Intermediate logics admitting structural hypersequent calculi

Frederik Möllerström Lauridsen

University of Amsterdam (ILLC)

TACL June 28, 2017

Proof theory for non-classical logics

Proof theory for non-classical logics

Questions

 Why is it that some logics are difficult—or impossible—to capture with "good" and "simple" proof calculi?

Proof theory for non-classical logics

Questions

- 1. Why is it that some logics are difficult—or impossible—to capture with "good" and "simple" proof calculi?
- 2. Are there maybe some semantic obstructions for obtaining such "good" and "simple" proof calculi?

We obtain *intuitionistic propositional logic* Int by dropping the law of excluded middle $p \lor \neg p$ from *classical propositional logic* Cl.

We obtain *intuitionistic propositional logic* Int by dropping the law of excluded middle $p \lor \neg p$ from *classical propositional logic* Cl.

Propositional logics L such that

 $\mathbf{Int} \subseteq L \subseteq \mathbf{Cl}$

are called *intermediate logics*.

We obtain *intuitionistic propositional logic* Int by dropping the law of excluded middle $p \lor \neg p$ from *classical propositional logic* Cl.

Propositional logics L such that

$\mathbf{Int} \subseteq L \subseteq \mathbf{Cl}$

are called *intermediate logics*.

Semantics

We obtain *intuitionistic propositional logic* Int by dropping the law of excluded middle $p \lor \neg p$ from *classical propositional logic* Cl.

Propositional logics L such that

Int $\subseteq L \subseteq Cl$

are called *intermediate logics*.

Semantics

For every intermediate logic L there is a variety $\mathbb{V}(L)$ of Heyting algebras such that $\varphi \in L$ iff $\mathbb{V}(L) \models \varphi \approx 1$, and conversely.

 $\varphi \in \mathrm{Int} \quad \mathrm{iff} \quad \vdash_{\mathrm{LJ}} \quad \Rightarrow \varphi \quad \mathrm{iff} \quad \vdash_{\mathrm{LJ}}^{cutfree} \quad \Rightarrow \varphi.$

 $\varphi \in \text{Int} \quad \text{iff} \quad \vdash_{\text{LJ}} \quad \Rightarrow \varphi \quad \text{iff} \quad \vdash_{\text{LJ}}^{cutfree} \quad \Rightarrow \varphi.$

Sequent calculi for intermediate logic

Adding additional axioms or rules to LJ usually breaks the cut-elimination procedure.

 $\varphi \in \text{Int} \quad \text{iff} \quad \vdash_{\text{LJ}} \quad \Rightarrow \varphi \quad \text{iff} \quad \vdash_{\text{LJ}}^{cutfree} \quad \Rightarrow \varphi.$

Sequent calculi for intermediate logic

Adding additional axioms or rules to LJ usually breaks the cut-elimination procedure. With some exceptions:

 $\varphi \in \text{Int} \quad \text{iff} \quad \vdash_{\text{LJ}} \quad \Rightarrow \varphi \quad \text{iff} \quad \vdash_{\text{LJ}}^{cutfree} \quad \Rightarrow \varphi.$

Sequent calculi for intermediate logic

Adding additional axioms or rules to LJ usually breaks the cut-elimination procedure. With some exceptions:

1. Cut-free sequent calculi for LC; (Sonobe 1975, Corsi 1989);

 $\varphi \in \text{Int} \quad \text{iff} \quad \vdash_{\text{LJ}} \quad \Rightarrow \varphi \quad \text{iff} \quad \vdash_{\text{LJ}}^{cutfree} \quad \Rightarrow \varphi.$

Sequent calculi for intermediate logic

Adding additional axioms or rules to LJ usually breaks the cut-elimination procedure. With some exceptions:

- 1. Cut-free sequent calculi for LC; (Sonobe 1975, Corsi 1989);
- 2. Cut-free sequent calculi for LC, KC, LC₂, BD₂, Sm; (Avellone et al. 1999).

