Topology as faithful communication through relations

Samuele Maschio and Giovanni Sambin

Dipartimento di Matematica Università di Padova

TACL 2017 Praha, 26-30/06/2017

Communication (1)

Communication (1)

Each one has a collection of **messages** written in its own language: \mathcal{M}_X and \mathcal{M}_S equipped with equivalence relations \sim_X , \sim_S "*m* and *m*' have the same meaning".

Communication (1)

Each one has a collection of **messages** written in its own language: \mathcal{M}_X and \mathcal{M}_S equipped with equivalence relations \sim_X , \sim_S "*m* and *m*' have the same meaning".

In order to communicate both X and S need a **decoding procedure**:

(日) (日) (日) (日) (日) (日) (日) (日)

Communication (1)

Each one has a collection of **messages** written in its own language: \mathcal{M}_X and \mathcal{M}_S equipped with equivalence relations \sim_X , \sim_S "*m* and *m*' have the same meaning".

In order to communicate both X and S need a **decoding procedure**:

$$(\mathcal{M}_{X},\sim_{X}) \xrightarrow{\overset{\nabla}{\frown}} (\mathcal{M}_{S},\sim_{S})$$

(日) (日) (日) (日) (日) (日) (日) (日)

• X sends a message $m \in \mathcal{M}_X$ to S

- X sends a message $m \in \mathcal{M}_X$ to S
- **②** S receives the message and understands it as $\Delta(m)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- X sends a message $m \in \mathcal{M}_X$ to S
- **②** S receives the message and understands it as $\Delta(m)$
- S sends the message back to X ("Is this your message?")

- X sends a message $m \in \mathcal{M}_X$ to S
- **2** S receives the message and understands it as $\Delta(m)$
- S sends the message back to X ("Is this your message?")
- X receives the message and understands it as $\nabla(\Delta(m))$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- X sends a message $m \in \mathcal{M}_X$ to S
- **②** S receives the message and understands it as $\Delta(m)$
- S sends the message back to X ("Is this your message?")
- X receives the message and understands it as $\nabla(\Delta(m))$

if $\nabla(\Delta(m)) \sim_X m$,

- X sends a message $m \in \mathcal{M}_X$ to S
- **②** S receives the message and understands it as $\Delta(m)$
- § S sends the message back to X ("Is this your message?")
- X receives the message and understands it as $\nabla(\Delta(m))$

if $\nabla(\Delta(m)) \sim_X m$,

then the communication of m is **faithful**

i. e. *m* is faithfully communicable.

Communication and topology

Goal:

to give a characterization of basic topological notions in terms of **faithfully communicable** notions.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

introduced by Sambin,

introduced by Sambin, the most elementary framework in which standard topological notions can be defined.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

introduced by Sambin,

the most elementary framework in which

standard topological notions can be defined.

Foundational framework: Minimalist Foundation (Maietti, Sambin)

introduced by Sambin,

the most elementary framework in which

standard topological notions can be defined.

Foundational framework: Minimalist Foundation (Maietti, Sambin)

A basic pair: (X, \Vdash, S) where

introduced by Sambin,

the most elementary framework in which

standard topological notions can be defined.

Foundational framework: Minimalist Foundation (Maietti, Sambin)

A basic pair: (X, \Vdash, S) where

X represents points

introduced by Sambin,

the most elementary framework in which

standard topological notions can be defined.

Foundational framework: Minimalist Foundation (Maietti, Sambin)

A basic pair: (X, \Vdash, S) where

- X represents **points**
- S a set of indexes for a **basis of neighbourhoods** of a topology on X

introduced by Sambin,

the most elementary framework in which

standard topological notions can be defined.

Foundational framework: Minimalist Foundation (Maietti, Sambin)

A basic pair: (X, \Vdash, S) where

- X represents points
- S a set of indexes for a **basis of neighbourhoods** of a topology on X

I⊢ relation from X to S, x I⊢ a: "x is in the neighbourhood indexed by a".
 a is the index of the neighbourhood ext a := {x ∈ X | x I⊢ a}
 ◊x := {a ∈ S | x I⊢ a}.

 (X, \Vdash, S) induces operations between subsets:

 (X, \Vdash, S) induces operations between subsets:

 $\mathsf{ext},\mathsf{rest}:\mathcal{P}(S)\to\mathcal{P}(X)\qquad \Box,\diamondsuit:\mathcal{P}(X)\to\mathcal{P}(S)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 (X, \Vdash, S) induces operations between subsets:

 $\mathsf{ext}, \mathsf{rest}: \mathcal{P}(S) \to \mathcal{P}(X) \qquad \Box, \diamondsuit: \mathcal{P}(X) \to \mathcal{P}(S)$

• ext
$$U := \{x \in X | (\exists a \in U) x \Vdash a\} := \{x \in X | \diamondsuit x \notin U\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 (X, \Vdash, S) induces operations between subsets:

$$\mathsf{ext}, \mathsf{rest}: \mathcal{P}(S) \to \mathcal{P}(X) \qquad \Box, \diamondsuit: \mathcal{P}(X) \to \mathcal{P}(S)$$

• ext
$$U \coloneqq \{x \in X \mid (\exists a \in U) x \Vdash a\} \coloneqq \{x \in X \mid \Diamond x \notin U\}$$

• rest $U \coloneqq \{x \in X \mid (\forall a \in U) x \Vdash a\} \coloneqq \{x \in X \mid \Diamond x \subseteq U\}$

 (X, \Vdash, S) induces operations between subsets:

$$\mathsf{ext}, \mathsf{rest}: \mathcal{P}(S) \to \mathcal{P}(X) \qquad \Box, \diamondsuit: \mathcal{P}(X) \to \mathcal{P}(S)$$

$$ext U \coloneqq \{x \in X \mid (\exists a \in U) x \Vdash a\} \coloneqq \{x \in X | \Diamond x \notin U\}$$

$$est U := \{ x \in X | (\forall a \in U) x \Vdash a \} := \{ x \in X | \diamondsuit x \subseteq U \}$$

