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Introduction, motivation and aim.

The Cuntz Semigroup is an invariant associated to a C∗-algebra A, built
out of positive elements in M∞(A) inspired by Murray von-Neumann
equivalence of projections. It has the structure of an ordered
commutative monoid.

To use the Cuntz semigroup as a classifcation invariant for C∗-algebras,
the following aspects would be desirable:

• Functoriality.

• Capture the structure of C∗-alg. (add a topology to the ordered
semigroup)

• Preserve the usual categorical constructions for C∗-algebras. (e.g.
One typicall constructs algebras as A = lim→ An using smaller
building blocks An)



Continuity of the functor Cu

The original Cuntz semigroup W(−) is not a continuous inavariant.

W(lim
n

Mn(C)) = W(K) = N = {0, 1, 2, . . . ,∞}

while
lim

n
(W(Mn(C))) = N = {0, 1, 2, . . . }.



Continuity of the functor Cu

In order to solve this problem Coward, Elliott, and Ivanescu, introduced a
stabilized version of the semigroup, and a proper category for the
invariant named Cu.

Theorem (CEI’08) Given a C∗-algebra A, Cu(A) := W(A ⊗K) is an object
in Cu, a category with sequential inductive limits, and

Cu(lim
n

An) = lim
n

Cu(An).



Continuity of the functor Cu

In [APT 14] we introduced a category W of positively ordered monoids
with an auxiliary relation, extended the functor W to local C∗-algebras,
and defined a functor

γ : W→ Cu

based on the round ideal completion (Lawson ’97), which is a reflector for
the natural embedding Cu ↪→ PreW.



Continuity of the functor Cu

Finally, adding the usual norm completion µ for algebras, we obtain a
commuting diagram with reflector functors allowing to develop arguments
in simpler categories. As a consequence we obtain, for instance:
Corollary The category Cu has arbitrary directed limits and moreover

Cu(lim
i∈I

Ai) = lim
i∈I

Cu(Ai).



Question

Which limit constructions can be carried out in the category Cu? And
which of those are preserved by the functor Cu?

Theorem (APT)

The category Cu of Cuntz Semigroups is both complete and cocomplete
(has both arbitrary small limits and small colimits)

Theorem (?)

Some, yet not all, of these limit constructions are preserved under the
functor Cu.



The categories PreW and Q

The Category Cu

A category of positively ordered monoids (0,+,≤) satisfying

O1 Closed under suprema of increasing sequences ω-dcpo.

O2 For each s ∈ S , s = supsn, sn � sn+1 ω-domain.

O3,O4 (�, sup,+ compatibility conditions)

The Category P

A category of monoids with a (compatible) transitive relation ≺.

The category W (∼ abstract basis)

pom with auxiliary relation ≺

W2 (an)n ∈ a≺, ≺-cofinal.

W3,W4 (compatibility...)

The category Q

pom with auxiliary relation ≺

Q1 ω−dcpo.

Q3,Q4 (compatibility...)



Reflection and coreflection

We construct new orderd semigroups using ≺-cofinal equivalence
classes of certain ≺-increasing chains...

...sequences (sn)n for semigroups S in W, (to add suprema)

γ(S ,≺) := {[(sn)n] where sn ∈ S , si ≺ si+1}

...paths for semigroups P ∈ Q, (to add interpolation)

τ(P,≺) :=
{
[ f ] where f : (0, 1)→ P, f (λ′) ≺ f (λ), λ′ < λ

}
Given S ∈ W and P ∈ Q, γ(S ,≺) and τ(P,≺) have natural ordered
semigroup structures. Moreover...

Using W2 (≺ interpolation). We
obatin a universal W-map

α : S −→ γ(S ,≺)
s 7−→ [(sn)n]

Using Q1 ω-dcpo, we obtain a
universal Q-map.

λ : τ(P,≺) −→ P
[ f ] 7−→ supn f (1 − 1

n )



Reflection and coreflection

Theorem

1 Given S in W, γ(S ,≺) is a semigroup in Cu and γ : W → Cu is a
functor left adjoint to the inclusion functor in Cu. (i.e. Cu is a
reflective subcategory of W).

