THEOREM

For every protoalgebraic logic L, the following are equivalent:

- L is (finitely) subdirectly representable, (MOD*(L) = P_{SD}(MOD*(L)_{R(F)SI}))
- L has the τ -(C)IPEP,
- $\mathcal{F}i_{L}(Fm_{\mathcal{L}}(\kappa))$ has the (C)IPEP for every cardinal κ .

Language $\{\rightarrow, \&, \overline{0}\}$ with *countable* set *Var*

Let $[0,1]_\Pi$ be the standard product algebra

• Universe [0,1] of reals,

•
$$a \to^{[0,1]_{\Pi}} b = \min\{1, b/a\}$$

•
$$a \&^{[0,1]_{\Pi}} b = a \cdot b$$
, and $\overline{0}^{[0,1]_{\Pi}} = 0$.

The infinitary product logic, Π_{∞} , is semantically given by the matrix $\langle [0,1]_{\Pi}, \{1\} \rangle$.

$$\begin{split} \Gamma \vdash_{\Pi_{\infty}} \varphi & \iff & \text{for every } v \in \operatorname{Hom}(Fm_{\mathcal{L}}, [0, 1]_{\Pi}) \\ & \text{if } v[\Gamma] \subseteq \{1\} \text{ then } v(\varphi) = 1 \end{split}$$

Language $\{\rightarrow, \&, \overline{0}\}$ with *countable* set *Var*.

Let $[0,1]_L$ be the standard Łukasiewicz algebra:

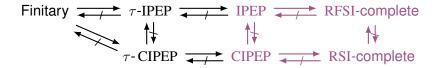
• Universe [0,1] of reals,

•
$$a \to {}^{[0,1]_{\mathrm{L}}} b = \min\{1 - a + b, 1\}$$

•
$$a \&^{[0,1]_{\mathrm{L}}} b = \max\{a+b-1,0\}, \text{ and } \overline{0}^{[0,1]_{\mathrm{L}}} = 0.$$

The infinitary Łukasiewicz logic, \mathbb{L}_{∞} , is semantically given by the matrix $\langle [0,1]_{L}, \{1\} \rangle$.

$$\begin{split} \Gamma \vdash_{\mathbb{L}_{\infty}} \varphi & \iff & \text{for every } v \in \text{Hom}(\pmb{Fm}_{\mathcal{L}}, [0, 1]_{\mathbb{L}}) \\ & \text{if } v[\Gamma] \subseteq \{1\} \text{ then } v(\varphi) = 1 \end{split}$$



THEOREM

The logic Π_{∞} is not even finitely subdirectly representable (equivalently it does not have τ -IPEP). That is

 $\mathbf{MOD}^*(\Pi_{\infty}) \neq \mathbf{P_{SD}}(\mathbf{MOD}^*(\Pi_{\infty})_{RFSI}).$

Finitary
$$\tau$$
-IPEP τ -IPEP τ -RFSI-complete
 τ -CIPEP τ -CIPEP τ -RSI-complete

THEOREM

The logic Π_{∞} is not even finitely subdirectly representable (equivalently it does not have τ -IPEP). That is

 $\mathbf{MOD}^*(\Pi_{\infty}) \neq \mathbf{P}_{\mathbf{SD}}(\mathbf{MOD}^*(\Pi_{\infty})_{\mathbf{RFSI}}).$

COROLLARY

For its equivalent algebraic semantics, $\textbf{ALG}^*(\Pi_\infty),$ we obtain

 $\mathbf{ALG}^*(\Pi_\infty) \neq \mathbf{P}_{\mathbf{SD}}(\mathbf{ALG}^*(\Pi_\infty)_{R(F)SI}).$

PROPERTIES: INFINITARY ŁUKASIEWICZ LOGIC

Finitary
$$\tau$$
-IPEP τ -IPEP τ -RFSI-complete

THEOREM

L_{∞} has the τ -CIPEP and is subdirectly representable, that is $MOD^*(L_{\infty}) = P_{SD}(MOD^*(L_{\infty})_{RSI})$

in particular, it is representable by chains.

PROPERTIES: INFINITARY ŁUKASIEWICZ LOGIC

Finitary
$$\tau$$
-IPEP τ -IPEP τ -RFSI-complete
 τ -CIPEP τ -CIPEP τ -RSI-complete

THEOREM

 L_{∞} has the τ -CIPEP and is subdirectly representable, that is $MOD^{*}(L_{\infty}) = P_{SD}(MOD^{*}(L_{\infty})_{RSI})$

in particular, it is representable by chains.

COROLLARY

The equivalent algebraic semantics of $\Bbbk_\infty,$ $ALG^*(\Bbbk_\infty),$ is not a quasivariety and yet

$$\mathbf{ALG}^*(\mathbb{L}_{\infty}) = \mathbf{P}_{\mathbf{SD}}(\mathbf{ALG}^*(\mathbb{L}_{\infty})_{\mathbf{RSI}}).$$

LEMMA

The logic of $[0,1]_{\mathbb{L}}$ in κ -many variables, \vdash , has cardinality at most \aleph_1 .

PROOF.