 (X, \Vdash, S) induces operations between subsets:

$$\mathsf{ext}, \mathsf{rest}: \mathcal{P}(S) \to \mathcal{P}(X) \qquad \Box, \diamondsuit: \mathcal{P}(X) \to \mathcal{P}(S)$$

$$ext U \coloneqq \{x \in X \mid (\exists a \in U) x \Vdash a\} \coloneqq \{x \in X \mid \Diamond x \notin U\}$$

$$est U \coloneqq \{x \in X \mid (\forall a \in U) x \Vdash a\} \coloneqq \{x \in X \mid \Diamond x \subseteq U\}$$

$$D := \{a \in S | (\forall x \in D) x \Vdash a\} := \{a \in S | \text{ext } a \subseteq D\}$$

 (X, \Vdash, S) induces operations between subsets:

$$\mathsf{ext}, \mathsf{rest}: \mathcal{P}(S) \to \mathcal{P}(X) \qquad \Box, \diamondsuit: \mathcal{P}(X) \to \mathcal{P}(S)$$

• ext
$$U := \{x \in X | (\exists a \in U) x \Vdash a\} := \{x \in X | \diamondsuit x \notin U\}$$

$$est U \coloneqq \{x \in X \mid (\forall a \in U) x \Vdash a\} \coloneqq \{x \in X \mid \Diamond x \subseteq U\}$$

$$D := \{a \in S | (\forall x \in D) x \Vdash a\} := \{a \in S | \text{ext } a \subseteq D\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $\mathsf{ext}, \diamondsuit$ approximation by excess

 (X, \Vdash, S) induces operations between subsets:

$$\mathsf{ext}, \mathsf{rest}: \mathcal{P}(S) \to \mathcal{P}(X) \qquad \Box, \diamondsuit: \mathcal{P}(X) \to \mathcal{P}(S)$$

• ext
$$U := \{x \in X \mid (\exists a \in U) x \Vdash a\} := \{x \in X \mid \Diamond x \not \in U\}$$

$$est U \coloneqq \{x \in X \mid (\forall a \in U) x \Vdash a\} \coloneqq \{x \in X \mid \Diamond x \subseteq U\}$$

$$D := \{a \in S | (\forall x \in D) x \Vdash a\} := \{a \in S | \text{ext } a \subseteq D\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

ext, \diamondsuit approximation by excess rest, \Box approximation by defect

 (X, \Vdash, S) induces operations between subsets:

$$\mathsf{ext}, \mathsf{rest}: \mathcal{P}(S) \to \mathcal{P}(X) \qquad \Box, \diamondsuit: \mathcal{P}(X) \to \mathcal{P}(S)$$

• ext
$$U := \{x \in X | (\exists a \in U) x \Vdash a\} := \{x \in X | \Diamond x \notin U\}$$

$$est U \coloneqq \{x \in X \mid (\forall a \in U) x \Vdash a\} \coloneqq \{x \in X \mid \Diamond x \subseteq U\}$$

$$D := \{a \in S | (\forall x \in D) x \Vdash a\} := \{a \in S | \text{ext } a \subseteq D\}$$

ext, \diamondsuit approximation by excess rest, \Box approximation by defect

ext (resp. \diamond) is left adjoint to \Box (resp. rest).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A subset *D* of *X* is **open** if $(\forall x \in X)(x \in D \rightarrow (\exists a \in S)(x \Vdash a \land exta \subseteq D))$

A subset *D* of *X* is **open** if $(\forall x \in X)(x \in D \to (\exists a \in S)(x \Vdash a \land exta \subseteq D))$ $(\forall x \in X)(x \in D \to (\exists a \in S)(a \in \Diamond x \land a \in \Box D))$

A subset D of X is **open** if $(\forall x \in X)(x \in D \to (\exists a \in S)(x \Vdash a \land exta \subseteq D))$ $(\forall x \in X)(x \in D \to (\exists a \in S)(a \in \Diamond x \land a \in \Box D))$ $(\forall x \in X)(x \in D \to \Diamond x \notin \Box D)$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

A subset D of X is **open** if $(\forall x \in X)(x \in D \to (\exists a \in S)(x \Vdash a \land exta \subseteq D))$ $(\forall x \in X)(x \in D \to (\exists a \in S)(a \in \Diamond x \land a \in \Box D))$ $(\forall x \in X)(x \in D \to \Diamond x \notin \Box D)$ $(\forall x \in X)(x \in D \to x \in ext \Box D)$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

A subset D of X is **open** if $(\forall x \in X)(x \in D \to (\exists a \in S)(x \Vdash a \land exta \subseteq D))$ $(\forall x \in X)(x \in D \to (\exists a \in S)(a \in \Diamond x \land a \in \Box D))$ $(\forall x \in X)(x \in D \to \Diamond x \downarrow \Box D)$ $(\forall x \in X)(x \in D \to x \in ext \Box D)$ $D \subseteq ext \Box D$

A subset *D* of *X* is **open** if $(\forall x \in X)(x \in D \to (\exists a \in S)(x \Vdash a \land exta \subseteq D))$ $(\forall x \in X)(x \in D \to (\exists a \in S)(a \in \Diamond x \land a \in \Box D))$ $(\forall x \in X)(x \in D \to \Diamond x \notin \Box D)$ $(\forall x \in X)(x \in D \to x \in ext \Box D)$ $D \subseteq ext \Box D$ but $ext \Box D \subseteq D$ by adjunction!