 $\varphi \in \text{Int} \quad \text{iff} \quad \vdash_{\text{LJ}} \quad \Rightarrow \varphi \quad \text{iff} \quad \vdash_{\text{LJ}}^{cutfree} \quad \Rightarrow \varphi.$

Sequent calculi for intermediate logic

Adding additional axioms or rules to LJ usually breaks the cut-elimination procedure. With some exceptions:

- 1. Cut-free sequent calculi for LC; (Sonobe 1975, Corsi 1989);
- 2. Cut-free sequent calculi for LC, KC, LC₂, BD₂, Sm; (Avellone et al. 1999).

Negative results

 $\varphi \in \text{Int} \quad \text{iff} \quad \vdash_{\text{LJ}} \quad \Rightarrow \varphi \quad \text{iff} \quad \vdash_{\text{LJ}}^{cutfree} \quad \Rightarrow \varphi.$

Sequent calculi for intermediate logic

Adding additional axioms or rules to LJ usually breaks the cut-elimination procedure. With some exceptions:

- 1. Cut-free sequent calculi for LC; (Sonobe 1975, Corsi 1989);
- 2. Cut-free sequent calculi for LC, KC, LC₂, BD₂, Sm; (Avellone et al. 1999).

Negative results

 No proper intermediate logic admits a *structural* extension of LJ (Ciabattoni et al. 2008);

 $\varphi \in \text{Int} \quad \text{iff} \quad \vdash_{\text{LJ}} \quad \Rightarrow \varphi \quad \text{iff} \quad \vdash_{\text{LJ}}^{cutfree} \quad \Rightarrow \varphi.$

Sequent calculi for intermediate logic

Adding additional axioms or rules to LJ usually breaks the cut-elimination procedure. With some exceptions:

- 1. Cut-free sequent calculi for LC; (Sonobe 1975, Corsi 1989);
- 2. Cut-free sequent calculi for LC, KC, LC₂, BD₂, Sm; (Avellone et al. 1999).

Negative results

- No proper intermediate logic admits a *structural* extension of LJ (Ciabattoni et al. 2008);
- 2. Few intermediate logics with *focussed* terminating sequent calculi (Iemhoff 2017).

Definition (Mints 1968, Pottinger 1983, Avron 1987)

 $\Gamma_1 \Rightarrow \Pi_1 \mid \ldots \mid \Gamma_n \Rightarrow \Pi_n$

Definition (Mints 1968, Pottinger 1983, Avron 1987)

$$\Gamma_1 \Rightarrow \Pi_1 \mid \ldots \mid \Gamma_n \Rightarrow \Pi_n$$

We have a hypersequent calculus HLJ for Int.

$$\frac{s_1 \quad \dots \quad s_n}{s_0} (r) \qquad \rightsquigarrow \qquad \frac{H \mid s_1 \quad \dots \quad H \mid s_n}{H \mid s_0} (hr)$$

Definition (Mints 1968, Pottinger 1983, Avron 1987)

$$\Gamma_1 \Rightarrow \Pi_1 \mid \ldots \mid \Gamma_n \Rightarrow \Pi_n$$

We have a hypersequent calculus HLJ for Int.

$$\frac{s_1 \quad \dots \quad s_n}{s_0} (r) \quad \rightsquigarrow \quad \frac{H \mid s_1 \quad \dots \quad H \mid s_n}{H \mid s_0} (hr)$$
$$\frac{H \mid \Gamma \Rightarrow \Pi \mid \Gamma \Rightarrow \Pi}{H \mid \Gamma \Rightarrow \Pi} (EC) \quad \frac{H}{H \mid \Gamma \Rightarrow \Pi} (EW)$$

Analytic hypersequent calculi for LC and KC

Analytic hypersequent calculi for LC and KC

 $\mathrm{LC} = \mathrm{Int} \ + (p \to q) \lor (q \to p) \quad \mathrm{KC} = \mathrm{Int} \ + \neg p \lor \neg \neg p.$

