Effect algebras as colimits of finite Boolean algebras
arXiv:1705.06498

Gejza Jenča

Slovak University of Technology Bratislava

June 30, 2017
Origins of the main idea of this talk

General idea

Let $E : \mathcal{C} \to \mathcal{D}$ be a functor. To avoid unnecessary problems, assume that \(\mathcal{C} \) is essentially small and \(\mathcal{D} \) is cocomplete.

Fix an object $A \in \mathcal{D}$. For every object $c \in \mathcal{C}$ we may consider the set of all \(\mathcal{D} \)-morphisms from $E(c)$ to A:

$c \mapsto \text{hom}_{\mathcal{D}}(E(c), A)$.

So every object of \(\mathcal{C} \) gives us an object of \(\text{Set} \).

This is a contravariant functor, for every $A \in \mathcal{D}$:

$A \mapsto \left[\mathcal{C}^{\text{op}}, \text{Set} \right]$.

In other words, every object of \(\mathcal{D} \) induces a presheaf on \(\mathcal{C} \).
General idea

Let $E : \mathcal{C} \to \mathcal{D}$ be a functor. To avoid unnecessary problems, assume that \mathcal{C} is essentially small and \mathcal{D} is cocomplete.

- Fix an object $A \in \mathcal{D}$.
General idea

Let $E : C \to D$ be a functor. To avoid unnecessary problems, assume that C is essentially small and D is cocomplete.

- Fix an object $A \in D$.
- For every object $c \in C$ we may consider the set of all D-morphisms from $E(c)$ to A:
 \[c \mapsto D(E(c), A). \]
General idea

Let $E : C \to D$ be a functor. To avoid unnecessary problems, assume that C is essentially small and D is cocomplete.

- Fix an object $A \in D$.
- For every object $c \in C$ we may consider the set of all D-morphisms from $E(c)$ to A:

 $$c \mapsto \mathcal{D}(E(c), A).$$

- So every object of c gives us an object of \textbf{Set}.

Let $E : C \to D$ be a functor. To avoid unnecessary problems, assume that C is essentially small and D is cocomplete.

- Fix an object $A \in D$.
- For every object $c \in C$ we may consider the set of all D-morphisms from $E(c)$ to A:
 $$c \mapsto D(E(c), A).$$
- So every object of c gives us an object of \textbf{Set}.
- This is a contravariant functor, for every $A \in D$:
 $$A \mapsto [C^{\text{op}}, \textbf{Set}]$$
General idea

Let $E : C \to D$ be a functor. To avoid unnecessary problems, assume that C is essentially small and D is cocomplete.

- Fix an object $A \in D$.
- For every object $c \in C$ we may consider the set of all D-morphisms from $E(c)$ to A:
 \[c \mapsto \mathcal{D}(E(c), A). \]
- So every object of c gives us an object of \textbf{Set}.
- This is a contravariant functor, for every $A \in D$:
 \[A \mapsto [C^{\text{op}}, \textbf{Set}] \]
- In other words, every object of D induces a presheaf on C.
General idea

- Moreover, the rule

\[A \mapsto \mathcal{C}^{op}, \text{Set} \]

itself is functorial: morphism \(f : A \to A' \) in \(\mathcal{D} \) induces a natural transformation of presheaves in a straightforward way.
General idea

Moreover, the rule

\[A \mapsto [C^{op}, \text{Set}] \]

itself is functorial: morphism \(f : A \rightarrow A' \) in \(\mathcal{D} \) induces a natural transformation of presheaves in a straightforward way.

Thus, there is a functor \(R : \mathcal{D} \rightarrow [C^{op}, \text{Set}] \).
General idea

- Moreover, the rule
 \[A \mapsto [C^{op}, \text{Set}] \]
 itself is functorial: morphism \(f : A \to A' \) in \(\mathcal{D} \) induces a natural transformation of presheaves in a straightforward way.
- Thus, there is a functor \(R : \mathcal{D} \to [C^{op}, \text{Set}] \).
- It is a right adjoint functor.

The diagram shows the adjunction:

\[[C^{op}, \text{Set}] \quad \perp \quad \mathcal{D} \]

\[\begin{array}{c}
 \text{L} \\
 \downarrow \\
 \text{R}
\end{array} \]

For every object \(A \), the presheaf \(R(A) \) is something like "\(A \) from the point of view of \(C \)".

