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Communication (1)

Two individuals X and S .

Each one has a collection of messages written in its own language:

MX and MS equipped with equivalence relations ∼X , ∼S
“m and m′ have the same meaning”.

In order to communicate both X and S need a decoding procedure:

(MX ,∼X )
∆
11 (MS ,∼S)

∇qq
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Communication (2)

1 X sends a message m ∈MX to S

2 S receives the message and understands it as ∆(m)
3 S sends the message back to X (“Is this your message?”)

4 X receives the message and understands it as ∇(∆(m))

if ∇(∆(m)) ∼X m,

then the communication of m is faithful

i. e. m is faithfully communicable.
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Communication and topology

Goal:
to give a characterization of basic topological notions
in terms of faithfully communicable notions.



Basic pairs (1)

introduced by Sambin,

the most elementary framework in which

standard topological notions can be defined.

Foundational framework: Minimalist Foundation (Maietti, Sambin)

A basic pair: (X ,⊩,S) where

1 X represents points

2 S a set of indexes for a basis of neighbourhoods of a topology on X

3 ⊩ relation from X to S , x ⊩ a: “x is in the neighbourhood indexed by a”.

a is the index of the neighbourhood ext a ∶= {x ∈ X ∣ x ⊩ a}
3x ∶= {a ∈ S ∣ x ⊩ a}.
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Basic pairs (2)

(X ,⊩,S) induces operations between subsets:

ext, rest ∶ P(S)→ P(X ) 2,3 ∶ P(X )→ P(S)

1 extU ∶= {x ∈ X ∣ (∃a ∈ U)x ⊩ a} ∶= {x ∈ X ∣3x � U}
2 restU ∶= {x ∈ X ∣ (∀a ∈ U)x ⊩ a} ∶= {x ∈ X ∣3x ⊆ U}
3 3D ∶= {a ∈ S ∣ (∃x ∈ D)x ⊩ a} ∶= {a ∈ S ∣ ext a � D}
4 2D ∶= {a ∈ S ∣ (∀x ∈ D)x ⊩ a} ∶= {a ∈ S ∣ ext a ⊆ D}

ext,3 approximation by excess

rest,2 approximation by defect

ext (resp. 3) is left adjoint to 2 (resp. rest).
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Open subsets

A subset D of X is open if

(∀x ∈ X )(xεD → (∃a ∈ S)(x ⊩ a ∧ exta ⊆ D))

(∀x ∈ X )(xεD → (∃a ∈ S)(a ε3x ∧ a ε2D))
(∀x ∈ X )(xεD → 3x � 2D)
(∀x ∈ X )(xεD → x ε ext2D)
D ⊆ ext2D

but ext2D ⊆ D by adjunction!

Hence D = ext2D

D ≡ communicable message in the following system with X , S individuals

(P(X ),=X )
2
11 (P(S),=S)

extpp
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Closed subsets

A subset D of X is closed if

(∀x ∈ X )((∀a ∈ S)(x ⊩ a → exta � D)→ x εD)

(∀x ∈ X )((∀a ∈ S)(a ε3x → a ε3D)→ x εD)
(∀x ∈ X )((∀a ∈ S)(3x ⊆ 3D)→ x εD)
(∀x ∈ X )(x ε rest3D → x εD)
rest3D ⊆ D

but D ⊆ rest3D by adjunction!

Hence D = rest3D

Hence D is closed iff it is a faithfully communicable message in the following
system with X , S individuals

(P(X ),=X )
3
11 (P(S),=S)

restpp
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Other decoding procedures (1)

What about these decoding procedures?