Analytic hypersequent calculi for LC and KC

$$\mathbf{LC} = \mathbf{Int} + (p \to q) \lor (q \to p) \quad \mathbf{KC} = \mathbf{Int} + \neg p \lor \neg \neg p.$$

Examples

$$\frac{H \mid \Gamma_1, \Sigma_2 \Rightarrow \Pi_1 \qquad H \mid \Gamma_2, \Sigma_1 \Rightarrow \Pi_2}{H \mid \Gamma_1, \Sigma_1 \Rightarrow \Pi_1 \mid \Gamma_2, \Sigma_2 \Rightarrow \Pi_2} (lc)$$
$$\underline{H \mid \Gamma, \Sigma \Rightarrow}_{(la)}$$

$$\frac{1}{H \mid \Gamma \Rightarrow \mid \Sigma \Rightarrow} (lq)$$

We may define a hierarchy of formulas as follows:

We may define a hierarchy of formulas as follows: $\mathcal{P}_0 = \mathcal{N}_0 = \mathsf{Prop},$ and

$$\mathcal{P}_{n+1} :::= \top \mid \perp \mid \mathcal{N}_n \mid \mathcal{P}_{n+1} \land \mathcal{P}_{n+1} \mid \mathcal{P}_{n+1} \lor \mathcal{P}_{n+1} \\ \mathcal{N}_{n+1} :::= \perp \mid \top \mid \mathcal{P}_n \mid \mathcal{N}_{n+1} \land \mathcal{N}_{n+1} \mid \mathcal{P}_{n+1} \to \mathcal{N}_{n+1}$$

We may define a hierarchy of formulas as follows: $\mathcal{P}_0 = \mathcal{N}_0 = \mathsf{Prop}$, and

$$\mathcal{P}_{n+1} ::= \top \mid \perp \mid \mathcal{N}_n \mid \mathcal{P}_{n+1} \land \mathcal{P}_{n+1} \mid \mathcal{P}_{n+1} \lor \mathcal{P}_{n+1}$$
$$\mathcal{N}_{n+1} ::= \perp \mid \top \mid \mathcal{P}_n \mid \mathcal{N}_{n+1} \land \mathcal{N}_{n+1} \mid \mathcal{P}_{n+1} \to \mathcal{N}_{n+1}$$

Remark

1. Over Int the "hierarchy" collapses above the level \mathcal{N}_3 ;

We may define a hierarchy of formulas as follows: $\mathcal{P}_0 = \mathcal{N}_0 = \mathsf{Prop}$, and

$$\mathcal{P}_{n+1} ::= \top \mid \perp \mid \mathcal{N}_n \mid \mathcal{P}_{n+1} \land \mathcal{P}_{n+1} \mid \mathcal{P}_{n+1} \lor \mathcal{P}_{n+1} \\ \mathcal{N}_{n+1} ::= \perp \mid \top \mid \mathcal{P}_n \mid \mathcal{N}_{n+1} \land \mathcal{N}_{n+1} \mid \mathcal{P}_{n+1} \to \mathcal{N}_{n+1}$$

Remark

- **1**. Over Int the "hierarchy" collapses above the level \mathcal{N}_3 ;
- **2**. For every formula $\varphi \in \mathcal{N}_2$ we have that $\mathbf{Int} + \varphi \in {\mathbf{Form}, \mathbf{Int}}$.

Theorem (Ciabattoni et al. 2008, 2017)

There is an effective procedure transforming any \mathcal{P}_3 -axiom φ into a finite set of "equivalent" structural hypersequent rule \mathscr{R} such that cut-admissibility is preserved when adding \mathscr{R} to HLJ.

Theorem (Ciabattoni et al. 2008, 2017)

There is an effective procedure transforming any \mathcal{P}_3 -axiom φ into a finite set of "equivalent" structural hypersequent rule \mathscr{R} such that cut-admissibility is preserved when adding \mathscr{R} to HLJ.

Here "equivalent" means equivalent on subdirectly irreducible Heyting algebras.

