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LÁVIČKA, NOGUERA SUBDIRECT REPRESENTATION 1 / 15



INTRODUCTION

THEOREM (BIRKHOFF’S SUBDIRECT REPRESENTATION)
Let V be a variety and Q a quasivariety, then

V = PSD(VSI) and Q = PSD(QRSI)

VSI . . . subdirectly irreducible algebras in V
QRSI . . . relatively subdirectly irreducible algebras in Q
PSD. . . operator for subdirect products

In abstract algebraic logic this amounts to

THEOREM

If L is a finitary logic then

MOD∗(L) = PSD(MOD∗(L)RSI)
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PRELIMINARIES: LOGIC

A language is a pair of

1. L an algebraic signature
2. Var an infinite set of variables

FmL(X) a free algebra with generator X

FmL = FmL(Var) a set of formulas

A logic L is a relation between sets of formulas and formulas,
satisfying hoho We write Γ `L ϕ instead of 〈Γ, ϕ〉 ∈ L

ϕ `L ϕ (reflexivity)
Γ `L ϕ⇒ Γ,∆ `L ϕ (monotonicity)
Γ `L ∆ and ∆ `L ϕ⇒ Γ `L ϕ (cut)
Γ `L ϕ⇒ σΓ `L σϕ for each substitution σ (structurality)

L is finitary if whenever Γ `L ϕ then Γ′ `L ϕ for a finite Γ′ ⊆ Γ
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PRELIMINARIES: SEMANTICS

An L-matrix is a pair 〈A,F〉 with A an L-algebra and F ⊆ A

Given a class of L-matrices K,
the corresponding semantical consequence relation is:

Γ |=K ϕ ⇐⇒ for every 〈A,F〉 ∈ K, and v ∈ Hom(FmL,A)

if v[Γ] ⊆ F then v(ϕ) ∈ F

|=K is a logic.

A matrix A is a model of L, A ∈MOD(L), if `L ⊆ |=A

Γ `L ϕ ⇐⇒ Γ |=MOD(L) ϕ (completeness)
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PRELIMINARIES: MODELS

Let L be a logic.

MOD∗(L) = {〈A,F〉 ∈MOD(L) : 〈A,F〉 is reduced (ΩA(F) = IdA)}

MOD∗(L)RFSI = {A ∈MOD∗(L) :
is finitely subdirectly irreducible relative to MOD∗(L)}

MOD∗(L)RSI = {A ∈MOD∗(L) :
is subdirectly irreducible relative to MOD∗(L)}

L is called R(F)SI-complete when

Γ `L ϕ ⇐⇒ Γ |=MOD∗(L)R(F)SI
ϕ

L is called (finitely) subdirectly representable when

MOD∗(L) = PSD(MOD∗(L)R(F)SI)
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IPEP AND CIPEP

Closure systems in AAL: Let L be a logic.

1. For every algebra A, the closure system of all L-filters is

F iL(A) = {F ⊆ A : 〈A,F〉 ∈MOD(L)}
2. Th(L) is the closure system of all L-theories (deductively closed

sets of formulas).

Let C be a closure system on a set A.
I B ⊆ C is a basis of C when every X ∈ C is an intersection of

members from B.
I X ∈ C is (completely) ∩-prime if it is (completely) ∩-irreducible in C.
I C has the (completely) intersection-prime extension property,

(C)IPEP, if the (completely) ∩-prime members form a basis of C.
L has (C)IPEP if Th(L) does.
L has the transferred (C)IPEP, τ -(C)IPEP, if F iL(A) has (C)IPEP for
every algebra A.
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HIERARCHY OF INFINITARY LOGICS

Finitary τ -IPEP IPEP RFSI-complete

τ - CIPEP CIPEP RSI-complete
/

/

/
/

/

/

/

/ /
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τ -(C)IPEP CHARACTERIZATION

Finitary τ -IPEP IPEP RFSI-complete

τ - CIPEP CIPEP RSI-complete

/

/

/

/

/

/

/

/ /
THEOREM

For every protoalgebraic logic L, the following are equivalent:
I L is (finitely) subdirectly representable,

(MOD∗(L) = PSD(MOD∗(L)R(F)SI))

I L has the τ -(C)IPEP,
I F iL(FmL(κ)) has the (C)IPEP for every cardinal κ.
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EXAMPLES:PRODUCT LOGIC

Language {→,&, 0} with countable set Var

Let [0, 1]Π be the standard product algebra
I Universe [0, 1] of reals,
I a→[0,1]Π b = min{1, b/a}
I a &[0,1]Π b = a · b, and 0[0,1]Π = 0.

The infinitary product logic, Π∞, is semantically given by the matrix
〈[0, 1]Π, {1}〉.

Γ `Π∞ ϕ ⇐⇒ for every v ∈ Hom(FmL, [0, 1]Π)

if v[Γ] ⊆ {1} then v(ϕ) = 1
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EXAMPLES: ŁUKASIEWICZ LOGIC

Language {→,&, 0} with countable set Var.

Let [0, 1]� be the standard Łukasiewicz algebra:
I Universe [0, 1] of reals,
I a→[0,1]� b = min{1− a + b, 1}
I a &[0,1]� b = max{a + b− 1, 0}, and 0[0,1]� = 0.

