Effect algebras as colimits of finite Boolean algebras arXiv:1705.06498

Gejza Jenča

Slovak University of Technology Bratislava

June 30, 2017

Gejza Jenča

Effect algebras as colimits

June 30, 2017 1 / 22

Origins of the main idea of this talk

Staton, S., Uijlen, S.: Effect algebras, presheaves, non-locality and contextuality. In: International Colloquium on Automata, Languages, and Programming, pp. 401–413. Springer (2015)

Let $E : C \to D$ be a functor. To avoid unnecessary problems, assume that C is essentially small and D is cocomplete.

Let $E : C \to D$ be a functor. To avoid unnecessary problems, assume that C is essentially small and D is cocomplete.

• Fix an object $A \in \mathcal{D}$.

Let $E : C \to D$ be a functor. To avoid unnecessary problems, assume that C is essentially small and D is cocomplete.

- Fix an object $A \in \mathcal{D}$.
- For every object c ∈ C we may consider the set of all D-morphisms from E(c) to A:

 $c\mapsto \mathcal{D}(E(c),A).$

Let $E : C \to D$ be a functor. To avoid unnecessary problems, assume that C is essentially small and D is cocomplete.

- Fix an object $A \in \mathcal{D}$.
- For every object c ∈ C we may consider the set of all D-morphisms from E(c) to A:

 $c\mapsto \mathcal{D}(E(c),A).$

• So every object of *c* gives us an object of **Set**.

Let $E : C \to D$ be a functor. To avoid unnecessary problems, assume that C is essentially small and D is cocomplete.

- Fix an object $A \in \mathcal{D}$.
- For every object c ∈ C we may consider the set of all D-morphisms from E(c) to A:

$$c\mapsto \mathcal{D}(E(c),A).$$

- So every object of c gives us an object of **Set**.
- This is a contravariant functor, for every $A \in \mathcal{D}$:

$$A \mapsto [\mathcal{C}^{op}, \mathbf{Set}]$$

Let $E : C \to D$ be a functor. To avoid unnecessary problems, assume that C is essentially small and D is cocomplete.

- Fix an object $A \in \mathcal{D}$.
- For every object c ∈ C we may consider the set of all D-morphisms from E(c) to A:

$$c\mapsto \mathcal{D}(E(c),A).$$

- So every object of c gives us an object of **Set**.
- This is a contravariant functor, for every $A \in \mathcal{D}$:

$$A \mapsto [\mathcal{C}^{op}, \mathbf{Set}]$$

• In other words, every object of \mathcal{D} induces a presheaf on \mathcal{C} .

Moreover, the rule

 $A \mapsto [\mathcal{C}^{op}, \mathbf{Set}]$

itself is functorial: morphism $f : A \rightarrow A'$ in \mathcal{D} induces a natural transformation of presheaves in a straightforward way.

Moreover, the rule

 $A \mapsto [\mathcal{C}^{op}, \mathbf{Set}]$

itself is functorial: morphism $f : A \to A'$ in \mathcal{D} induces a natural transformation of presheaves in a straightforward way.

• Thus, there is a functor $R: \mathcal{D} \to [\mathcal{C}^{op}, \mathbf{Set}]$.

Moreover, the rule

$$A \mapsto [\mathcal{C}^{op}, \mathbf{Set}]$$

itself is functorial: morphism $f : A \to A'$ in \mathcal{D} induces a natural transformation of presheaves in a straightforward way.

- Thus, there is a functor $R : \mathcal{D} \to [\mathcal{C}^{op}, \mathbf{Set}]$.
- It is a right adjoint functor.

Moreover, the rule

$$A \mapsto [\mathcal{C}^{op}, \mathbf{Set}]$$

itself is functorial: morphism $f : A \to A'$ in \mathcal{D} induces a natural transformation of presheaves in a straightforward way.

- Thus, there is a functor $R : \mathcal{D} \to [\mathcal{C}^{op}, \mathbf{Set}]$.
- It is a right adjoint functor.

• For every object A, the presheaf R(A) is something like "A from the point of view of C".

• Moreover, the rule

$$A \mapsto [\mathcal{C}^{op}, \mathbf{Set}]$$

itself is functorial: morphism $f : A \to A'$ in \mathcal{D} induces a natural transformation of presheaves in a straightforward way.

- Thus, there is a functor $R : \mathcal{D} \to [\mathcal{C}^{op}, \mathbf{Set}]$.
- It is a right adjoint functor.