Theorem (Ciabattoni et al. 2008, 2017)

There is an effective procedure transforming any \mathcal{P}_3 -axiom φ into a finite set of "equivalent" structural hypersequent rule \mathscr{R} such that cut-admissibility is preserved when adding \mathscr{R} to HLJ.

Here "equivalent" means equivalent on subdirectly irreducible Heyting algebras. So $\mathrm{HLJ}+\mathscr{R}$ will be a calculus for $\mathrm{Int}+\varphi.$

Theorem (Ciabattoni et al. 2008, 2017)

There is an effective procedure transforming any \mathcal{P}_3 -axiom φ into a finite set of "equivalent" structural hypersequent rule \mathscr{R} such that cut-admissibility is preserved when adding \mathscr{R} to HLJ.

Here "equivalent" means equivalent on subdirectly irreducible Heyting algebras. So $\text{HLJ}+\mathscr{R}$ will be a calculus for $\text{Int}+\varphi.$

Observation

At least countably many proper intermediate logics are axiomatisable by \mathcal{P}_3 -formulas.

Theorem (Ciabattoni et al. 2008, 2017)

There is an effective procedure transforming any \mathcal{P}_3 -axiom φ into a finite set of "equivalent" structural hypersequent rule \mathscr{R} such that cut-admissibility is preserved when adding \mathscr{R} to HLJ.

Here "equivalent" means equivalent on subdirectly irreducible Heyting algebras. So $\text{HLJ}+\mathscr{R}$ will be a calculus for $\text{Int}+\varphi.$

Observation

At least countably many proper intermediate logics are axiomatisable by \mathcal{P}_3 -formulas. E.g., \mathbf{BW}_n , \mathbf{BTW}_n , \mathbf{BC}_n , for $n \in \mathbb{N}$.

A problem with syntactic classifications

Given an intermediate logic $L := \text{Int} + \varphi$ with $\varphi \notin \mathcal{P}_3$ there might exist $\psi \in \mathcal{P}_3$ such that $L = \text{Int} + \psi$.

A problem with syntactic classifications

Given an intermediate logic $L := \text{Int} + \varphi$ with $\varphi \notin \mathcal{P}_3$ there might exist $\psi \in \mathcal{P}_3$ such that $L = \text{Int} + \psi$. For example:

$$\begin{split} \mathbf{BTW}_n &= \mathbf{Int} + \bigwedge_{0 \leq i < j \leq n} \left(\neg (\neg p_i \land \neg p_j) \to \bigvee_{i=0}^n (\neg p_i \to \bigvee_{j \neq i} \neg p_j) \right) \\ &= \mathbf{Int} + \bigvee_{i=0}^n \left(\bigwedge_{j < i} p_j \to \neg \neg p_i \right). \end{split}$$

A problem with syntactic classifications

Given an intermediate logic $L := Int + \varphi$ with $\varphi \notin \mathcal{P}_3$ there might exist $\psi \in \mathcal{P}_3$ such that $L = Int + \psi$. For example:

$$\begin{split} \mathbf{BTW}_n &= \mathbf{Int} + \bigwedge_{0 \leq i < j \leq n} \left(\neg (\neg p_i \land \neg p_j) \to \bigvee_{i=0}^n (\neg p_i \to \bigvee_{j \neq i} \neg p_j) \right) \\ &= \mathbf{Int} + \bigvee_{i=0}^n \left(\bigwedge_{j < i} p_j \to \neg \neg p_i \right). \end{split}$$

We need intrinsic semantic characterisations of logics with an \mathcal{P}_3 -axiomatisation.

Theorem (Ciabattoni et al. 2008)

There is an effective procedure transforming any structural hypersequent rule (r) into an equivalent structural hypersequent rule (r') such that cut-admissibility is preserved by adding (r') to HLJ.

Theorem (Ciabattoni et al. 2008)

There is an effective procedure transforming any structural hypersequent rule (r) into an equivalent structural hypersequent rule (r') such that cut-admissibility is preserved by adding (r') to HLJ.