A subset *D* of *X* is **open** if $(\forall x \in X)(x \in D \to (\exists a \in S)(x \Vdash a \land exta \subseteq D))$ $(\forall x \in X)(x \in D \to (\exists a \in S)(a \in \Diamond x \land a \in \Box D))$ $(\forall x \in X)(x \in D \to \Diamond x \notin \Box D)$ $(\forall x \in X)(x \in D \to x \in ext \Box D)$ $D \subseteq ext \Box D$ but $ext \Box D \subseteq D$ by adjunction! Hence $D = ext \Box D$

A subset *D* of *X* is **open** if $(\forall x \in X)(x \in D \to (\exists a \in S)(x \Vdash a \land exta \subseteq D))$ $(\forall x \in X)(x \in D \to (\exists a \in S)(a \in \Diamond x \land a \in \Box D))$ $(\forall x \in X)(x \in D \to \Diamond x \land \Box D)$ $(\forall x \in X)(x \in D \to x \in ext \Box D)$ $D \subseteq ext \Box D$ but $ext \Box D \subseteq D$ by adjunction! Hence $D = ext \Box D$

 $D \equiv$ communicable message in the following system with X, S individuals

$$(\mathcal{P}(X),=_X) \xrightarrow{\overset{\text{ext}}{\smile}} (\mathcal{P}(S),=_S)$$

A subset *D* of *X* is **closed** if $(\forall x \in X)((\forall a \in S)(x \Vdash a \rightarrow \text{ext}a \ (D) \rightarrow x \in D))$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A subset D of X is **closed** if $(\forall x \in X)((\forall a \in S)(x \Vdash a \rightarrow \text{exta } \emptyset D) \rightarrow x \in D)$ $(\forall x \in X)((\forall a \in S)(a \in \Diamond x \rightarrow a \in \Diamond D) \rightarrow x \in D)$

A subset *D* of *X* is **closed** if $(\forall x \in X)((\forall a \in S)(x \Vdash a \to \text{exta} \ b) \to x \in D)$ $(\forall x \in X)((\forall a \in S)(a \in \Diamond x \to a \in \Diamond D) \to x \in D)$ $(\forall x \in X)((\forall a \in S)(\Diamond x \subseteq \Diamond D) \to x \in D)$

A subset D of X is **closed** if $(\forall x \in X)((\forall a \in S)(x \Vdash a \to \text{exta } \not D) \to x \in D)$ $(\forall x \in X)((\forall a \in S)(a \in \Diamond x \to a \in \Diamond D) \to x \in D)$ $(\forall x \in X)((\forall a \in S)(\Diamond x \subseteq \Diamond D) \to x \in D)$ $(\forall x \in X)(x \in \text{rest} \Diamond D \to x \in D)$

A subset *D* of *X* is **closed** if $(\forall x \in X)((\forall a \in S)(x \Vdash a \to \text{exta} \ b) \to x \in D)$ $(\forall x \in X)((\forall a \in S)(a \in \Diamond x \to a \in \Diamond D) \to x \in D)$ $(\forall x \in X)((\forall a \in S)(\Diamond x \subseteq \Diamond D) \to x \in D)$ $(\forall x \in X)(x \in \text{rest} \Diamond D \to x \in D)$ $\text{rest} \Diamond D \subseteq D$

A subset *D* of *X* is **closed** if $(\forall x \in X)((\forall a \in S)(x \Vdash a \to \text{exta} \not D) \to x \in D)$ $(\forall x \in X)((\forall a \in S)(a \in \Diamond x \to a \in \Diamond D) \to x \in D)$ $(\forall x \in X)((\forall a \in S)(\Diamond x \subseteq \Diamond D) \to x \in D)$ $(\forall x \in X)(x \in \text{rest} \Diamond D \to x \in D)$ $\text{rest} \Diamond D \subseteq D$ but $D \subseteq \text{rest} \Diamond D$ by adjunction!

A subset *D* of *X* is **closed** if $(\forall x \in X)((\forall a \in S)(x \Vdash a \to \text{exta} \notin D) \to x \in D)$ $(\forall x \in X)((\forall a \in S)(a \in \Diamond x \to a \in \Diamond D) \to x \in D)$ $(\forall x \in X)((\forall a \in S)(\Diamond x \subseteq \Diamond D) \to x \in D)$ $(\forall x \in X)(x \in \text{rest} \Diamond D \to x \in D)$ $\text{rest} \Diamond D \subseteq D$ but $D \subseteq \text{rest} \Diamond D$ by adjunction! Hence $D = \text{rest} \Diamond D$

A subset *D* of *X* is **closed** if $(\forall x \in X)((\forall a \in S)(x \Vdash a \to \text{exta } \not D) \to x \in D)$ $(\forall x \in X)((\forall a \in S)(a \in \Diamond x \to a \in \Diamond D) \to x \in D)$ $(\forall x \in X)((\forall a \in S)(\Diamond x \subseteq \Diamond D) \to x \in D)$ $(\forall x \in X)(x \in \text{rest} \Diamond D \to x \in D)$ $(\forall x \in X)(x \in \text{rest} \Diamond D \to x \in D)$ rest $\Diamond D \subseteq D$ but $D \subseteq \text{rest} \Diamond D$ by adjunction! Hence $D = \text{rest} \Diamond D$

Hence D is closed iff it is a faithfully communicable message in the following system with X, S individuals

$$(\mathcal{P}(X),=_X) \xrightarrow{\overset{\text{rest}}{\longleftarrow}} (\mathcal{P}(S),=_S)$$

What about these decoding procedures?

$$(\mathcal{P}(X),=_X) \xrightarrow[]{}^{\text{rest}} (\mathcal{P}(S),=_S) \qquad (\mathcal{P}(X),=_X) \xrightarrow[]{}^{\text{ext}} (\mathcal{P}(S),=_S)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What about these decoding procedures?

$$(\mathcal{P}(X),=_X) \xrightarrow[]{} \overset{\text{rest}}{\longrightarrow} (\mathcal{P}(S),=_S) \qquad (\mathcal{P}(X),=_X) \xrightarrow[]{} \overset{\text{ext}}{\longrightarrow} (\mathcal{P}(S),=_S)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

If **(B1)** X = extS holds, then TFAE for a subset D of X:

What about these decoding procedures?

$$(\mathcal{P}(X), =_X) \xrightarrow[]{} \overset{\text{rest}}{\longrightarrow} (\mathcal{P}(S), =_S) \qquad (\mathcal{P}(X), =_X) \xrightarrow[]{} \overset{\text{ext}}{\longrightarrow} (\mathcal{P}(S), =_S)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If **(B1)** X = extS holds, then TFAE for a subset D of X: **(B1)** $D = \text{rest} \Box D$ i. e. D is communicable w.r.t. \Box and rest

What about these decoding procedures?

