Topology as faithful communication through relations

Samuele Maschio and Giovanni Sambin

Università
DEGLI Studi
di Padova
Dipartimento di Matematica
Università di Padova

> TACL 2017
> Praha, $26-30 / 06 / 2017$

Communication (1)

Two individuals X and S.

Communication (1)

Two individuals X and S.

Each one has a collection of messages written in its own language:
\mathcal{M}_{X} and \mathcal{M}_{S} equipped with equivalence relations $\sim x, \sim s$
" m and m ' have the same meaning".

Communication (1)

Two individuals X and S.

Each one has a collection of messages written in its own language:
\mathcal{M}_{X} and \mathcal{M}_{S} equipped with equivalence relations $\sim x, \sim s$
" m and m ' have the same meaning".

In order to communicate both X and S need a decoding procedure:

Communication (1)

Two individuals X and S.

Each one has a collection of messages written in its own language:
\mathcal{M}_{X} and \mathcal{M}_{S} equipped with equivalence relations $\sim x, \sim s$
" m and m ' have the same meaning".

In order to communicate both X and S need a decoding procedure:

$$
\left(\mathcal{M}_{x}, \sim x\right) \underset{\Delta}{\stackrel{\nabla}{\rightleftarrows}}\left(\mathcal{M}_{s}, \sim_{s}\right)
$$

Communication (2)

(1) X sends a message $m \in \mathcal{M}_{X}$ to S

Communication (2)

(1) X sends a message $m \in \mathcal{M}_{X}$ to S
(2) S receives the message and understands it as $\Delta(m)$

Communication (2)

(1) X sends a message $m \in \mathcal{M}_{X}$ to S
(2) S receives the message and understands it as $\Delta(m)$
© S sends the message back to X ("Is this your message?")

Communication (2)

(1) X sends a message $m \in \mathcal{M}_{X}$ to S
(2) S receives the message and understands it as $\Delta(m)$

- S sends the message back to X ("Is this your message?")
(1) X receives the message and understands it as $\nabla(\Delta(m))$

Communication (2)

(1) X sends a message $m \in \mathcal{M}_{X}$ to S
(2) S receives the message and understands it as $\Delta(m)$

- S sends the message back to X ("Is this your message?")
- X receives the message and understands it as $\nabla(\Delta(m))$
if $\nabla(\Delta(m)) \sim x m$,

Communication (2)

(1) X sends a message $m \in \mathcal{M}_{X}$ to S
(2) S receives the message and understands it as $\Delta(m)$

- S sends the message back to X ("Is this your message?")
(1) X receives the message and understands it as $\nabla(\Delta(m))$
if $\nabla(\Delta(m)) \sim x m$,
then the communication of m is faithful
i. e. m is faithfully communicable.

Communication and topology

Goal:

to give a characterization of basic topological notions
in terms of faithfully communicable notions.

Basic pairs (1)

introduced by Sambin,

Basic pairs (1)

introduced by Sambin,
the most elementary framework in which
standard topological notions can be defined.

Basic pairs (1)

introduced by Sambin,
the most elementary framework in which
standard topological notions can be defined.
Foundational framework: Minimalist Foundation (Maietti, Sambin)

Basic pairs (1)

introduced by Sambin,
the most elementary framework in which
standard topological notions can be defined.
Foundational framework: Minimalist Foundation (Maietti, Sambin)

A basic pair: (X, \Vdash, S) where

Basic pairs (1)

introduced by Sambin,
the most elementary framework in which
standard topological notions can be defined.
Foundational framework: Minimalist Foundation (Maietti, Sambin)

A basic pair: (X, \Vdash, S) where
(1) X represents points

Basic pairs (1)

introduced by Sambin,
the most elementary framework in which
standard topological notions can be defined.
Foundational framework: Minimalist Foundation (Maietti, Sambin)

A basic pair: (X, \Vdash, S) where
(1) X represents points
(2) S a set of indexes for a basis of neighbourhoods of a topology on X

Basic pairs (1)

introduced by Sambin,
the most elementary framework in which
standard topological notions can be defined.
Foundational framework: Minimalist Foundation (Maietti, Sambin)

A basic pair: (X, \Vdash, S) where
(1) X represents points
(2) S a set of indexes for a basis of neighbourhoods of a topology on X
(3) \Vdash relation from X to $S, x \Vdash a$: " x is in the neighbourhood indexed by a ". a is the index of the neighbourhood ext $a:=\{x \in X \mid x \Vdash a\}$
$\diamond x:=\{a \in S \mid x \Vdash a\}$.