Theorem (Ciabattoni et al. 2008/2017)

Let L be an intermediate logic. Then the following are equivalent:

1. L is axiomatisable by \mathcal{P}_3 -formulas;

Theorem (Ciabattoni et al. 2008)

There is an effective procedure transforming any structural hypersequent rule (r) into an equivalent structural hypersequent rule (r') such that cut-admissibility is preserved by adding (r') to HLJ.

Theorem (Ciabattoni et al. 2008/2017)

- 1. *L* is axiomatisable by \mathcal{P}_3 -formulas;
- 2. *L* admits an analytic hypersequent calculus extending HLJ with structural rules;

Theorem (Ciabattoni et al. 2008)

There is an effective procedure transforming any structural hypersequent rule (r) into an equivalent structural hypersequent rule (r') such that cut-admissibility is preserved by adding (r') to HLJ.

Theorem (Ciabattoni et al. 2008/2017)

- 1. *L* is axiomatisable by \mathcal{P}_3 -formulas;
- 2. *L* admits an analytic hypersequent calculus extending HLJ with structural rules;
- 3. L admits a hypersequent calculus extending HLJ with structural rules.

Theorem (Ciabattoni et al. 2008)

There is an effective procedure transforming any structural hypersequent rule (r) into an equivalent structural hypersequent rule (r') such that cut-admissibility is preserved by adding (r') to HLJ.

Theorem (Ciabattoni et al. 2008/2017)

Let L be an intermediate logic. Then the following are equivalent:

- 1. L is axiomatisable by \mathcal{P}_3 -formulas;
- 2. *L* admits an analytic hypersequent calculus extending HLJ with structural rules;
- 3. L admits a hypersequent calculus extending HLJ with structural rules.

Thus we only need to consider intermediate logics with a structural hypersequent calculus.

Observation (Ciabattoni et al. 2017)

We have a correspondence between structural hypersequent rules and universal clauses in the $(0, \land, 1)$ -reduct of the language of Heyting algebras.

Observation (Ciabattoni et al. 2017)

We have a correspondence between structural hypersequent rules and universal clauses in the $(0, \wedge, 1)$ -reduct of the language of Heyting algebras.

Examples

$$\frac{H \mid \Gamma_1, \Sigma_2 \Rightarrow \Pi_1 \qquad H \mid \Gamma_2, \Sigma_1 \Rightarrow \Pi_2}{H \mid \Gamma_1, \Sigma_1 \Rightarrow \Pi_1 \mid \Gamma_2, \Sigma_2 \Rightarrow \Pi_2} (lc)$$

 $x_1 \wedge x_2' \leq y_1 \text{ and } x_2 \wedge x_1' \leq y_2 \implies x_1 \wedge x_1' \leq y_1 \text{ or } x_2 \wedge x_2' \leq y_2.$

Observation (Ciabattoni et al. 2017)

We have a correspondence between structural hypersequent rules and universal clauses in the $(0, \wedge, 1)$ -reduct of the language of Heyting algebras.

Examples

$$\frac{H \mid \Gamma_1, \Sigma_2 \Rightarrow \Pi_1 \qquad H \mid \Gamma_2, \Sigma_1 \Rightarrow \Pi_2}{H \mid \Gamma_1, \Sigma_1 \Rightarrow \Pi_1 \mid \Gamma_2, \Sigma_2 \Rightarrow \Pi_2} (lc)$$

 $x_1 \wedge x_2' \leq y_1 \text{ and } x_2 \wedge x_1' \leq y_2 \implies x_1 \wedge x_1' \leq y_1 \text{ or } x_2 \wedge x_2' \leq y_2.$

$$\frac{H \mid \Gamma, \Sigma \Rightarrow}{H \mid \Gamma \Rightarrow \mid \Sigma \Rightarrow} (lq)$$
$$x_1 \land x_2 \le 0 \implies x_1 \le 0 \text{ or } x_2 \le 0.$$