We may ask how much information about \(A \) is retained within \(R(A) \).

In case when the adjunction is a reflection, \(A \) can be reconstructed from \(R(A) \); \(E \) is then called dense.
General idea

- Moreover, the rule
 \[A \mapsto [C^{\text{op}}, \text{Set}] \]
 itself is functorial: morphism \(f : A \to A' \) in \(D \) induces a natural transformation of presheaves in a straightforward way.
- Thus, there is a functor \(R : D \to [C^{\text{op}}, \text{Set}] \).
- It is a right adjoint functor.

\[
\begin{array}{ccc}
[\text{C}^{\text{op}}, \text{Set}] & \nabla & D \\
\downarrow L \quad & \quad & \downarrow R \\
\end{array}
\]

- For every object \(A \), the presheaf \(R(A) \) is something like “\(A \) from the point of view of \(C \)”.
General idea

- Moreover, the rule

\[A \mapsto [C^{\text{op}}, \text{Set}] \]

itself is functorial: morphism \(f : A \to A' \) in \(\mathcal{D} \) induces a natural transformation of presheaves in a straightforward way.

- Thus, there is a functor \(R : \mathcal{D} \to [C^{\text{op}}, \text{Set}] \).

- It is a right adjoint functor.

\[[C^{\text{op}}, \text{Set}] \xrightarrow{\perp} \mathcal{D} \xleftarrow{\perp} \]

- For every object \(A \), the presheaf \(R(A) \) is something like “\(A \) from the point of view of \(C \)”.

- We may ask how much information about \(A \) is retained within \(R(A) \).
General idea

- Moreover, the rule
 \[A \mapsto [C^{op}, \text{Set}] \]
 itself is functorial: morphism \(f : A \to A' \) in \(\mathcal{D} \) induces a natural transformation of presheaves in a straightforward way.
- Thus, there is a functor \(R : \mathcal{D} \to [C^{op}, \text{Set}] \).
- It is a right adjoint functor.

\[\begin{array}{ccc}
 [C^{op}, \text{Set}] & & \mathcal{D} \\
 \downarrow & & \downarrow \\
 \mathcal{D} & & [C^{op}, \text{Set}] \\
 \mathcal{D} & \xleftarrow{R} & [C^{op}, \text{Set}] \\
 \mathcal{D} & \xrightarrow{L} & [C^{op}, \text{Set}] \\
\end{array} \]

- For every object \(A \), the presheaf \(R(A) \) is something like “\(A \) from the point of view of \(C \)”.
- We may ask how much information about \(A \) is retained within \(R(A) \).
- In case when the adjunction is a reflection, \(A \) can be reconstructed from \(R(A) \); \(E \) is then called dense.

Gejza Jenča
Effect algebras as colimits
June 30, 2017 4 / 22
Effect algebras (the category \mathcal{D})

An effect algebra \cite{Foulis1994, Kopka1994, Giuntini1989} is a partial algebra $(E; +, 0, 1)$ with a binary partial operation $+$ and two nullary operations $0, 1$ such that $+$ is commutative, associative and the following pair of conditions is satisfied:

\begin{itemize}
 \item[(E3)] For every $a \in E$ there is a unique $a' \in E$ such that $a + a'$ exists and $a + a' = 1$.
 \item[(E4)] If $a + 1$ is defined, then $a = 0$.
\end{itemize}

The $+$ operation is then cancellative and 0 is a neutral element.
Effect algebras (the category \mathcal{D})

The morphisms of effect algebras are defined in a natural way. By [Jacobs and Mandemaker(2012)], the category of effect algebras \mathcal{EA} is complete and cocomplete. The category of effect algebras includes MV-algebras and orthomodular lattices as subcategories.
Effect algebras (the category \mathcal{D})

- The morphisms of effect algebras are defined in a natural way.
Effect algebras (the category \mathcal{D})

- The morphisms of effect algebras are defined in a natural way.
- By [Jacobs and Mandemaker(2012)], the category of effect algebras EA is complete and cocomplete.
Effect algebras (the category \mathcal{D})