$$(\mathcal{P}(X),=_X) \xrightarrow[]{\overset{\text{rest}}{\longrightarrow}} (\mathcal{P}(S),=_S) \qquad (\mathcal{P}(X),=_X) \xrightarrow[]{\overset{\text{ext}}{\longrightarrow}} (\mathcal{P}(S),=_S)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If **(B1)** X = extS holds, then TFAE for a subset D of X: **(D)** $D = \text{rest}\Box D$ i. e. D is communicable w.r.t. \Box and rest **(D)** $D = \text{ext} \diamondsuit D$ i. e. D is communicable w.r.t. \diamondsuit and ext

What about these decoding procedures?

$$(\mathcal{P}(X),=_X) \xrightarrow[]{\overset{\text{rest}}{\longrightarrow}} (\mathcal{P}(S),=_S) \qquad (\mathcal{P}(X),=_X) \xrightarrow[]{\overset{\text{ext}}{\longrightarrow}} (\mathcal{P}(S),=_S)$$

If (B1) X = extS holds, then TFAE for a subset D of X:

() $D = \text{rest} \square D$ i. e. D is communicable w.r.t. \square and rest

② $D = \text{ext} \Diamond D$ i. e. D is communicable w.r.t. \Diamond and ext ③ $\Diamond D \subseteq \Box D$

What about these decoding procedures?

$$(\mathcal{P}(X),=_X) \xrightarrow[\square]{\overset{\text{rest}}{\longrightarrow}} (\mathcal{P}(S),=_S) \qquad (\mathcal{P}(X),=_X) \xrightarrow[]{\overset{\text{ext}}{\longleftarrow}} (\mathcal{P}(S),=_S)$$

If (B1) X = extS holds, then TFAE for a subset D of X:

- **(**) $D = \text{rest} \Box D$ i. e. D is communicable w.r.t. \Box and rest
- **2** $D = \text{ext} \Diamond D$ i. e. D is communicable w.r.t. \Diamond and ext
- $\bigcirc \bigcirc D \subseteq \Box D$

In particular each one of the previous conditions implies that *D* is **clopen**.

What about these decoding procedures?

$$(\mathcal{P}(X),=_X) \xrightarrow[\square]{\overset{\text{rest}}{\longrightarrow}} (\mathcal{P}(S),=_S) \qquad (\mathcal{P}(X),=_X) \xrightarrow[]{\overset{\text{ext}}{\longleftarrow}} (\mathcal{P}(S),=_S)$$

If (B1) X = extS holds, then TFAE for a subset D of X:

- **1** $D = \text{rest} \square D$ i. e. *D* is communicable w.r.t. \square and rest
- **2** $D = \text{ext} \Diamond D$ i. e. D is communicable w.r.t. \Diamond and ext
- $\bigcirc \Diamond D \subseteq \Box D$

In particular each one of the previous conditions implies that D is **clopen**.

The inverse statement does not hold:

What about these decoding procedures?

$$(\mathcal{P}(X),=_X) \xrightarrow[\square]{\overset{\text{rest}}{\longrightarrow}} (\mathcal{P}(S),=_S) \qquad (\mathcal{P}(X),=_X) \xrightarrow[]{\overset{\text{ext}}{\longleftarrow}} (\mathcal{P}(S),=_S)$$

If (B1) X = extS holds, then TFAE for a subset D of X:

- **1** $D = \text{rest} \square D$ i. e. *D* is communicable w.r.t. \square and rest
- **2** $D = \text{ext} \Diamond D$ i. e. D is communicable w.r.t. \Diamond and ext
- $\bigcirc \Diamond D \subseteq \Box D$

In particular each one of the previous conditions implies that D is **clopen**.

The inverse statement does not hold:

in $(\mathbf{2}, \Vdash, \mathbf{3})$ where $x \Vdash a \equiv^{def} x = a \lor a = 2$,

What about these decoding procedures?

$$(\mathcal{P}(X),=_X) \xrightarrow[\square]{\overset{\text{rest}}{\longrightarrow}} (\mathcal{P}(S),=_S) \qquad (\mathcal{P}(X),=_X) \xrightarrow[]{\overset{\text{ext}}{\longrightarrow}} (\mathcal{P}(S),=_S)$$

If (B1) X = extS holds, then TFAE for a subset D of X:

- **1** $D = \text{rest} \square D$ i. e. *D* is communicable w.r.t. \square and rest
- **2** $D = \text{ext} \diamond D$ i. e. *D* is communicable w.r.t. \diamond and ext
- $\bigcirc \bigcirc D \subseteq \Box D$

In particular each one of the previous conditions implies that *D* is **clopen**.

The inverse statement does not hold: in $(2, \Vdash, 3)$ where $x \Vdash a \equiv^{def} x = a \lor a = 2$, singletons $\{x\}$ are clopen, but $ext \diamondsuit \{x\} = 2$ and $rest \Box \{x\} = \emptyset$.

 $D^{\rightarrow} := \{a \in S \mid D \subseteq \text{ext } a\}$ and $U^{\leftarrow} := \{x \in X \mid U \subseteq \Diamond x\}$ (**polarities** in Birkhoff)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $D^{\rightarrow} := \{a \in S | D \subseteq \text{ext } a\}$ and $U^{\leftarrow} := \{x \in X | U \subseteq \Diamond x\}$ (**polarities** in Birkhoff) One impredicative classical example: (X, \in, \mathcal{T}) for (X, \mathcal{T}) topological space:

 $D^{\rightarrow} := \{a \in S | D \subseteq \text{ext } a\}$ and $U^{\leftarrow} := \{x \in X | U \subseteq \Diamond x\}$ (**polarities** in Birkhoff) One impredicative classical example: (X, \in, \mathcal{T}) for (X, \mathcal{T}) topological space:

	ext	rest	←
\diamond	Ø, X	Closed sets	T_0 -points inters. of open sets
	Open sets	ø, X	Ø
\rightarrow	X	closed T_0 -points	intersections of open sets

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Consider two basic pairs $\mathcal{X} = (X, \Vdash_{\mathcal{X}}, S)$ and $\mathcal{Y} = (Y, \Vdash_{\mathcal{Y}}, T)$

Consider two basic pairs $\mathcal{X} = (X, \Vdash_{\mathcal{X}}, S)$ and $\mathcal{Y} = (Y, \Vdash_{\mathcal{Y}}, T)$ Individuals are (X, Y) and (S, T)

Consider two basic pairs $\mathcal{X} = (X, \Vdash_{\mathcal{X}}, S)$ and $\mathcal{Y} = (Y, \Vdash_{\mathcal{Y}}, T)$ Individuals are (X, Y) and (S, T)Messages are Rel(X, Y) and Rel(S, T).