Observation

Suppose that L admits a structural hypersequent calculus. Then, for Heyting algebras ${\bf A}, {\bf B},$

If $\mathbf{B} \in \mathbb{V}(L)_{si}$ and $\mathbf{A} \hookrightarrow_{0,\wedge,1} \mathbf{B}$ then $\mathbf{A} \in \mathbb{V}(L)$. (†)

Observation

Suppose that L admits a structural hypersequent calculus. Then, for Heyting algebras ${\bf A}, {\bf B},$

If
$$\mathbf{B} \in \mathbb{V}(L)_{si}$$
 and $\mathbf{A} \hookrightarrow_{0,\wedge,1} \mathbf{B}$ then $\mathbf{A} \in \mathbb{V}(L)$. (†)

Definition

An intermediate logic satisfying (\dagger) is said to be $(0, \land, 1)$ -stable.

Observation

Suppose that L admits a structural hypersequent calculus. Then, for Heyting algebras ${\bf A}, {\bf B},$

If
$$\mathbf{B} \in \mathbb{V}(L)_{si}$$
 and $\mathbf{A} \hookrightarrow_{0,\wedge,1} \mathbf{B}$ then $\mathbf{A} \in \mathbb{V}(L)$. (†)

Definition

An intermediate logic satisfying (\dagger) is said to be $(0,\wedge,1)\text{-stable}.$

Lemma

If L is $(0, \wedge, 1)$ -stable then $\mathbb{V}(L)$ is generated by a universal class of Heyting algebras axiomatised by a collection of universal $(0, \wedge, 1)$ -clauses.

Observation

Suppose that L admits a structural hypersequent calculus. Then, for Heyting algebras ${\bf A}, {\bf B},$

If
$$\mathbf{B} \in \mathbb{V}(L)_{si}$$
 and $\mathbf{A} \hookrightarrow_{0,\wedge,1} \mathbf{B}$ then $\mathbf{A} \in \mathbb{V}(L)$. (†)

Definition

An intermediate logic satisfying (\dagger) is said to be $(0,\wedge,1)\text{-stable}.$

Lemma

If L is $(0, \wedge, 1)$ -stable then $\mathbb{V}(L)$ is generated by a universal class of Heyting algebras axiomatised by a collection of universal $(0, \wedge, 1)$ -clauses.

The proof uses "canonical" clauses $q_{0,\wedge,1}(\mathbf{A})$ associated with finite Heyting algebras.

Observation

Suppose that L admits a structural hypersequent calculus. Then, for Heyting algebras ${\bf A}, {\bf B},$

If
$$\mathbf{B} \in \mathbb{V}(L)_{si}$$
 and $\mathbf{A} \hookrightarrow_{0,\wedge,1} \mathbf{B}$ then $\mathbf{A} \in \mathbb{V}(L)$. (†)

Definition

An intermediate logic satisfying (\dagger) is said to be $(0, \land, 1)$ -stable.

Lemma

If L is $(0, \wedge, 1)$ -stable then $\mathbb{V}(L)$ is generated by a universal class of Heyting algebras axiomatised by a collection of universal $(0, \wedge, 1)$ -clauses.

The proof uses "canonical" clauses $q_{0,\wedge,1}(\mathbf{A})$ associated with finite Heyting algebras.

$$\mathbf{B} \models q_{0,\wedge,1}(\mathbf{A}) \iff \mathbf{A} \not\hookrightarrow_{0,\wedge,1} \mathbf{B}.$$

Theorem

Theorem

Let L be an intermediate logic. The following are equivalent:

1. L is \mathcal{P}_3 -axiomatisable;

Theorem

- 1. L is \mathcal{P}_3 -axiomatisable;
- 2. *L* has an analytic structural hypersequent calculus extending HLJ;

Theorem

- 1. L is \mathcal{P}_3 -axiomatisable;
- 2. *L* has an analytic structural hypersequent calculus extending HLJ;
- 3. L is $(0, \wedge, 1)$ -stable.