Basic pairs (2)

(X, \Vdash, S) induces operations between subsets:

Basic pairs (2)

(X, \Vdash, S) induces operations between subsets:
ext, rest: $\mathcal{P}(S) \rightarrow \mathcal{P}(X) \quad \square, \diamond: \mathcal{P}(X) \rightarrow \mathcal{P}(S)$

Basic pairs (2)

(X, \Vdash, S) induces operations between subsets:
ext, rest: $\mathcal{P}(S) \rightarrow \mathcal{P}(X) \quad \square, \diamond: \mathcal{P}(X) \rightarrow \mathcal{P}(S)$
(1) $\operatorname{ext} U:=\{x \in X \mid(\exists a \in U) x \Vdash a\}:=\{x \in X \mid \nabla x \downarrow U\}$

Basic pairs (2)

(X, \Vdash, S) induces operations between subsets:
ext, rest: $\mathcal{P}(S) \rightarrow \mathcal{P}(X) \quad \square, \diamond: \mathcal{P}(X) \rightarrow \mathcal{P}(S)$
(1) $\operatorname{ext} U:=\{x \in X \mid(\exists a \in U) x \Vdash a\}:=\{x \in X \mid \nabla x \searrow U\}$
(2) rest $U:=\{x \in X \mid(\forall a \in U) x \Vdash a\}:=\{x \in X \mid \diamond x \subseteq U\}$

Basic pairs (2)

(X, \Vdash, S) induces operations between subsets:
ext, rest: $\mathcal{P}(S) \rightarrow \mathcal{P}(X) \quad \square, \diamond: \mathcal{P}(X) \rightarrow \mathcal{P}(S)$
(1) $\operatorname{ext} U:=\{x \in X \mid(\exists a \in U) x \Vdash a\}:=\{x \in X \mid \nabla x \downarrow U\}$
(2) rest $U:=\{x \in X \mid(\forall a \in U) x \Vdash a\}:=\{x \in X \mid \diamond x \subseteq U\}$
(3) $\diamond D:=\{a \in S \mid(\exists x \in D) x \Vdash a\}:=\{a \in S \mid \operatorname{ext} a \ell D\}$

Basic pairs (2)

(X, \Vdash, S) induces operations between subsets:
ext, rest: $\mathcal{P}(S) \rightarrow \mathcal{P}(X) \quad \square, \diamond: \mathcal{P}(X) \rightarrow \mathcal{P}(S)$
(1) $\operatorname{ext} U:=\{x \in X \mid(\exists a \in U) x \Vdash a\}:=\{x \in X \mid \nabla x \searrow U\}$
(2) rest $U:=\{x \in X \mid(\forall a \in U) x \Vdash a\}:=\{x \in X \mid \diamond x \subseteq U\}$
(0) $\diamond D:=\{a \in S \mid(\exists x \in D) x \Vdash a\}:=\{a \in S \mid \operatorname{ext} a \ell D\}$
(1) $\square D:=\{a \in S \mid(\forall x \in D) x \Vdash a\}:=\{a \in S \mid$ ext $a \subseteq D\}$

Basic pairs (2)

(X, \Vdash, S) induces operations between subsets:
ext, rest: $\mathcal{P}(S) \rightarrow \mathcal{P}(X) \quad \square, \diamond: \mathcal{P}(X) \rightarrow \mathcal{P}(S)$
(1) $\operatorname{ext} U:=\{x \in X \mid(\exists a \in U) x \Vdash a\}:=\{x \in X \mid \nabla x \searrow U\}$
(2) rest $U:=\{x \in X \mid(\forall a \in U) x \Vdash a\}:=\{x \in X \mid \diamond x \subseteq U\}$
(0) $\diamond D:=\{a \in S \mid(\exists x \in D) x \Vdash a\}:=\{a \in S \mid \operatorname{ext} a \ell D\}$
(1) $\square D:=\{a \in S \mid(\forall x \in D) x \Vdash a\}:=\{a \in S \mid$ ext $a \subseteq D\}$
ext, \diamond approximation by excess

Basic pairs (2)

(X, \Vdash, S) induces operations between subsets:
ext, rest: $\mathcal{P}(S) \rightarrow \mathcal{P}(X) \quad \square, \diamond: \mathcal{P}(X) \rightarrow \mathcal{P}(S)$
(1) $\operatorname{ext} U:=\{x \in X \mid(\exists a \in U) x \Vdash a\}:=\{x \in X \mid \nabla x \searrow U\}$
(2) rest $U:=\{x \in X \mid(\forall a \in U) x \Vdash a\}:=\{x \in X \mid \diamond x \subseteq U\}$
(0) $\diamond D:=\{a \in S \mid(\exists x \in D) x \Vdash a\}:=\{a \in S \mid \operatorname{ext} a \ell D\}$
(1) $\square D:=\{a \in S \mid(\forall x \in D) x \Vdash a\}:=\{a \in S \mid$ ext $a \subseteq D\}$
ext, \diamond approximation by excess
rest, \square approximation by defect

Basic pairs (2)