2 Given P in Q, τ(P,≺) is a semigroup in Cu and τ : Q → Cu is a
functor right adjoint to the inclusion functor in Cu. (i.e. Cu is a
coreflective subcategory of Q).

- τ can be extended to all P.

- τ and γ coincide in W ∩ Q.

- W,Q ⊂ P not full.



Completeness and Cocompleteness

We can now prove that Cu is both complete and cocomplete, proving the
corresponding statements respectively in Q and W.

Example (proof): Existence of coproducts

- Let (S i, i ∈ I) be a family of semigroups in Cu.

- Equip the set ∏
i∈I

S i = {(si) | si ∈ S i for all i ∈ I}

with pointwise order and addition and define an auxiliary relation by
pointwise way below:

(si)i ≺I (ti)i ⇔ si � ti for all i ∈ I.

- It is not difficult to see that (
∏

i∈I S i,≺I) ∈ Q and is the coproduct in Q.
Then applying the coreflector

Cu−
∏
i∈I

S i = τ(
∏
i∈I

S i,≺I)



Example (Cu does not preserve inverse limits)

There exists an example due Y. Suzuki of a sequence of C∗-algebras
An ⊇ An+1 such that An � O2 and such that

⋂
n An � C∗r (Γ) for a certain

group Γ.
Cu(An) = {0,∞} and Cu(in) = id, so lim← Cu(An) = {0,∞}. But C∗r (Γ) has a
trace, so it is Cuntz semigroup can not be {0,∞}.

Theorem (Cu preserves inductive limits)

Given an inductive system of C∗-algebras and ∗-homomorphisms,
(Ai, fi)i∈I , we have

Cu(lim
i∈I

Ai) = lim
i∈I

Cu(Ai).

Theorem (Cu preserves coproducts)

Given a family of C∗-algebras (Ai, i ∈ I). Then

Cu(
∏

i

(Ai)) � Cu−
∏

i

(Cu(Ai))



Application: Ultraproducts

LetU be an ultrafilter on a set I, and (Ai)i∈I a family of C∗-algebras. The
ultraproduct of (Ai)i∈I is defined as∏

U

Ai :=
∏

i∈I Ai⊕
U

Ai

Where
⊕
U

Ai is the closed ideal of
∏

i∈I Ai consisting of tuples of
elements whose norm vanish along the ultrafilter.
In categories with limits and colimits one can give a categorical
description of ultraproducts:∏

U

Ai � lim
X∈U

(
∏
i∈X

Ai)



Unltraproducts of Cu-semigroups

Hence, we can do the same for Cuntz semigroups

Definition

GivenU an ultrafilter on a set I, and (S i)i∈I a family of Cu-semigroups,
we define their ultraproduct as∏

U

S i : = lim
X∈U

(
∏
i∈X

S i)

There is an equivalent definition using a certain quotient in the product of
semigroups

∏
i∈I S i, but using this definition, since Cu preserves arbitrary

directed limits and coproducts:

Cu(
∏
U

Ai) � Cu−
∏
U

Cu(Ai)



Examples

The Cuntz semigroup’s ideal structure coincides with that of the
C∗-algebra. Let us look at the ideal structure of ultrapowers using Cuntz
semigroups:
Consider a non principal ultrafilterU on N

If S = {0,∞}, then SU � {0,∞}
If S = {0, 1, . . . ,∞}, then SU ∼ Hypernaural numbers (non simple).

If S = [0,∞], then SU ∼ Hyperreals (non simple).

In fact, if S contains a sequence sk such that 0 , 2 ∗ sk+1 < sk, then
SU contains infinitessimal elements (non simple).

(L. Robert) proved that if A is simple, non purely infinite and non
elementary C∗-algebra (equiv. Cu(A) , N), a sequence as the one above
exists.
Hence

AU is simple, if and only if A is purely infinite


