
The Cuntz semigroup and the category Cu
Francesc Perera

(joint work with Ramon Antoine and Hannes Thiel
to appear in Mem. Amer. Math. Soc.)
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C∗-algebras

Definition:

Let H be a complex Hilbert space, and let B(H) be the algebra of all
bounded linear operators on H (with pointwise addition and
composition).

A C∗-algebra is a ∗-subalgebra of B(H), closed under the
norm operator topology.

Abstract characterization:

A C∗-algebra is a complex Banach algebra A with an involution ∗ such
that ‖a∗a‖ = ‖a‖2 for all a ∈ A.

Examples:

(i) Mn1 (C) × · · · × Mnk (C). (All finite dim’l C∗-algebras have this form.)
(ii) For a compact Hausdorff space, C(X) := { f : X → C | f cts}, with the
sup norm, and f ∗(x) = f (x), is a commutative example. (All commutative
C∗-algebras are of this form.)
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Projections, Positive elements, and K-Theory

Definition:

A projection is an element p ∈ A such that p2 = p = p∗.
A positive element in A is of the form a∗a, for a ∈ A. Positive elements
generate the C∗-algebra linearly. Put A+ = {a∗a | a ∈ A}.

The group K0:

For projections p, q, write p ∼ q if p = uu∗ and q = u∗u, some u ∈ A. This
is an equivalence relation, that extends to M∞(A) := ∪Mn(A). Let
V(A) = Proj(M∞(A))/∼. This is an abelian semigroup, with operation
[p] + [q] := [

(
p 0
0 q

)
].

Define K0(A) = G(V(A)), the Grothendieck group of V(A).

Francesc Perera The Cuntz semigroup and the category Cu



Projections, Positive elements, and K-Theory

Definition:

A projection is an element p ∈ A such that p2 = p = p∗.

A positive element in A is of the form a∗a, for a ∈ A. Positive elements
generate the C∗-algebra linearly. Put A+ = {a∗a | a ∈ A}.

The group K0:

For projections p, q, write p ∼ q if p = uu∗ and q = u∗u, some u ∈ A. This
is an equivalence relation, that extends to M∞(A) := ∪Mn(A). Let
V(A) = Proj(M∞(A))/∼. This is an abelian semigroup, with operation
[p] + [q] := [

(
p 0
0 q

)
].

Define K0(A) = G(V(A)), the Grothendieck group of V(A).

Francesc Perera The Cuntz semigroup and the category Cu



Projections, Positive elements, and K-Theory

Definition:

A projection is an element p ∈ A such that p2 = p = p∗.
A positive element in A is of the form a∗a, for a ∈ A.

Positive elements
generate the C∗-algebra linearly. Put A+ = {a∗a | a ∈ A}.

The group K0:

For projections p, q, write p ∼ q if p = uu∗ and q = u∗u, some u ∈ A. This
is an equivalence relation, that extends to M∞(A) := ∪Mn(A). Let
V(A) = Proj(M∞(A))/∼. This is an abelian semigroup, with operation
[p] + [q] := [

(
p 0
0 q

)
].

Define K0(A) = G(V(A)), the Grothendieck group of V(A).

Francesc Perera The Cuntz semigroup and the category Cu



Projections, Positive elements, and K-Theory

Definition:

A projection is an element p ∈ A such that p2 = p = p∗.
A positive element in A is of the form a∗a, for a ∈ A. Positive elements
generate the C∗-algebra linearly.

Put A+ = {a∗a | a ∈ A}.

The group K0:

For projections p, q, write p ∼ q if p = uu∗ and q = u∗u, some u ∈ A. This
is an equivalence relation, that extends to M∞(A) := ∪Mn(A). Let
V(A) = Proj(M∞(A))/∼. This is an abelian semigroup, with operation
[p] + [q] := [

(
p 0
0 q

)
].

Define K0(A) = G(V(A)), the Grothendieck group of V(A).

Francesc Perera The Cuntz semigroup and the category Cu



Projections, Positive elements, and K-Theory

Definition:

A projection is an element p ∈ A such that p2 = p = p∗.
A positive element in A is of the form a∗a, for a ∈ A. Positive elements
generate the C∗-algebra linearly. Put A+ = {a∗a | a ∈ A}.