- For every object A, the presheaf R(A) is something like "A from the point of view of C".
- We may ask how much information about A is retained within R(A).

• Moreover, the rule

$$A \mapsto [\mathcal{C}^{op}, \mathbf{Set}]$$

itself is functorial: morphism $f : A \to A'$ in \mathcal{D} induces a natural transformation of presheaves in a straightforward way.

- Thus, there is a functor $R : \mathcal{D} \to [\mathcal{C}^{op}, \mathbf{Set}]$.
- It is a right adjoint functor.

- For every object A, the presheaf R(A) is something like "A from the point of view of C".
- We may ask how much information about A is retained within R(A).
- In case when the adjunction is a reflection, A can be reconstructed from R(A); E is then called <u>dense</u>.

An <u>effect algebra</u> [Foulis and Bennett(1994), Kôpka and Chovanec(1994), Giuntini and Greuling(1989)] is a partial algebra (E; +, 0, 1) with a binary partial operation + and two nullary operations 0, 1 such that + is commutative, associative and the following pair of conditions is satisfied:

(E3) For every $a \in E$ there is a unique $a' \in E$ such that a + a' exists and a + a' = 1.

(E4) If a + 1 is defined, then a = 0.

The + operation is then cancellative and 0 is a neutral element.

< □ > < □ > < □ > < □ > < □ > < □ >

3

イロト イヨト イヨト イヨト

• The morphisms of effect algebras are defined in a natural way.

- The morphisms of effect algebras are defined in a natural way.
- By [Jacobs and Mandemaker(2012)], the category of effect algebras **EA** is complete and cocomplete.

- The morphisms of effect algebras are defined in a natural way.
- By [Jacobs and Mandemaker(2012)], the category of effect algebras **EA** is complete and cocomplete.
- The category of effect algebras includes MV-algebras and orthomodular lattices as subcategories.

Boolean algebras are effect algebras

- Let X be a Boolean algebra.
- Introduce a partial operation + on X:
- a + b is defined iff $a \wedge b = 0$ and then $a + b = a \vee b$.
- (X, +, 0, 1) is then an effect algebra.
- If A is an effect algebra and X is a Boolean algebra, a **EA**-morphism $X \rightarrow A$ is called <u>an observable</u>.

_			
1 0		0.12	-
- Ge	L d		

イロト イヨト イヨト イヨト

• Let us consider the subcategory FinBool of EA.

- Let us consider the subcategory FinBool of EA.
- FinBool is essentially small.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Let us consider the subcategory FinBool of EA.
- FinBool is essentially small.
- FinBool is a full subcategory of EA.

- Let us consider the subcategory FinBool of EA.
- FinBool is essentially small.
- FinBool is a full subcategory of EA.
- We understand morphisms in FinBool pretty well.

FinBool is \mathcal{C}

- Let us consider the subcategory FinBool of EA.
- FinBool is essentially small.
- FinBool is a full subcategory of EA.
- We understand morphisms in FinBool pretty well.
- A morphism g from 2^[n] into an effect algebra A is the same thing as a decomposition of 1 ∈ A into a sum of n elements of A

$$g({1}) + g({2}) + \cdots + g({n}) = 1.$$

Theorem

[Staton and Uijlen(2015)] The embedding E : FinBool \rightarrow EA is dense. In particular, every effect algebra is a colimit of finite Boolean algebras (in a canonical way).

The category of elements of R(A)

For an effect algebra A, the category $\int R(A)$ is the <u>category of finite</u> observables, which can be explicitly described as follows:

- Objects are all pairs $(2^{[n]}, g)$, where $g : 2^{[n]} \to A$ is an observable.
- An arrow $(2^{[n]}, g) \rightarrow (2^{[n']}, g')$ is a morphism of Boolean algebras $f : 2^{[n]} \rightarrow 2^{[n']}$ such that $g' \circ f = g$.

Effect algebras as colimits of finite Boolean algebras

Consider the functor

$$D_A:\int R(A)
ightarrow {\sf EA}$$

given by the rule

$$D_A(2^{[n]},g) = 2^{[n]}$$

Effect algebras as colimits of finite Boolean algebras

Consider the functor

$$D_A:\int R(A)
ightarrow \mathbf{EA}$$

given by the rule

$$D_A(2^{[n]},g) = 2^{[n]}$$

Then

$$\varinjlim D_A = A$$

_			
		0.12	00
- GE	2.6		La

3

글 > : < 글 >

An effect algebra A satisfies the <u>Riesz decomposition property</u> if and only if, for all u, v₁, v₂ ∈ A, u ≤ v₁ + v₂ implies that there exist u₁, u₂ ∈ A such that u₁ ≤ v₁, u₂ ≤ v₂ and u = u₁ + u₂.