- The morphisms of effect algebras are defined in a natural way.
- By [Jacobs and Mandemaker(2012)], the category of effect algebras \mathbf{EA} is complete and cocomplete.
- The category of effect algebras includes MV-algebras and orthomodular lattices as subcategories.
Boolean algebras are effect algebras

- Let X be a Boolean algebra.
- Introduce a partial operation $+$ on X:
 - $a + b$ is defined iff $a \land b = 0$ and then $a + b = a \lor b$.
- $(X, +, 0, 1)$ is then an effect algebra.
- If A is an effect algebra and X is a Boolean algebra, a EA-morphism $X \to A$ is called an observable.
Let us consider the subcategory \(\text{FinBool} \) of \(E(A) \).

\(\text{FinBool} \) is essentially small.

\(\text{FinBool} \) is a full subcategory of \(E(A) \).

We understand morphisms in \(\text{FinBool} \) pretty well.

A morphism \(g \) from \(2 \) into an effect algebra \(A \) is the same thing as a decomposition of \(1 \in A \) into a sum of \(n \) elements of \(A \):

\[
g(\{1\}) + g(\{2\}) + \ldots + g(\{n\}) = 1.
\]
Let us consider the subcategory FinBool of EA.
Let us consider the subcategory FinBool of EA.

FinBool is essentially small.
Let us consider the subcategory FinBool of EA.

FinBool is essentially small.

FinBool is a full subcategory of EA.
Let us consider the subcategory FinBool of EA.
- FinBool is essentially small.
- FinBool is a full subcategory of EA.
- We understand morphisms in FinBool pretty well.
Let us consider the subcategory \textbf{FinBool} of \textbf{EA}.

\textbf{FinBool} is essentially small.

\textbf{FinBool} is a full subcategory of \textbf{EA}.

We understand morphisms in \textbf{FinBool} pretty well.

A morphism \(g \) from \(2^{[n]} \) into an effect algebra \(A \) is the same thing as a decomposition of \(1 \in A \) into a sum of \(n \) elements of \(A \)

\[
g(\{1\}) + g(\{2\}) + \cdots + g(\{n\}) = 1.
\]
Theorem

[Staton and Uijlen(2015)] The embedding $E : \text{FinBool} \rightarrow \text{EA}$ is dense. In particular, every effect algebra is a colimit of finite Boolean algebras (in a canonical way).
The category of elements of $R(A)$

For an effect algebra A, the category $\int R(A)$ is the category of finite observables, which can be explicitly described as follows:

- Objects are all pairs $(2^n, g)$, where $g : 2^n \to A$ is an observable.
- An arrow $(2^n, g) \to (2^{n'}, g')$ is a morphism of Boolean algebras $f : 2^n \to 2^{n'}$ such that $g' \circ f = g$.

Effective algebras as colimits of finite Boolean algebras

Consider the functor

\[D_A : \int R(A) \to \text{EA} \]

given by the rule

\[D_A(2^n, g) = 2^n \]
Consider the functor

\[D_A : \int R(A) \to \text{EA} \]

given by the rule

\[D_A(2^n, g) = 2^n \]

Then

\[\lim D_A = A \]
Riesz decomposition property

An effect algebra A satisfies the Riesz decomposition property if and only if, for all $u, v_1, v_2 \in A$, $u \leq v_1 + v_2$ implies that there exist $u_1, u_2 \in A$ such that $u_1 \leq v_1$, $u_2 \leq v_2$ and $u = u_1 + u_2$.

We say that a category is amalgamated if and only if every span can be extended to a commutative square.

Theorem

An effect algebra A satisfies the Riesz decomposition property if and only if $\int_R (A)$ is amalgamated.
An effect algebra A satisfies the Riesz decomposition property if and only if, for all $u, v_1, v_2 \in A$, $u \leq v_1 + v_2$ implies that there exist $u_1, u_2 \in A$ such that $u_1 \leq v_1$, $u_2 \leq v_2$ and $u = u_1 + u_2$.
Riesz decomposition property

- An effect algebra A satisfies the Riesz decomposition property if and only if, for all $u, v_1, v_2 \in A$, $u \leq v_1 + v_2$ implies that there exist $u_1, u_2 \in A$ such that $u_1 \leq v_1$, $u_2 \leq v_2$ and $u = u_1 + u_2$.