Consider two basic pairs $\mathcal{X} = (X, \Vdash_{\mathcal{X}}, S)$ and $\mathcal{Y} = (Y, \Vdash_{\mathcal{Y}}, T)$ **Individuals** are (X, Y) and (S, T) **Messages** are $\operatorname{Rel}(X, Y)$ and $\operatorname{Rel}(S, T)$. $r \sim_{(X,Y)} r'$ iff for every $b \in T$, $r^- \operatorname{ext} b = r'^- \operatorname{ext} b$ i.e. $\Vdash_{\mathcal{Y}}$ coequalizes r and r' in Rel.

Consider two basic pairs $\mathcal{X} = (X, \Vdash_{\mathcal{X}}, S)$ and $\mathcal{Y} = (Y, \Vdash_{\mathcal{Y}}, T)$ **Individuals** are (X, Y) and (S, T) **Messages** are Rel(X, Y) and Rel(S, T). $r \sim_{(X,Y)} r'$ iff for every $b \in T$, $r^- \text{ext}b = r'^- \text{ext}b$ i.e. $\Vdash_{\mathcal{Y}}$ coequalizes r and r' in Rel. $s \sim_{(S,T)} s'$ iff for every $x \in X$, $s \diamondsuit x = s' \diamondsuit x$. $\Vdash_{\mathcal{X}}$ equalizes s and s' in Rel.

Consider two basic pairs $\mathcal{X} = (X, \Vdash_{\mathcal{X}}, S)$ and $\mathcal{Y} = (Y, \Vdash_{\mathcal{Y}}, T)$ **Individuals** are (X, Y) and (S, T) **Messages** are Rel(X, Y) and Rel(S, T). $r \sim_{(X,Y)} r'$ iff for every $b \in T$, $r^- \text{ext}b = r'^- \text{ext}b$ i.e. $\Vdash_{\mathcal{Y}}$ coequalizes r and r' in Rel. $s \sim_{(S,T)} s'$ iff for every $x \in X$, $s \diamondsuit x = s' \diamondsuit x$. $\Vdash_{\mathcal{X}}$ equalizes s and s' in Rel.

A function (single-valued total relation) f from X to Y is **continuous** from \mathcal{X} to \mathcal{Y} if for all $b \in \mathcal{T}$ and $x \in X$

 $f(x) \varepsilon \operatorname{ext} b \to (\exists a \in S) (x \varepsilon \operatorname{ext} a \land (\forall x' \in X) (x' \varepsilon \operatorname{ext} a \to f(x') \varepsilon \operatorname{ext} b))$

A function (single-valued total relation) f from X to Y is **continuous** from \mathcal{X} to \mathcal{Y} if for all $b \in \mathcal{T}$ and $x \in X$

$$f(x) \varepsilon \operatorname{ext} b \to (\exists a \in S)(x \varepsilon \operatorname{ext} a \land (\forall x' \in X)(x' \varepsilon \operatorname{ext} a \to f(x') \varepsilon \operatorname{ext} b))$$

$$fx \notin \operatorname{ext} b \to (\exists a \in S)(x \varepsilon \operatorname{ext} a \land (\forall x' \in X)(x' \varepsilon \operatorname{ext} a \to fx' \notin \operatorname{ext} b))$$

A function (single-valued total relation) f from X to Y is **continuous** from \mathcal{X} to \mathcal{Y} if for all $b \in \mathcal{T}$ and $x \in X$

$$f(x) \varepsilon \operatorname{ext} b \to (\exists a \in S)(x \varepsilon \operatorname{ext} a \land (\forall x' \in X)(x' \varepsilon \operatorname{ext} a \to f(x') \varepsilon \operatorname{ext} b))$$

$$fx \notin \operatorname{ext} b \to (\exists a \in S)(x \varepsilon \operatorname{ext} a \land (\forall x' \in X)(x' \varepsilon \operatorname{ext} a \to fx' \notin \operatorname{ext} b))$$

$$x \varepsilon f^{-}\operatorname{ext} b \to (\exists a \in S)(x \varepsilon \operatorname{ext} a \land (\forall x' \in X)(x' \varepsilon \operatorname{ext} a \to x' \varepsilon f^{-}\operatorname{ext} b))$$

A function (single-valued total relation) f from X to Y is **continuous** from \mathcal{X} to \mathcal{Y} if for all $b \in \mathcal{T}$ and $x \in X$

$$f(x) \varepsilon \operatorname{ext} b \to (\exists a \in S)(x \varepsilon \operatorname{ext} a \land (\forall x' \in X)(x' \varepsilon \operatorname{ext} a \to f(x') \varepsilon \operatorname{ext} b))$$

$$fx \ \emptyset \ \operatorname{ext} b \to (\exists a \in S)(x \varepsilon \operatorname{ext} a \land (\forall x' \in X)(x' \varepsilon \operatorname{ext} a \to fx' \ \emptyset \ \operatorname{ext} b)))$$

$$x \varepsilon f^{-}\operatorname{ext} b \to (\exists a \in S)(x \varepsilon \operatorname{ext} a \land (\forall x' \in X)(x' \varepsilon \operatorname{ext} a \to x' \varepsilon f^{-}\operatorname{ext} b)))$$

$$x \varepsilon f^{-}\operatorname{ext} b \to (\exists a \in S)(x \Vdash a \land \operatorname{ext} a \subseteq f^{-}\operatorname{ext} b))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A function (single-valued total relation) f from X to Y is **continuous** from \mathcal{X} to \mathcal{Y} if for all $b \in T$ and $x \in X$

$$\begin{aligned} &f(x) \varepsilon \operatorname{ext} b \to (\exists a \in S) (x \varepsilon \operatorname{ext} a \land (\forall x' \in X) (x' \varepsilon \operatorname{ext} a \to f(x') \varepsilon \operatorname{ext} b)) \\ &fx \ \ \& \operatorname{ext} b \to (\exists a \in S) (x \varepsilon \operatorname{ext} a \land (\forall x' \in X) (x' \varepsilon \operatorname{ext} a \to fx' \ \ \& \operatorname{ext} b)) \\ &x \varepsilon f^{-} \operatorname{ext} b \to (\exists a \in S) (x \varepsilon \operatorname{ext} a \land (\forall x' \in X) (x' \varepsilon \operatorname{ext} a \to x' \varepsilon f^{-} \operatorname{ext} b)) \\ &x \varepsilon f^{-} \operatorname{ext} b \to (\exists a \in S) (x \Vdash \operatorname{ext} a \land (\forall x' \in X) (x' \varepsilon \operatorname{ext} a \to x' \varepsilon f^{-} \operatorname{ext} b)) \end{aligned}$$