- An effect algebra A satisfies the <u>Riesz decomposition property</u> if and only if, for all u, v₁, v₂ ∈ A, u ≤ v₁ + v₂ implies that there exist u₁, u₂ ∈ A such that u₁ ≤ v₁, u₂ ≤ v₂ and u = u₁ + u₂.
- We say that a category is <u>amalgamated</u> if and only if every span can be extended to a commutative square.

- An effect algebra A satisfies the <u>Riesz decomposition property</u> if and only if, for all u, v₁, v₂ ∈ A, u ≤ v₁ + v₂ implies that there exist u₁, u₂ ∈ A such that u₁ ≤ v₁, u₂ ≤ v₂ and u = u₁ + u₂.
- We say that a category is <u>amalgamated</u> if and only if every span can be extended to a commutative square.

Theorem

An effect algebra A satisfies the Riesz decomposition property if and only if $\int R(A)$ is amalgamated.

An effect algebra A is an orthoalgebra if, for all $a \in A$, $a \le a'$ implies a = 0.

э

An effect algebra A is an <u>orthoalgebra</u> if, for all $a \in A$, $a \leq a'$ implies a = 0.

Theorem

An effect algebra A is an orthoalgebra if and only if for every pair of morphisms $f_1, f_2 : g \to g'$ in $\int R(A)$ there is a coequalizing morphism $q : g' \to u$ such that $q \circ f_1 = q \circ f_2$.

Boolean algebras

Theorem

An effect algebra A is a Boolean algebra if and only if $\int R(A)$ is filtered.

Gejza Jenča

Effect algebras as colimits

∃ → June 30, 2017 14 / 22

< 67 ▶

Bimorphisms and tensor products

For effect algebras A, B and C a mapping $h : A \times B \rightarrow C$ is a C-valued <u>bimorphism</u> [Dvurečenskij(1995)] from A, B to C if and only if the following conditions are satisfied.

Unitality: h(1, 1) = 1.

Left additivity: For all $b \in B$ and $a_1, a_2 \in A$ such that $a_1 \perp a_2$, $h(a_1, b) \perp h(a_2, b)$ and $h(a_1, b) + h(a_2, b) = h(a_1 + a_2, b)$. Right additivity: For all $a \in A$ and $b_1, b_2 \in B$ such that $b_1 \perp b_2$, $h(a, b_1) \perp h(a, b_2)$ and $h(a, b_1) + h(a, b_2) = h(a, b_1 + b_2)$.

э

イロト イポト イヨト イヨト

Bimorphisms and tensor products

For effect algebras A, B and C a mapping $h : A \times B \rightarrow C$ is a C-valued <u>bimorphism</u> [Dvurečenskij(1995)] from A, B to C if and only if the following conditions are satisfied.

Unitality: h(1,1) = 1.

Left additivity: For all $b \in B$ and $a_1, a_2 \in A$ such that $a_1 \perp a_2$, $h(a_1, b) \perp h(a_2, b)$ and $h(a_1, b) + h(a_2, b) = h(a_1 + a_2, b)$.

Right additivity: For all $a \in A$ and $b_1, b_2 \in B$ such that $b_1 \perp b_2$, $h(a, b_1) \perp h(a, b_2)$ and $h(a, b_1) + h(a, b_2) = h(a, b_1 + b_2)$.

There is a category $\beta_{A,B}$ where the objects are all bimorphisms from A, B and the morphisms are **EA**-morphisms acting on bimorphisms from left by composition.

Definition

[Dvurečenskij(1995)] Let A, B be effect algebras. A tensor product of Aand B (denoted by $A \otimes B$) is the initial object in the category $\beta_{A,B}$.

$$A \times B \xrightarrow{\otimes} A \otimes B$$

Gejza Jenča

Effect algebras as colimits

June 30, 2017 16 / 22

э

\sim			
1 - 6	170	20.	~ ~
0.0	-12a	 -	

• Let A, B be effect algebras.

- Let A, B be effect algebras.
- The category $\int R(A) \times \int R(B)$ has pairs of finite observables as objects and pairs of morphisms of observables as arrows.