(P(X ),=X )
2
11 (P(S),=S)

restpp
(P(X ),=X )

3
11 (P(S),=S)

extpp

If (B1) X = extS holds, then TFAE for a subset D of X :

1 D = rest2D i. e. D is communicable w.r.t. 2 and rest
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Other decoding procedures (2)

D→ ∶= {a ∈ S ∣D ⊆ ext a} and U← ∶= {x ∈ X ∣U ⊆ 3x} (polarities in Birkhoff)

One impredicative classical example: (X , ∈,T ) for (X ,T ) topological space:

ext rest ←

3 ∅, X Closed sets T0-points inters. of open sets

2 Open sets ∅, X ∅

→ X closed T0-points intersections of open sets
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Communication of relations

Consider two basic pairs X = (X ,⊩X ,S) and Y = (Y ,⊩Y ,T )

Individuals are (X ,Y ) and (S ,T )
Messages are Rel(X ,Y ) and Rel(S ,T ).

r ∼(X ,Y ) r ′ iff for every b ∈ T , r−extb = r′−extb i.e.

⊩Y coequalizes r and r′ in Rel.

s ∼(S,T) s ′ iff for every x ∈ X , s3x = s′3x .

⊩X equalizes s and s′ in Rel.
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Continuous relations

A function (single-valued total relation) f from X to Y is continuous from X to
Y if for all b ∈ T and x ∈ X

f (x) ε extb → (∃a ∈ S)(x ε ext a ∧ (∀x ′ ∈ X )(x ′ ε exta → f (x ′) ε extb))

fx � extb → (∃a ∈ S)(x ε ext a ∧ (∀x ′ ∈ X )(x ′ ε exta → fx ′ � extb))
x ε f −extb → (∃a ∈ S)(x ε ext a ∧ (∀x ′ ∈ X )(x ′ ε exta → x ′ ε f −extb))
x ε f −extb → (∃a ∈ S)(x ⊩ a ∧ exta ⊆ f −extb))

We extend this notion to relations r ∶ X → Y . r is continuous if for all b ∈ T and
x ∈ X

x ε r−extb → (∃a ∈ S)(x ⊩ a ∧ exta ⊆ r−extb))
x ε r−extb → (∃a ∈ S)(x ⊩ a ∧ a ε2r−extb))
x ε r−extb → 3x � 2r−extb

x ε r−extb → x ε ext2r−extb

i. e. if for every b, r−extb = ext2r−extb is open.
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Continuous relations as communicable relations

(Rel(X ,Y ),∼(X ,Y ))
σ
00 (Rel(S ,T ),∼(S,T))

ρpp

where

1 σ(r)(a,b) ≡def ext a ⊆ r−extb [a ∈ S ,b ∈ T ]
2 ρ(s)(x , y) ≡def 3y ⊆ s3x [x ∈ X , y ∈ Y ]

Then r is communicable if and only if r is continuous.
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Continuous relations as commutative diagram

Notice that r ∶ X → Y is continuous from X to Y if and only if there exists
s ∶ S → T such that the following diagram commutes in Rel:

X
r //

⊩
��

Y

⊩
��

S
s
// T

Equivalent continuos relations corresponds to squares with equal diagonals.
Basic pairs and continuous relations form a category which is equivalent to the
Freyd completion of Rel.
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Concrete spaces

A concrete space is a basic pair (X ,⊩,S) such that

1 X = extS

2 for all a,b ∈ S , ext a ∩ extb = ⋃{ext c ∣ ext c ⊆ ext a ∩ extb}



Communication of points

What is a point of X for S?

A subset D of X is seen as a point if it is an atom for S

1 it is inhabited (there is a ∈ S , such that exta � D)

2 it is indivisible by using concepts in S : for every a and b in S

exta � D ∧ extb � D → (∃c ∈ S)(ext c ⊆ ext a ∩ extb ∧D � ext c)

In this case D is called convergent.
Moreover S cannot distinguish two subsets for which 3D = 3E , i. e. which have
the same closure.
The right notion of point in terms of communication: equivalence class of
convergent subsets!
In a concrete space {x} is convergent.
We call a continuous relation r ∶ X → Y convergent if it preserves convergent
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