The group K0:

For projections p, q, write p ∼ q if p = uu∗ and q = u∗u, some u ∈ A. This
is an equivalence relation, that extends to M∞(A) := ∪Mn(A). Let
V(A) = Proj(M∞(A))/∼. This is an abelian semigroup, with operation
[p] + [q] := [

(
p 0
0 q

)
].

Define K0(A) = G(V(A)), the Grothendieck group of V(A).

Francesc Perera The Cuntz semigroup and the category Cu



Projections, Positive elements, and K-Theory

Definition:

A projection is an element p ∈ A such that p2 = p = p∗.
A positive element in A is of the form a∗a, for a ∈ A. Positive elements
generate the C∗-algebra linearly. Put A+ = {a∗a | a ∈ A}.

The group K0:

For projections p, q, write p ∼ q if p = uu∗ and q = u∗u, some u ∈ A.

This
is an equivalence relation, that extends to M∞(A) := ∪Mn(A). Let
V(A) = Proj(M∞(A))/∼. This is an abelian semigroup, with operation
[p] + [q] := [

(
p 0
0 q

)
].

Define K0(A) = G(V(A)), the Grothendieck group of V(A).

Francesc Perera The Cuntz semigroup and the category Cu



Projections, Positive elements, and K-Theory

Definition:

A projection is an element p ∈ A such that p2 = p = p∗.
A positive element in A is of the form a∗a, for a ∈ A. Positive elements
generate the C∗-algebra linearly. Put A+ = {a∗a | a ∈ A}.

The group K0:

For projections p, q, write p ∼ q if p = uu∗ and q = u∗u, some u ∈ A. This
is an equivalence relation, that extends to M∞(A) := ∪Mn(A).

Let
V(A) = Proj(M∞(A))/∼. This is an abelian semigroup, with operation
[p] + [q] := [

(
p 0
0 q

)
].

Define K0(A) = G(V(A)), the Grothendieck group of V(A).

Francesc Perera The Cuntz semigroup and the category Cu



Projections, Positive elements, and K-Theory

Definition:

A projection is an element p ∈ A such that p2 = p = p∗.
A positive element in A is of the form a∗a, for a ∈ A. Positive elements
generate the C∗-algebra linearly. Put A+ = {a∗a | a ∈ A}.

The group K0:

For projections p, q, write p ∼ q if p = uu∗ and q = u∗u, some u ∈ A. This
is an equivalence relation, that extends to M∞(A) := ∪Mn(A). Let
V(A) = Proj(M∞(A))/∼.

This is an abelian semigroup, with operation
[p] + [q] := [

(
p 0
0 q

)
].

Define K0(A) = G(V(A)), the Grothendieck group of V(A).

Francesc Perera The Cuntz semigroup and the category Cu



Projections, Positive elements, and K-Theory

Definition:

A projection is an element p ∈ A such that p2 = p = p∗.
A positive element in A is of the form a∗a, for a ∈ A. Positive elements
generate the C∗-algebra linearly. Put A+ = {a∗a | a ∈ A}.

The group K0:

For projections p, q, write p ∼ q if p = uu∗ and q = u∗u, some u ∈ A. This
is an equivalence relation, that extends to M∞(A) := ∪Mn(A). Let
V(A) = Proj(M∞(A))/∼. This is an abelian semigroup, with operation
[p] + [q] := [

(
p 0
0 q

)
].

Define K0(A) = G(V(A)), the Grothendieck group of V(A).

Francesc Perera The Cuntz semigroup and the category Cu



Elliott’s Classification Program

The Elliott Invariant:

Let Ell(A) = ((K0(A),K0(A)+, [1A]),K1(A),T (A), rA), for any C∗-algebra A.

Elliott’s Classification Conjecture:

For simple, unital C∗-algebras A and B in a reasonably large class:

Ell(A) � Ell(B) ⇐⇒ A � B.

Progress to resolve this conjecture has been tremendous over the last
decades, until its near completion. Roughly, this class consists of those
simple unital C∗-algebras A such that
A � A ⊗Z
where Z is the so called Jiang-Su algebra (an infinite dimensional
C∗-algebra with K-Theory as the complex numbers). Some progress
exists in the non-simple setting (and this is a direction to explore).
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The Cuntz semigroup - classical definition

Definition (Cuntz, 1978):

Let A be a C∗-algebra. If a, b ∈ A+, write a - b if

a = lim
n

xnbx∗n for a sequence xn ∈ A .