The infinitary Łukasiewicz logic, �∞, is semantically given by the
matrix 〈[0, 1]�, {1}〉.

Γ `�∞ ϕ ⇐⇒ for every v ∈ Hom(FmL, [0, 1]�)

if v[Γ] ⊆ {1} then v(ϕ) = 1
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PROPERTIES: INFINITARY PRODUCT LOGIC

Finitary τ -IPEP IPEP RFSI-complete

τ - CIPEP CIPEP RSI-complete

/

/

/

/

/

//
/ /

THEOREM

The logic Π∞ is not even finitely subdirectly representable
(equivalently it does not have τ -IPEP). That is

MOD∗(Π∞) 6= PSD(MOD∗(Π∞)RFSI).

COROLLARY

For its equivalent algebraic semantics, ALG∗(Π∞), we obtain

ALG∗(Π∞) 6= PSD(ALG∗(Π∞)R(F)SI).
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PROPERTIES: INFINITARY ŁUKASIEWICZ LOGIC

Finitary τ -IPEP IPEP RFSI-complete

τ - CIPEP CIPEP RSI-complete

/

/

/

/

/

//
/ /

THEOREM

�∞ has the τ - CIPEP and is subdirectly representable, that is

MOD∗(�∞) = PSD(MOD∗(�∞)RSI)

in particular, it is representable by chains.

COROLLARY

The equivalent algebraic semantics of �∞, ALG∗(�∞), is not a
quasivariety and yet

ALG∗(�∞) = PSD(ALG∗(�∞)RSI).
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LOGIC OF THE STANDARD MV-CHAIN: CARDINALITY

LEMMA

The logic of [0, 1]� in κ-many variables, `, has cardinality at most ℵ1.

PROOF.
Assume Γ ` ϕ. We find a countable Γ′ ⊆ Γ such that Γ′ ` ϕ:
Consider the (compact) product topology [0, 1]κ and define sets

SAT(ϕ) ={v ∈ [0, 1]κ : v(ϕ) = 1}
NSAT(ϕ) ={v ∈ [0, 1]κ : v(ϕ) 6= 1}
SATq(ϕ) ={v ∈ [0, 1]κ : v(ϕ) > q}

Γ ` ϕ⇐⇒
⋃
γ∈Γ

NSAT(γ) ∪ SAT(ϕ) = [0, 1]κ, (*)

The connectives of Łukasiewicz logic are continuous, thus NSAT(ϕ) and
SATq(ϕ) are open sets in [0, 1]κ (ϕ : [0, 1]κ → [0, 1] s.t. v 7→ v(ϕ)).
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The logic of [0, 1]� in κ-many variables, `, has cardinality at most ℵ1.

PROOF. ⋃
γ∈Γ

NSAT(γ) ∪ SAT(ϕ) = [0, 1]κ, (1)

since SAT(ϕ) ⊆ SATq(ϕ), we get⋃
γ∈Γ

NSAT(γ) ∪ SATq(ϕ) = [0, 1]κ, (2)

Let Γq ⊆ Γ generate finite subcover of (2) and set Γ′ =
⋃

q∈(0,1) Γq.

{1} =
⋂

q∈(0,1)

↑q implies
⋃
γ∈Γ′

NSAT(γ) ∪ SAT(ϕ) = [0, 1]κ,

consequently, by (*), Γ′ ` ϕ.
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LOGIC WITH τ -IPEP WHICH IS NOT RSI-COMPLETE

L = {→,&, 0} ∪ {q̄ : q ∈ (0, 1] ∩Q} and Var = ω.

[0, 1]Q
�

is [0, 1]� with naturally defined rational constants.

Let L be the logic preserving degrees of truth in [0, 1]Q
�

, i.e.

Γ `L ϕ ⇐⇒
∧

v[Γ] ≤ v(ϕ), for all v ∈ Hom(FmL, [0, 1]Q
�

).

LÁVIČKA, NOGUERA SUBDIRECT REPRESENTATION 14 / 15



LOGIC WITH τ -IPEP WHICH IS NOT RSI-COMPLETE

L = {→,&, 0} ∪ {q̄ : q ∈ (0, 1] ∩Q} and Var = ω.

[0, 1]Q
�

is [0, 1]� with naturally defined rational constants.

Let L be the logic preserving degrees of truth in [0, 1]Q
�

, i.e.

Γ `L ϕ ⇐⇒
∧

v[Γ] ≤ v(ϕ), for all v ∈ Hom(FmL, [0, 1]Q
�

).

I L is equivalential (with implication x⇒ y = {(x→ y)n : n ∈ ω}), but
not algebraizable.

I L has the τ -IPEP (and is finitely subdirectly representable).
I L has no RSI-models, thus it is not RSI-complete.
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Thank you,

Enjoy Prague!
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CARDINALITY UPPER BOUND

THEOREM

Suppose λ is a regular cardinal and K is a class of matrices, such that
|K| < λ. Further suppose that for every 〈A,F〉 ∈ K:

1. There is a compact topology τ on A such that all of the
connectives are continuous w.r.t. τ ,

2. F can be written as an intersection of strictly less λ open sets in τ ,
3. A \ F ∈ τ ,

then LK,κ has cardinality at most λ for every infinite κ.
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