Assume $\Gamma \vdash \varphi$. We find a countable $\Gamma' \subseteq \Gamma$ such that $\Gamma' \vdash \varphi$:

Consider the (compact) product topology $[0,1]^\kappa$ and define sets

$$\begin{split} & \operatorname{SAT}(\varphi) = \{ v \in [0,1]^{\kappa} : v(\varphi) = 1 \} \\ & \operatorname{NSAT}(\varphi) = \{ v \in [0,1]^{\kappa} : v(\varphi) \neq 1 \} \\ & \operatorname{SAT}_{q}(\varphi) = \{ v \in [0,1]^{\kappa} : v(\varphi) > q \} \\ & \vdash \varphi \Longleftrightarrow \bigcup_{\gamma \in \Gamma} \operatorname{NSAT}(\gamma) \cup \operatorname{SAT}(\varphi) = [0,1]^{\kappa}, \end{split}$$

The connectives of Łukasiewicz logic are continuous, thus $NSAT(\varphi)$ and $SAT_q(\varphi)$ are open sets in $[0,1]^{\kappa}$ ($\varphi : [0,1]^{\kappa} \to [0,1]$ s.t. $v \mapsto v(\varphi)$).

Г

LOGIC OF THE STANDARD MV-CHAIN: CARDINALITY

LEMMA

The logic of $[0,1]_L$ in κ -many variables, \vdash , has cardinality at most \aleph_1 .

PROOF.

$$\bigcup_{\gamma \in \Gamma} \mathrm{NSAT}(\gamma) \cup \mathrm{SAT}(\varphi) = [0, 1]^{\kappa}, \tag{1}$$

since $\operatorname{SAT}(\varphi) \subseteq \operatorname{SAT}_q(\varphi)$, we get

$$\bigcup_{\gamma \in \Gamma} \mathrm{NSAT}(\gamma) \cup \mathrm{SAT}_q(\varphi) = [0, 1]^{\kappa},$$
(2)

Let $\Gamma_q \subseteq \Gamma$ generate finite subcover of (2) and set $\Gamma' = \bigcup_{q \in (0,1)} \Gamma_q$.

$$\{1\} = \bigcap_{q \in (0,1)} \uparrow q \quad \text{implies} \quad \bigcup_{\gamma \in \Gamma'} \mathrm{NSAT}(\gamma) \cup \mathrm{SAT}(\varphi) = [0,1]^{\kappa},$$

consequently, by (*), $\Gamma' \vdash \varphi$.

Logic with τ -IPEP which is not RSI-complete

 $\mathcal{L} = \{ \rightarrow, \&, \overline{0} \} \cup \{ \overline{q} : q \in (0, 1] \cap \mathbb{Q} \}$ and $Var = \omega$. $[0, 1]_{\mathrm{L}}^{\mathbb{Q}}$ is $[0, 1]_{\mathrm{L}}$ with naturally defined rational constants. Let L be the logic preserving degrees of truth in $[0, 1]_{\mathrm{F}}^{\mathbb{Q}}$, i.e.

 $\Gamma \vdash_{\mathrm{L}} \varphi \quad \Longleftrightarrow \quad \bigwedge v[\Gamma] \leq v(\varphi), \text{ for all } v \in \mathrm{Hom}(Fm_{\mathcal{L}}, [0, 1]^{\mathbb{Q}}_{\mathrm{L}}).$

$$\begin{split} \mathcal{L} &= \{ \rightarrow, \&, \overline{0} \} \cup \{ \overline{q} \, : \, q \in (0,1] \cap \mathbb{Q} \} \text{ and } Var = \omega. \\ & [0,1]_{\mathrm{L}}^{\mathbb{Q}} \text{ is } [0,1]_{\mathrm{L}} \text{ with naturally defined rational constants.} \\ & \text{Let } \mathrm{L} \text{ be the logic preserving degrees of truth in } [0,1]_{\mathrm{L}}^{\mathbb{Q}}, \text{ i.e.} \end{split}$$

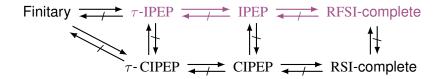
 $\Gamma \vdash_{\mathcal{L}} \varphi \quad \Longleftrightarrow \quad \bigwedge v[\Gamma] \leq v(\varphi), \text{ for all } v \in \operatorname{Hom}(Fm_{\mathcal{L}}, [0, 1]^{\mathbb{Q}}_{\mathcal{L}}).$

- L is equivalential (with implication x ⇒ y = {(x → y)ⁿ : n ∈ ω}), but not algebraizable.
- L has the τ -IPEP (and is finitely subdirectly representable).
- L has no RSI-models, thus it is not RSI-complete.

Logic with τ -IPEP which is not RSI-complete

 $\mathcal{L} = \{ \rightarrow, \&, \overline{0} \} \cup \{ \overline{q} : q \in (0, 1] \cap \mathbb{Q} \}$ and $Var = \omega$. $[0, 1]_{\mathrm{L}}^{\mathbb{Q}}$ is $[0, 1]_{\mathrm{L}}$ with naturally defined rational constants. Let L be the logic preserving degrees of truth in $[0, 1]_{\mathrm{L}}^{\mathbb{Q}}$, i.e.

 $\Gamma \vdash_{\mathrm{L}} \varphi \quad \Longleftrightarrow \quad \bigwedge \nu[\Gamma] \leq \nu(\varphi) \text{, for all } \nu \in \mathrm{Hom}(\mathbf{\textit{Fm}}_{\mathcal{L}}, [0, 1]^{\mathbb{Q}}_{\mathrm{L}}).$



Thank you, Enjoy Prague!

THEOREM

Suppose λ is a regular cardinal and \mathbb{K} is a class of matrices, such that $|\mathbb{K}| < \lambda$. Further suppose that for every $\langle A, F \rangle \in \mathbb{K}$:

- 1. There is a compact topology τ on A such that all of the connectives are continuous w.r.t. τ ,
- 2. *F* can be written as an intersection of strictly less λ open sets in τ ,
- 3. $A \setminus F \in \tau$,

then $L_{\mathbb{K},\kappa}$ has cardinality at most λ for every infinite κ .