- We say that a category is amalgamated if and only if every span can be extended to a commutative square.
Riesz decomposition property

- An effect algebra A satisfies the Riesz decomposition property if and only if, for all $u, v_1, v_2 \in A$, $u \leq v_1 + v_2$ implies that there exist $u_1, u_2 \in A$ such that $u_1 \leq v_1$, $u_2 \leq v_2$ and $u = u_1 + u_2$.

- We say that a category is amalgamated if and only if every span can be extended to a commutative square.

Theorem

An effect algebra A satisfies the Riesz decomposition property if and only if $\int R(A)$ is amalgamated.
An effect algebra A is an orthoalgebra if, for all $a \in A$, $a \leq a'$ implies $a = 0$.
An effect algebra A is an orthoalgebra if, for all $a \in A$, $a \leq a'$ implies $a = 0$.

Theorem

An effect algebra A is an orthoalgebra if and only if for every pair of morphisms $f_1, f_2 : g \to g'$ in $\int R(A)$ there is a coequalizing morphism $q : g' \to u$ such that $q \circ f_1 = q \circ f_2$.
Theorem

An effect algebra A is a Boolean algebra if and only if $\int R(A)$ is filtered.
Bimorphisms and tensor products

For effect algebras A, B and C a mapping $h : A \times B \to C$ is a C-valued bimorphism [Dvurečenskij(1995)] from A, B to C if and only if the following conditions are satisfied.

Unitality: $h(1,1) = 1$.

Left additivity: For all $b \in B$ and $a_1, a_2 \in A$ such that $a_1 \perp a_2$,
\[h(a_1, b) \perp h(a_2, b) \text{ and } h(a_1, b) + h(a_2, b) = h(a_1 + a_2, b). \]

Right additivity: For all $a \in A$ and $b_1, b_2 \in B$ such that $b_1 \perp b_2$,
\[h(a, b_1) \perp h(a, b_2) \text{ and } h(a, b_1) + h(a, b_2) = h(a, b_1 + b_2). \]
Bimorphisms and tensor products

For effect algebras A, B and C a mapping $h : A \times B \to C$ is a C-valued bimorphism [Dvurečenskij(1995)] from A, B to C if and only if the following conditions are satisfied.

Unitality: $h(1, 1) = 1$.

Left additivity: For all $b \in B$ and $a_1, a_2 \in A$ such that $a_1 \perp a_2$,

$h(a_1, b) \perp h(a_2, b)$ and $h(a_1, b) + h(a_2, b) = h(a_1 + a_2, b)$.

Right additivity: For all $a \in A$ and $b_1, b_2 \in B$ such that $b_1 \perp b_2$,

$h(a, b_1) \perp h(a, b_2)$ and $h(a, b_1) + h(a, b_2) = h(a, b_1 + b_2)$.

There is a category $\beta_{A,B}$ where the objects are all bimorphisms from A, B and the morphisms are EA-morphisms acting on bimorphisms from left by composition.
Definition

[Dvurečenskij(1995)] Let A, B be effect algebras. A tensor product of A and B (denoted by $A \otimes B$) is the initial object in the category $\beta_{A,B}$.

$$A \times B \rightarrow A \otimes B$$
Let A, B be effect algebras. The category $\int \mathbb{R}(A) \times \int \mathbb{R}(B)$ has pairs of finite observables as objects and pairs of morphisms of observables as arrows. Consider the functor $D_{A,B}: \int \mathbb{R}(A) \times \int \mathbb{R}(B) \to \mathcal{E}A$ given by the rule $D_{A,B}(g_A, g_B) = \text{Dom}(g_A)^* \text{Dom}(g_B)$, where * denotes free product (that means, coproduct in \mathbb{Bool}).
Tensor products as colimits

Let A, B be effect algebras.
Tensor products as colimits

Let A, B be effect algebras.

The category $\int R(A) \times \int R(B)$ has pairs of finite observables as objects and pairs of morphisms of observables as arrows.
Let A, B be effect algebras.

The category $\mathcal{I} R(A) \times \mathcal{I} R(B)$ has pairs of finite observables as objects and pairs of morphisms of observables as arrows.