- Let A, B be effect algebras.
- The category $\int R(A) \times \int R(B)$ has pairs of finite observables as objects and pairs of morphisms of observables as arrows.
- Consider the functor $D_{A,B}: \int R(A) imes \int R(B) o$ EA given by the rule

$$D_{A,B}(g_A,g_B) = \operatorname{Dom}(g_A) * \operatorname{Dom}(g_B),$$

where * denotes free product (that means, coproduct in **Bool**) of Boolean algebras.

Lemma

Let A, B be effect algebras. The category of bimorphisms $\beta_{A,B}$ is isomorphic to the category of cocones under the diagram $D_{A,B}$. Under this isomorphism, C-valued bimorphisms correspond to cocones with apex C and vice versa.

Lemma

Let A, B be effect algebras. The category of bimorphisms $\beta_{A,B}$ is isomorphic to the category of cocones under the diagram $D_{A,B}$. Under this isomorphism, C-valued bimorphisms correspond to cocones with apex C and vice versa.

Corollary

For every pair A, B of effect algebras,

$$A\otimes B=\varinjlim D_{A,B}$$

_				
1 0		0	-	-
- Ge	L d	с.	 -	a

Tensor products as left Kan extensions

_			
1 0		0.0	
.	2 G	 -	IL G

< 17 ×

Tensor products as left Kan extensions

Theorem

The tensor product of effect algebras is a functor $EA \times EA \rightarrow EA$ that arises as a left Kan extension of the functor $E \circ * : FinBool \times FinBool \rightarrow EA$ along the inclusion $E \times E : FinBool \times FinBool \rightarrow EA \times EA$.

~ .		
(-0170	lenca	
Geiza	Jenca	

Tensor products from Day convolution

It was proved by Day in [Day(1970)] that for every monoidal category (\mathcal{C}, \Box, I) , the monoidal structure can be extended to the category $[\mathcal{C}^{op}, \mathbf{Set}]$ of presheaves on \mathcal{C} by the rule

Tensor products from Day convolution

It was proved by Day in [Day(1970)] that for every monoidal category (\mathcal{C}, \Box, I) , the monoidal structure can be extended to the category $[\mathcal{C}^{op}, \mathbf{Set}]$ of presheaves on \mathcal{C} by the rule

$$X\otimes_{\mathrm{Day}}Y=\int^{(c_1,c_2)}\mathcal{C}^{op}(c_1\Box c_2,c) imes X(c_1) imes Y(c_2).$$

Tensor products from Day convolution

It was proved by Day in [Day(1970)] that for every monoidal category (\mathcal{C}, \Box, I) , the monoidal structure can be extended to the category $[\mathcal{C}^{op}, \mathbf{Set}]$ of presheaves on \mathcal{C} by the rule

$$X\otimes_{\mathrm{Day}}Y=\int^{(c_1,c_2)}\mathcal{C}^{op}(c_1\Box c_2,c) imes X(c_1) imes Y(c_2).$$

Theorem

For every pair A, B of effect algebras,

 $A\otimes B\simeq L(R(A)\otimes_{\mathrm{Day}} R(B))$

Geiza Jenca	~ .						
	(-01	70		.	•	~	-
	Gel	za	_			-	

On closed categories of functors, pages 1–38. Springer Berlin Heidelberg, Berlin, Heidelberg, 1970. ISBN 978-3-540-36292-0. doi: 10.1007/BFb0060438. URL http://dx.doi.org/10.1007/BFb0060438.

Anatolij Dvurečenskij.

Tensor product of difference posets.

Transactions of the American Mathematical Society, 347(3): 1043–1057, 1995.

D.J. Foulis and M.K. Bennett. Effect algebras and unsharp quantum logics. Found. Phys., 24:1325–1346, 1994.

D.J. Foulis, R. Greechie, and G. Rütimann.
 Filters and supports in orthoalgebras.
 Int. J. Theor. Phys., 35:789–802, 1995.

R. Giuntini and H. Greuling.

Toward a formal language for unsharp properties. Found. Phys., 19:931–945, 1989.

Bart Jacobs and Jorik Mandemaker. Coreflections in algebraic quantum logic. Foundations of physics, 42(7):932–958, 2012.

F. Kôpka and F. Chovanec. D-posets.

Math. Slovaca, 44:21–34, 1994.

 Sam Staton and Sander Uijlen.
 Effect algebras, presheaves, non-locality and contextuality.
 In International Colloquium on Automata, Languages, and Programming, pages 401–413. Springer, 2015.