(We say that a is Cuntz subequivalent to b.)
Write a ∼ b if both a - b and b - a occur.
(We say that a and b are Cuntz equivalent.)
The Cuntz semigroup of A is

W(A) = M∞(A)+/∼

with addition [a] + [b] = [
(

a 0
0 b

)
] and order [a] ≤ [b] if a - b. There is a map

V(A)→ W(A) sending [p] to [p]. It is injective if A is stably finite. The
semigroup W(A) is an example of a predomain, as defined by Keimel.
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The Cuntz semigroup - current definition

The main drawback of the classical definition: W(−) is not a continuous
functor from the category of C∗-algebras to the category of semigroups.

Definition (Coward, Elliott, Ivanescu, 2008):

The (completed) Cuntz semigroup of a C∗-algebra A is

Cu(A) = (A ⊗ K)+/∼ (= W(A ⊗ K))

With this definition, the assignment A 7→ Cu(A) is a sequentially
continuous functor.
But, between which categories?
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The Category Cu

Theorem/Definition: (Coward, Elliott, Ivanescu 2008)

Cu is a category of ordered commutative semigroups S with 0 such that

(O1) Every increasing sequence has in S a supremum.

(O2) Any element a ∈ S can be written as a = sup an, where an � an+1.

(O3) The relation� is compatible with addition. �

(O4) Addition and suprema are also compatible.

Maps are semigroup morphisms that preserve zero, order, suprema, and
the relation�.

The category Cu has countable inductive limits and Cu(−) = W(− ⊗ K)
defines a sequentially continuous functor from the category of
C∗-algebras to Cu.
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Some examples

The following semigroups belong to Cu.

N = N ∪ {∞}. (Appears as Cu(C).)
Lsc(X,N). More generally, Lsc(X, S ) for S ∈ Cu. It belongs to Cu if X
is finite dim’l. (If A is a C∗-algebra with enough trivial K1, then
Cu(C(X, A)) � Lsc(X,Cu(A)) if X is one-dimensional.)

Z = N t (0,∞]. (It appears as Cu(Z).) Z

For a supernatural number q , 1 such that q2 = q, put
Rq = N[ 1

q ] t (0,∞]. (It appears as Cu(Mq), the so called
UHF-algebra of type q.)

Let Z′ = {0, 1, 1′, 2, 3, 4, . . . } t (0,∞], with addition as in Z except that
k + 1′ = k + 1. It is not known if there is a C∗-algebra A with
Cu(A) � Z′.
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Relationship between W(A) and Cu(A)

Let C∗=category of C∗-algebras and ∗-homomorphisms, and
C∗loc=category of local C∗-algebras.

Theorem (Antoine, P, Thiel):

(i) There is a category W of ordered semigroups with 0 that admits
arbitrary inductive limits, such that W(A) ∈W, and such that
A 7→W(A) is a continuous functor. W

(ii) Cu ⊂W as a full reflective subcategory.

(iii) There is a commutative diagram (up to natural isomorphisms):

C∗loc

γ
��

W // W

γ
��

C∗
?�

OO

Cu // Cu
?�

OO

( =⇒ A 7→ Cu(A) is arbitrarily continuous)

Francesc Perera The Cuntz semigroup and the category Cu



Relationship between W(A) and Cu(A)

Let C∗=category of C∗-algebras and ∗-homomorphisms, and
C∗loc=category of local C∗-algebras.

Theorem (Antoine, P, Thiel):

(i) There is a category W of ordered semigroups with 0 that admits
arbitrary inductive limits, such that W(A) ∈W, and such that
A 7→W(A) is a continuous functor. W

(ii) Cu ⊂W as a full reflective subcategory.

(iii) There is a commutative diagram (up to natural isomorphisms):

C∗loc

γ
��

W // W

γ
��

C∗
?�

OO

Cu // Cu
?�

OO

( =⇒ A 7→ Cu(A) is arbitrarily continuous)

Francesc Perera The Cuntz semigroup and the category Cu



Relationship between W(A) and Cu(A)

Let C∗=category of C∗-algebras and ∗-homomorphisms, and
C∗loc=category of local C∗-algebras.