Consider the functor $D_{A,B} : \mathcal{I} R(A) \times \mathcal{I} R(B) \to \mathbf{EA}$ given by the rule

$$D_{A,B}(g_A, g_B) = \text{Dom}(g_A) \ast \text{Dom}(g_B),$$

where \ast denotes free product (that means, coproduct in \mathbf{Bool}) of Boolean algebras.
Lemma

Let A, B be effect algebras. The category of bimorphisms $\beta_{A,B}$ is isomorphic to the category of cocones under the diagram $D_{A,B}$. Under this isomorphism, C-valued bimorphisms correspond to cocones with apex C and vice versa.
Lemma
Let A, B be effect algebras. The category of bimorphisms $\beta_{A,B}$ is isomorphic to the category of cocones under the diagram $D_{A,B}$. Under this isomorphism, C-valued bimorphisms correspond to cocones with apex C and vice versa.

Corollary
For every pair A, B of effect algebras,

$$A \otimes B = \lim_{\rightarrow} D_{A,B}$$
Theorem

The tensor product of effect algebras is a functor $EA \times EA \to EA$ that arises as a left Kan extension of the functor $E \circ \ast : \text{FinBool} \times \text{FinBool} \to EA$ along the inclusion $E \times E : \text{FinBool} \times \text{FinBool} \to EA \times EA$.

$EA \times EA \otimes \to \to \text{FinBool} \times \text{FinBool}$

$E \times E \uparrow \uparrow \ast \to \to \text{FinBool}$

$E \to \to \uparrow \uparrow \eta_{EA}(1)$
The tensor product of effect algebras is a functor $\mathbf{EA} \times \mathbf{EA} \to \mathbf{EA}$ that arises as a left Kan extension of the functor $E \circ \ast : \mathbf{FinBool} \times \mathbf{FinBool} \to \mathbf{EA}$ along the inclusion $E \times E : \mathbf{FinBool} \times \mathbf{FinBool} \to \mathbf{EA} \times \mathbf{EA}$.

(1)
Tensor products from Day convolution

It was proved by Day in [Day(1970)] that for every monoidal category $(\mathcal{C}, \boxtimes, I)$, the monoidal structure can be extended to the category $[\mathcal{C}^{op}, \text{Set}]$ of presheaves on \mathcal{C} by the rule

$$X \otimes_{\text{Day}} Y = \int (c_1, c_2) \mathcal{C}^{op}(c_1 \boxtimes c_2, c_2) \times X(c_1) \times Y(c_2).$$
It was proved by Day in [Day(1970)] that for every monoidal category
\((\mathcal{C}, \Box, I)\), the monoidal structure can be extended to the category
\([\mathcal{C}^{\text{op}}, \text{Set}]\) of presheaves on \(\mathcal{C}\) by the rule

\[
X \otimes_{\text{Day}} Y = \int_{(c_1, c_2)} \mathcal{C}^{\text{op}}(c_1 \Box c_2, c) \times X(c_1) \times Y(c_2).
\]
Tensor products from Day convolution

It was proved by Day in [Day(1970)] that for every monoidal category
\((\mathcal{C}, \square, I)\), the monoidal structure can be extended to the category
\([\mathcal{C}^{\text{op}}, \textbf{Set}]\) of presheaves on \(\mathcal{C}\) by the rule

\[X \otimes_{\text{Day}} Y = \int^{(c_1, c_2)} \mathcal{C}^{\text{op}}(c_1 \square c_2, c) \times X(c_1) \times Y(c_2). \]

Theorem

For every pair \(A, B\) of effect algebras,

\[A \otimes B \simeq L(R(A) \otimes_{\text{Day}} R(B)) \]
Brian Day.
On closed categories of functors, pages 1–38.
ISBN 978-3-540-36292-0.
doi: 10.1007/BFb0060438.
URL http://dx.doi.org/10.1007/BFb0060438.

Anatolij Dvurečenskij.
Tensor product of difference posets.

D.J. Foulis and M.K. Bennett.
Effect algebras and unsharp quantum logics.

D.J. Foulis, R. Greechie, and G. Rütimann.
Filters and supports in orthoalgebras.