Theorem

Let L be an intermediate logic. The following are equivalent:

- 1. L is \mathcal{P}_3 -axiomatisable;
- 2. *L* has an analytic structural hypersequent calculus extending HLJ;
- 3. *L* is $(0, \land, 1)$ -stable.

Corollary

Non of the logics BD_n , for $n \ge 2$, can be captured by a structural extension of HLJ.

Theorem

Theorem

- 1. L is \mathcal{P}_3 -axiomatisable;
- 2. L has an analytic structural hypersequent calculus extending HLJ;
- 3. L is $(0, \wedge, 1)$ -stable;

Theorem

- 1. *L* is \mathcal{P}_3 -axiomatisable;
- 2. L has an analytic structural hypersequent calculus extending HLJ;
- 3. L is $(0, \wedge, 1)$ -stable;
- 4. *L* is sound and complete with respect to a first-order definable class of intuitionistic Kripke frames determined by formulas of the form:

Theorem

Let L be an intermediate logic. The following are equivalent:

- 1. L is \mathcal{P}_3 -axiomatisable;
- 2. L has an analytic structural hypersequent calculus extending HLJ;
- 3. L is $(0, \wedge, 1)$ -stable;
- 4. *L* is sound and complete with respect to a first-order definable class of intuitionistic Kripke frames determined by formulas of the form:

 $\forall \vec{w} \exists v \mathsf{OR}_{i \in I} \mathsf{AND}_{j \in J_i} \varphi_{ij}(\vec{w}, v),$

Theorem

Let L be an intermediate logic. The following are equivalent:

- 1. L is \mathcal{P}_3 -axiomatisable;
- 2. L has an analytic structural hypersequent calculus extending HLJ;
- 3. L is $(0, \wedge, 1)$ -stable;
- 4. *L* is sound and complete with respect to a first-order definable class of intuitionistic Kripke frames determined by formulas of the form:

$$\forall \vec{w} \exists v \mathsf{OR}_{i \in I} \mathsf{AND}_{j \in J_i} \varphi_{ij}(\vec{w}, v),$$

where $\varphi_{ij}(\vec{w}, v)$ is either wRv or w = v for some $w \in \vec{w}$.

Theorem

Let L be an intermediate logic. The following are equivalent:

- 1. L is \mathcal{P}_3 -axiomatisable;
- 2. L has an analytic structural hypersequent calculus extending HLJ;
- 3. L is $(0, \wedge, 1)$ -stable;
- 4. *L* is sound and complete with respect to a first-order definable class of intuitionistic Kripke frames determined by formulas of the form:

$$\forall \vec{w} \exists v \mathsf{OR}_{i \in I} \mathsf{AND}_{j \in J_i} \varphi_{ij}(\vec{w}, v),$$

where $\varphi_{ij}(\vec{w}, v)$ is either wRv or w = v for some $w \in \vec{w}$.

Compare this with the *simple formulas* from (Lahav 2013).

Some corollaries

Let L be a intermediate logic with a structural hypersequent calculus extending HLJ. Then

- 1. *L* enjoys the finite model property;
- **2.** *L* is a cofinal subframe logic;
- **3.** *L* is Kripke complete;
- 4. The class of *L*-frames is an elementary class;
- 5. *L* is canonical;
- 6. L is axiomatised by $(\rightarrow, \land, \bot)$ -formulas;
- 7. The class of well-connected $\mathbb{V}(L)$ algebras is closed under MacNeille completion;

1. Is being $(0, \wedge, 1)$ -stable a decidable property of intermediate logics?

- 1. Is being $(0, \wedge, 1)$ -stable a decidable property of intermediate logics?
- 2. Can we do something similar for substructural and modal logics?

- 1. Is being $(0, \wedge, 1)$ -stable a decidable property of intermediate logics?
- 2. Can we do something similar for substructural and modal logics?
- 3. Are similar semantic characterisations available for other proof-theoretic formalisms?

Thank you very much for your time and attention.