We extend this notion to relations $r: X \to Y$. r is **continuous** if for all $b \in T$ and $x \in X$

 $x \in r^- \operatorname{ext} b \to (\exists a \in S)(x \Vdash a \land \operatorname{ext} a \subseteq r^- \operatorname{ext} b))$

A function (single-valued total relation) f from X to Y is **continuous** from \mathcal{X} to \mathcal{Y} if for all $b \in \mathcal{T}$ and $x \in X$

$$f(x) \varepsilon \operatorname{ext} b \to (\exists a \in S)(x \varepsilon \operatorname{ext} a \land (\forall x' \in X)(x' \varepsilon \operatorname{ext} a \to f(x') \varepsilon \operatorname{ext} b))$$

$$fx \ \emptyset \ \operatorname{ext} b \to (\exists a \in S)(x \varepsilon \operatorname{ext} a \land (\forall x' \in X)(x' \varepsilon \operatorname{ext} a \to fx' \ \emptyset \ \operatorname{ext} b))$$

$$x \varepsilon f^{-}\operatorname{ext} b \to (\exists a \in S)(x \varepsilon \operatorname{ext} a \land (\forall x' \in X)(x' \varepsilon \operatorname{ext} a \to x' \varepsilon f^{-}\operatorname{ext} b))$$

$$x \varepsilon f^{-}\operatorname{ext} b \to (\exists a \in S)(x \Vdash a \land \operatorname{ext} a \subseteq f^{-}\operatorname{ext} b))$$

We extend this notion to relations $r: X \to Y$. r is **continuous** if for all $b \in T$ and $x \in X$

$$x \varepsilon r^{-} \operatorname{ext} b \to (\exists a \in S)(x \Vdash a \land \operatorname{ext} a \subseteq r^{-} \operatorname{ext} b))$$
$$x \varepsilon r^{-} \operatorname{ext} b \to (\exists a \in S)(x \Vdash a \land a \varepsilon \Box r^{-} \operatorname{ext} b))$$

A function (single-valued total relation) f from X to Y is **continuous** from \mathcal{X} to \mathcal{Y} if for all $b \in \mathcal{T}$ and $x \in X$

$$f(x) \varepsilon \operatorname{ext} b \to (\exists a \in S)(x \varepsilon \operatorname{ext} a \land (\forall x' \in X)(x' \varepsilon \operatorname{ext} a \to f(x') \varepsilon \operatorname{ext} b))$$

$$fx \ \emptyset \ \operatorname{ext} b \to (\exists a \in S)(x \varepsilon \operatorname{ext} a \land (\forall x' \in X)(x' \varepsilon \operatorname{ext} a \to fx' \ \emptyset \ \operatorname{ext} b)))$$

$$x \varepsilon f^{-}\operatorname{ext} b \to (\exists a \in S)(x \varepsilon \operatorname{ext} a \land (\forall x' \in X)(x' \varepsilon \operatorname{ext} a \to x' \varepsilon f^{-}\operatorname{ext} b)))$$

$$x \varepsilon f^{-}\operatorname{ext} b \to (\exists a \in S)(x \Vdash a \land \operatorname{ext} a \subseteq f^{-}\operatorname{ext} b))$$

We extend this notion to relations $r: X \to Y$. r is **continuous** if for all $b \in T$ and $x \in X$

$$\begin{aligned} & x \varepsilon r^{-} \operatorname{ext} b \to (\exists a \in S)(x \Vdash a \land \operatorname{ext} a \subseteq r^{-} \operatorname{ext} b)) \\ & x \varepsilon r^{-} \operatorname{ext} b \to (\exists a \in S)(x \Vdash a \land a \varepsilon \Box r^{-} \operatorname{ext} b)) \\ & x \varepsilon r^{-} \operatorname{ext} b \to \Diamond x \notin \Box r^{-} \operatorname{ext} b \end{aligned}$$

A function (single-valued total relation) f from X to Y is **continuous** from \mathcal{X} to \mathcal{Y} if for all $b \in T$ and $x \in X$

$$f(x) \varepsilon \operatorname{ext} b \to (\exists a \in S)(x \varepsilon \operatorname{ext} a \land (\forall x' \in X)(x' \varepsilon \operatorname{ext} a \to f(x') \varepsilon \operatorname{ext} b))$$

$$fx \ \emptyset \ \operatorname{ext} b \to (\exists a \in S)(x \varepsilon \operatorname{ext} a \land (\forall x' \in X)(x' \varepsilon \operatorname{ext} a \to fx' \ \emptyset \ \operatorname{ext} b)))$$

$$x \varepsilon f^{-}\operatorname{ext} b \to (\exists a \in S)(x \varepsilon \operatorname{ext} a \land (\forall x' \in X)(x' \varepsilon \operatorname{ext} a \to x' \varepsilon f^{-}\operatorname{ext} b)))$$

$$x \varepsilon f^{-}\operatorname{ext} b \to (\exists a \in S)(x \Vdash a \land \operatorname{ext} a \subseteq f^{-}\operatorname{ext} b))$$