Theorem (Antoine, P, Thiel):

(i) There is a category W of ordered semigroups with 0 that admits
arbitrary inductive limits, such that W(A) ∈W, and such that
A 7→W(A) is a continuous functor. W

(ii) Cu ⊂W as a full reflective subcategory.

(iii) There is a commutative diagram (up to natural isomorphisms):

C∗loc

γ
��

W // W

γ
��

C∗
?�

OO

Cu // Cu
?�

OO

( =⇒ A 7→ Cu(A) is arbitrarily continuous)

Francesc Perera The Cuntz semigroup and the category Cu



Relationship between W(A) and Cu(A)

Let C∗=category of C∗-algebras and ∗-homomorphisms, and
C∗loc=category of local C∗-algebras.

Theorem (Antoine, P, Thiel):

(i) There is a category W of ordered semigroups with 0 that admits
arbitrary inductive limits, such that W(A) ∈W, and such that
A 7→W(A) is a continuous functor. W

(ii) Cu ⊂W as a full reflective subcategory.

(iii) There is a commutative diagram (up to natural isomorphisms):

C∗loc

γ
��

W // W

γ
��

C∗
?�

OO

Cu // Cu
?�

OO

( =⇒ A 7→ Cu(A) is arbitrarily continuous)

Francesc Perera The Cuntz semigroup and the category Cu



Relationship between W(A) and Cu(A)

Let C∗=category of C∗-algebras and ∗-homomorphisms, and
C∗loc=category of local C∗-algebras.

Theorem (Antoine, P, Thiel):

(i) There is a category W of ordered semigroups with 0 that admits
arbitrary inductive limits, such that W(A) ∈W, and such that
A 7→W(A) is a continuous functor. W

(ii) Cu ⊂W as a full reflective subcategory.

(iii) There is a commutative diagram (up to natural isomorphisms):

C∗loc

γ
��

W // W

γ
��

C∗
?�

OO

Cu // Cu
?�

OO

( =⇒ A 7→ Cu(A) is arbitrarily continuous)

Francesc Perera The Cuntz semigroup and the category Cu



Relationship between Cu(A) and the Elliott invariant

Recall that the Elliott invariant is
Ell(A) = ((K0(A),K0(A)+, [1A]),K1(A),T (A), rA).

It is natural to ask what is
the relationship between Cu(A) and Ell(A). This can be derived from:

Theorem (Brown, P, Toms, 2008):

Let A be a simple, separable, nuclear, Z-stable C∗-algebra. Then

Cu(A) � V(A) t LAff(T (A))++

Theorem (Tikuisis, 2011; Antoine, Dadarlat, P, Santiago, 2014):

Let A be a simple, separable, nuclear, finite, Z-stable C∗-algebra. Then

Cu(C(T, A)) � ({0} t (V(A)∗ × K1(A))) t Lscnc(T,Cu(A))

It follows from these results that Cu(C(T,−)) and Ell(−) determine one
another functorially.
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Structure of the category Cu

Theorem (Antoine, P, Thiel):

The category Cu is a symmetric, monoidal, closed category, that is
complete and cocomplete.

Thus, there is a bifunctor − ⊗Cu − : Cu×Cu→ Cu with N as identity
object. This bifunctor induces associative and commutative (natural)
isomorphisms. Idea of construction: For S ,T ∈ Cu, construct S ⊗ T as
partially ordered semigroups; define an auxiliary relation

x ≺
∑

i

yi ⊗ zi ⇐⇒ ∃y′i � yi, z′i � zi with x ≤
∑

i

y′i ⊗ z′i

Then (S ⊗ T,≺) is a W-semigroup, and one takes

S ⊗Cu T = γ(S ⊗ T,≺) .

S ⊗Cu T represents the bimorphism functor BiCu(S × T,−).
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Thank You!!
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Compact Containment

Definition:

Given a, b ∈ S ,

a � b ⇐⇒ (b ≤ sup cn with (cn) increasing =⇒ a ≤ cn0 for some n0 ≥ 0).

A sequence is (an) is rapidly increasing if an � an+1 for all n.

An element a ∈ X is termed compact if a � a.

If A is a C∗-algebra, then [(a − ε)+] � [a] ∀ε > 0.
And [a] = sup[(a − 1/n)+].
If A is stably finite, the compact elements are precisely [p], where p is a
projection.

Francesc Perera The Cuntz semigroup and the category Cu



Compact Containment

Definition:

Given a, b ∈ S ,

a � b ⇐⇒ (b ≤ sup cn with (cn) increasing =⇒ a ≤ cn0 for some n0 ≥ 0).

A sequence is (an) is rapidly increasing if an � an+1 for all n.

An element a ∈ X is termed compact if a � a.

If A is a C∗-algebra, then [(a − ε)+] � [a] ∀ε > 0.
And [a] = sup[(a − 1/n)+].
If A is stably finite, the compact elements are precisely [p], where p is a
projection.

Francesc Perera The Cuntz semigroup and the category Cu



Compact Containment

Definition:

Given a, b ∈ S ,

a � b ⇐⇒ (b ≤ sup cn with (cn) increasing =⇒ a ≤ cn0 for some n0 ≥ 0).

A sequence is (an) is rapidly increasing if an � an+1 for all n.

An element a ∈ X is termed compact if a � a.

If A is a C∗-algebra, then [(a − ε)+] � [a] ∀ε > 0.

And [a] = sup[(a − 1/n)+].
If A is stably finite, the compact elements are precisely [p], where p is a
projection.

Francesc Perera The Cuntz semigroup and the category Cu



Compact Containment

Definition:

Given a, b ∈ S ,

a � b ⇐⇒ (b ≤ sup cn with (cn) increasing =⇒ a ≤ cn0 for some n0 ≥ 0).

A sequence is (an) is rapidly increasing if an � an+1 for all n.

An element a ∈ X is termed compact if a � a.

If A is a C∗-algebra, then [(a − ε)+] � [a] ∀ε > 0.
And [a] = sup[(a − 1/n)+].

If A is stably finite, the compact elements are precisely [p], where p is a
projection.

Francesc Perera The Cuntz semigroup and the category Cu



Compact Containment

Definition:

Given a, b ∈ S ,

a � b ⇐⇒ (b ≤ sup cn with (cn) increasing =⇒ a ≤ cn0 for some n0 ≥ 0).

A sequence is (an) is rapidly increasing if an � an+1 for all n.

An element a ∈ X is termed compact if a � a.

If A is a C∗-algebra, then [(a − ε)+] � [a] ∀ε > 0.
And [a] = sup[(a − 1/n)+].
If A is stably finite, the compact elements are precisely [p], where p is a
projection.

Francesc Perera The Cuntz semigroup and the category Cu



The Category W

Definition:

Let S be a positively ordered semigroup. An auxiliary relation on S is a
binary relation ≺ such that

(i) a ≺ b =⇒ a ≤ b

(ii) a ≤ b ≺ c ≤ d =⇒ a ≺ d

(iii) 0 ≺ a

Examples:
1 If S ∈ Cu, then ≺=� is an auxiliary relation.
2 Let A be a local C∗-algebra. For [a], [b] ∈W(A), set [a] ≺ [b] if

[a] ≤ [(b − ε)+]. Then ≺ is an auxiliary relation on W(A).
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The Category W cont’d

Definition: (Antoine, P, Thiel)

The category W has as objects (S ,≺), where S is positively ordered, ≺ is
an auxiliary relation, and

W1: For each a ∈ S , the set a≺ has a ≺-increasing countable cofinal
subset.

W2: a = sup a≺.

W3: ≺ and + are compatible.

W4: a ≺ b + c =⇒ a ≺ b′ + c′ with b′ ≺ b, c′ ≺ c.
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The Jiang-Su Algebra Z

Theorem (Jiang, Su, 2000):

There exists a simple, unital, projectionless and infinite dimensional
C∗-algebra Z, which is the inductive limit of dimension drop algebras,
has a unique trace, and the same K-theory as C.
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Predomains

Definition(Keimel, 2017):

A predomain is a set S with a transitive binary relation ≺ that has the
following interpolation property:

If F is a finite subset, F ≺ c =⇒ F ≺ b ≺ c for some b ∈ S .

Given a C∗-algebra A, we write [a] ≺ [b] in W(A) if there exists ε > 0 such
that [a] ≤ [(b − ε)+]. In this way, W(A) becomes a predomain.
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