We extend this notion to relations $r: X \to Y$. r is **continuous** if for all $b \in T$ and $x \in X$

$$\begin{aligned} & x \varepsilon r^{-} \text{ext} b \to (\exists a \in S)(x \Vdash a \land \text{ext} a \subseteq r^{-} \text{ext} b)) \\ & x \varepsilon r^{-} \text{ext} b \to (\exists a \in S)(x \Vdash a \land a \varepsilon \Box r^{-} \text{ext} b)) \\ & x \varepsilon r^{-} \text{ext} b \to \Diamond x \ \& \ \Box r^{-} \text{ext} b \\ & x \varepsilon r^{-} \text{ext} b \to x \varepsilon \text{ext} \Box r^{-} \text{ext} b \end{aligned}$$

A function (single-valued total relation) f from X to Y is **continuous** from \mathcal{X} to \mathcal{Y} if for all $b \in T$ and $x \in X$

$$f(x) \varepsilon \operatorname{ext} b \to (\exists a \in S)(x \varepsilon \operatorname{ext} a \land (\forall x' \in X)(x' \varepsilon \operatorname{ext} a \to f(x') \varepsilon \operatorname{ext} b))$$

$$fx \ \emptyset \ \operatorname{ext} b \to (\exists a \in S)(x \varepsilon \operatorname{ext} a \land (\forall x' \in X)(x' \varepsilon \operatorname{ext} a \to fx' \ \emptyset \ \operatorname{ext} b)))$$

$$x \varepsilon f^{-}\operatorname{ext} b \to (\exists a \in S)(x \varepsilon \operatorname{ext} a \land (\forall x' \in X)(x' \varepsilon \operatorname{ext} a \to x' \varepsilon f^{-}\operatorname{ext} b)))$$

$$x \varepsilon f^{-}\operatorname{ext} b \to (\exists a \in S)(x \Vdash a \land \operatorname{ext} a \subseteq f^{-}\operatorname{ext} b))$$

We extend this notion to relations $r: X \to Y$. r is **continuous** if for all $b \in T$ and $x \in X$

$$x \varepsilon r^{-} \text{ext} b \to (\exists a \in S)(x \Vdash a \land \text{ext} a \subseteq r^{-} \text{ext} b))$$
$$x \varepsilon r^{-} \text{ext} b \to (\exists a \in S)(x \Vdash a \land a \varepsilon \Box r^{-} \text{ext} b))$$
$$x \varepsilon r^{-} \text{ext} b \to \Diamond x \notin \Box r^{-} \text{ext} b$$
$$x \varepsilon r^{-} \text{ext} b \to x \varepsilon \text{ext} \Box r^{-} \text{ext} b$$

i. e. if for every *b*, r^- ext $b = ext \Box r^-$ ext *b* is open.

Continuous relations as communicable relations

$$(\operatorname{Rel}(X,Y),\sim_{(X,Y)}) \xrightarrow[\sigma]{\sigma} (\operatorname{Rel}(S,T),\sim_{(S,T)})$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

where

Continuous relations as communicable relations

$$(\operatorname{Rel}(X,Y),\sim_{(X,Y)}) \xrightarrow[\sigma]{\sigma} (\operatorname{Rel}(S,T),\sim_{(S,T)})$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

where

•
$$\sigma(r)(a,b) \equiv^{def} ext a \subseteq r^{-}ext b [a \in S, b \in T]$$

Continuous relations as communicable relations

$$(\operatorname{Rel}(X,Y),\sim_{(X,Y)}) \xrightarrow[\sigma]{\sigma} (\operatorname{Rel}(S,T),\sim_{(S,T)})$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

where

Continuous relations as communicable relations

$$(\operatorname{Rel}(X,Y),\sim_{(X,Y)}) \xrightarrow[\sigma]{\sigma} (\operatorname{Rel}(S,T),\sim_{(S,T)})$$

where

Then r is communicable if and only if r is continuous.

Continuous relations as commutative diagram

Notice that $r: X \to Y$ is continuous from \mathcal{X} to \mathcal{Y} if and only if there exists $s: S \to T$ such that the following diagram commutes in Rel:

Continuous relations as commutative diagram

Notice that $r: X \to Y$ is continuous from \mathcal{X} to \mathcal{Y} if and only if there exists $s: S \to T$ such that the following diagram commutes in Rel:

Equivalent continuos relations corresponds to squares with equal diagonals.

Continuous relations as commutative diagram

Notice that $r: X \to Y$ is continuous from \mathcal{X} to \mathcal{Y} if and only if there exists $s: S \to T$ such that the following diagram commutes in Rel:

Equivalent continuos relations corresponds to squares with equal diagonals. Basic pairs and continuous relations form a category which is equivalent to the Freyd completion of Rel.

Concrete spaces

A concrete space is a basic pair (X, \Vdash, S) such that

- X = extS

<□ > < @ > < E > < E > E のQ @

What is a point of X for S?

What is a point of X for S? A subset D of X is seen as a **point** if it is an **atom** for S

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

What is a point of X for S? A subset D of X is seen as a **point** if it is an **atom** for S

• it is inhabited (there is $a \in S$, such that ext $a \notin D$)

What is a point of X for S? A subset D of X is seen as a **point** if it is an **atom** for S

- **(**) it is inhabited (there is $a \in S$, such that ext $a \notin D$)
- \bigcirc it is indivisible by using concepts in S: for every a and b in S

What is a point of X for S? A subset D of X is seen as a **point** if it is an **atom** for S

- **(**) it is inhabited (there is $a \in S$, such that ext $a \notin D$)
- 2 it is indivisible by using concepts in S: for every a and b in S

 $\operatorname{ext} a \ (D \land \operatorname{ext} b \ (\exists c \in S) (\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \land D \ (\exists c \in S) (\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \land D \ (\exists c \in S) (\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \land D \ (\exists c \in S) (\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \land D \ (\exists c \in S) (\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \land D \ (\exists c \in S) (\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \land D \ (\exists c \in S) (\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \land D \ (\exists c \in S) (\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \land D \ (\exists c \in S) (\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \land D \ (\exists c \in S) (\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \land D \ (\exists c \in S) (\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \land D \ (\exists c \in S) (\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \land D \ (\exists c \in S) (\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \land D \ (\exists c \in S) (\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \land D \ (\exists c \in S) (\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \land D \ (\exists c \in S) (\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \land D \ (\exists c \in S) (\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \land D \ (\exists c \in S) (\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \land D \ (\exists c \in S) (\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \land D \ (\exists c \in S) (\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \land D \ (\exists c \in S) (\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \cap (\exists c \in S) (\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \cap (\exists c \in S) (\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \cap (\exists c \in S) (\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \cap (\exists c \in S) (\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \cap (\exists c \in S) (\operatorname{ext} a \cap \operatorname{ext} b \cap (i \in S) (\operatorname{ext} a \cap \operatorname{ext} b \cap (i \in S) (\operatorname{ext} a \cap \operatorname{ext} b \cap (i \in S) (\operatorname{ext} a \cap \operatorname{ext} b \cap (i \in S) (\operatorname{ext} a \cap \operatorname{ext} b \cap (i \in S) (\operatorname{ext} a \cap \operatorname{ext} b \cap (i \in S) (\operatorname{ext} a \cap \operatorname{ext} b \cap (i \in S) (\operatorname{ext} a \cap \operatorname{ext} b \cap (i \in S) (\operatorname{ext} a \cap \operatorname{ext} b \cap (i \in S) (\operatorname{ext} a \cap \operatorname{ext} b \cap (i \in S) (\operatorname{ext} a \cap \operatorname{ext} b \cap (i \in S) (\operatorname{ext} a \cap \operatorname{ext} b \cap (i \in S) (\operatorname{ext} a \cap \operatorname{ext} b \cap (i \in S) (\operatorname{ext} a \cap \operatorname{ext} b \cap (i \in S) (\operatorname{ext} a \cap \operatorname{ext} b \cap (i \in S) (\operatorname{ext} a \cap \operatorname{ext} b \cap (i \in S) (\operatorname{ext} a \cap (i$

In this case D is called **convergent**.

What is a point of X for S? A subset D of X is seen as a **point** if it is an **atom** for S

- **(**) it is inhabited (there is $a \in S$, such that ext $a \notin D$)
- 2 it is indivisible by using concepts in S: for every a and b in S

 $\mathsf{ext} a \ (D \land \mathsf{ext} b \ (D \to (\exists c \in S)) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\exists c \in S) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\exists c \in S) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\exists c \in S) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\exists c \in S) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\exists c \in S) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\exists c \in S) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \cap \mathsf{ex$

In this case *D* is called **convergent**.

Moreover *S* cannot distinguish two subsets for which $\Diamond D = \Diamond E$, i.e. which have the same closure.

What is a point of X for S? A subset D of X is seen as a **point** if it is an **atom** for S

- **(**) it is inhabited (there is $a \in S$, such that ext $a \notin D$)
- \bigcirc it is indivisible by using concepts in S: for every a and b in S

 $\mathsf{ext} a \ (D \land \mathsf{ext} b \ (D \to (\exists c \in S)) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\exists c \in S) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\exists c \in S) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\exists c \in S) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\exists c \in S) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\exists c \in S) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\exists c \in S) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b) (\mathsf{ext} c \cap \mathsf{ext} b \cap \mathsf{ext} b)) (\mathsf{ext} c \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b)) (\mathsf{ext} c \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b)) (\mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b)) (\mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b)) (\mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b)) (\mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b)) (\mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b)) (\mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b)) (\mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b)) (\mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b \cap \mathsf{ext} b)) (\mathsf{ext} b \cap \mathsf{ex$

In this case *D* is called **convergent**.

Moreover S cannot distinguish two subsets for which $\Diamond D = \Diamond E$, i.e. which have the same closure.

The right notion of point in terms of communication: equivalence class of convergent subsets!

What is a point of X for S? A subset D of X is seen as a **point** if it is an **atom** for S

- **(**) it is inhabited (there is $a \in S$, such that ext $a \notin D$)
- ② it is indivisible by using concepts in S: for every a and b in S

```
\mathsf{ext} a \ \emptyset \ D \land \mathsf{ext} b \ \emptyset \ D \to (\exists c \in S)(\mathsf{ext} \ c \subseteq \mathsf{ext} \ a \cap \mathsf{ext} \ b \land D \ \emptyset \ \mathsf{ext} \ c)
```

In this case *D* is called **convergent**.

Moreover S cannot distinguish two subsets for which $\Diamond D = \Diamond E$, i.e. which have the same closure.

The right notion of point in terms of communication: equivalence class of convergent subsets!

In a concrete space $\{x\}$ is convergent.

What is a point of X for S? A subset D of X is seen as a **point** if it is an **atom** for S

- **(**) it is inhabited (there is $a \in S$, such that ext $a \notin D$)
- \bigcirc it is indivisible by using concepts in S: for every a and b in S

 $\mathsf{ext} a \ (D \land \mathsf{ext} b \ (D \to (\exists c \in S)) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\exists c \in S) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D)$

In this case D is called **convergent**.

Moreover S cannot distinguish two subsets for which $\Diamond D = \Diamond E$, i.e. which have the same closure.

The right notion of point in terms of communication: equivalence class of convergent subsets!

In a concrete space $\{x\}$ is convergent.

We call a continuous relation $r: X \rightarrow Y$ convergent if it preserves convergent subsets (topological points).

What is a point of X for S? A subset D of X is seen as a **point** if it is an **atom** for S

- **(**) it is inhabited (there is $a \in S$, such that ext $a \notin D$)
- 2 it is indivisible by using concepts in S: for every a and b in S

 $\mathsf{ext} a \ (D \land \mathsf{ext} b \ (D \to (\exists c \in S)) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D) (\exists c \in S) (\mathsf{ext} c \subseteq \mathsf{ext} a \cap \mathsf{ext} b \land D)$

In this case *D* is called **convergent**.

Moreover *S* cannot distinguish two subsets for which $\Diamond D = \Diamond E$, i.e. which have the same closure.

The right notion of point in terms of communication: equivalence class of convergent subsets!

In a concrete space $\{x\}$ is convergent.

We call a continuous relation $r: X \to Y$ convergent if it preserves convergent subsets (topological points). This is the right notion of function for concrete spaces from the point of view of communication.

Thank you for your attention!

<□ > < @ > < E > < E > E のQ @