(X, \Vdash, S) induces operations between subsets:
ext, rest: $\mathcal{P}(S) \rightarrow \mathcal{P}(X) \quad \square, \diamond: \mathcal{P}(X) \rightarrow \mathcal{P}(S)$
(1) $\operatorname{ext} U:=\{x \in X \mid(\exists a \in U) x \Vdash a\}:=\{x \in X \mid \nabla x \downarrow U\}$
(2) rest $U:=\{x \in X \mid(\forall a \in U) x \Vdash a\}:=\{x \in X \mid \diamond x \subseteq U\}$
(0) $\diamond D:=\{a \in S \mid(\exists x \in D) x \Vdash a\}:=\{a \in S \mid \operatorname{ext} a \ell D\}$
(1) $\square D:=\{a \in S \mid(\forall x \in D) x \Vdash a\}:=\{a \in S \mid$ ext $a \subseteq D\}$
ext, \diamond approximation by excess
rest, \square approximation by defect
ext (resp. \diamond) is left adjoint to \square (resp. rest).

Open subsets

A subset D of X is open if
$(\forall x \in X)(x \varepsilon D \rightarrow(\exists a \in S)(x \Vdash a \wedge e x t a \subseteq D))$

Open subsets

A subset D of X is open if
$(\forall x \in X)(x \varepsilon D \rightarrow(\exists a \in S)(x \Vdash a \wedge$ exta $\subseteq D))$
$(\forall x \in X)(x \varepsilon D \rightarrow(\exists a \in S)(a \varepsilon \diamond x \wedge a \varepsilon \square D))$

Open subsets

A subset D of X is open if
$(\forall x \in X)(x \varepsilon D \rightarrow(\exists a \in S)(x \Vdash a \wedge$ exta $\subseteq D))$
$(\forall x \in X)(x \varepsilon D \rightarrow(\exists a \in S)(a \varepsilon \diamond x \wedge a \varepsilon \square D))$
$(\forall x \in X)(x \varepsilon D \rightarrow \diamond x \downarrow \square D)$

Open subsets

A subset D of X is open if
$(\forall x \in X)(x \varepsilon D \rightarrow(\exists a \in S)(x \Vdash a \wedge e x t a \subseteq D))$
$(\forall x \in X)(x \varepsilon D \rightarrow(\exists a \in S)(a \varepsilon \diamond x \wedge a \varepsilon \square D))$
$(\forall x \in X)(x \varepsilon D \rightarrow \diamond x \downarrow \square D)$
$(\forall x \in X)(x \varepsilon D \rightarrow x \varepsilon \operatorname{ext} \square D)$

Open subsets

A subset D of X is open if
$(\forall x \in X)(x \varepsilon D \rightarrow(\exists a \in S)(x \Vdash a \wedge e x t a \subseteq D))$
$(\forall x \in X)(x \varepsilon D \rightarrow(\exists a \in S)(a \varepsilon \diamond x \wedge a \varepsilon \square D))$
$(\forall x \in X)(x \varepsilon D \rightarrow \diamond x \downarrow \square D)$
$(\forall x \in X)(x \varepsilon D \rightarrow x \varepsilon \operatorname{ext} \square D)$
$D \subseteq$ ext $\square D$

Open subsets

A subset D of X is open if
$(\forall x \in X)(x \varepsilon D \rightarrow(\exists a \in S)(x \Vdash a \wedge$ exta $\subseteq D))$
$(\forall x \in X)(x \varepsilon D \rightarrow(\exists a \in S)(a \varepsilon \diamond x \wedge a \varepsilon \square D))$
$(\forall x \in X)(x \varepsilon D \rightarrow \diamond x \downarrow \square D)$
$(\forall x \in X)(x \varepsilon D \rightarrow x \varepsilon \operatorname{ext} \square D)$
$D \subseteq$ ext■ D
but ext■ $D \subseteq D$ by adjunction!

Open subsets

A subset D of X is open if
$(\forall x \in X)(x \varepsilon D \rightarrow(\exists a \in S)(x \Vdash a \wedge e x t a \subseteq D))$
$(\forall x \in X)(x \varepsilon D \rightarrow(\exists a \in S)(a \varepsilon \diamond x \wedge a \varepsilon \square D))$
$(\forall x \in X)(x \varepsilon D \rightarrow \diamond x \ell \square D)$
$(\forall x \in X)(x \varepsilon D \rightarrow x \varepsilon \operatorname{ext} \square D)$
$D \subseteq \operatorname{ext} \square D$
but ext $\square D \subseteq D$ by adjunction!
Hence $D=\operatorname{ext} \square D$

Open subsets

A subset D of X is open if
$(\forall x \in X)(x \varepsilon D \rightarrow(\exists a \in S)(x \Vdash a \wedge e x t a \subseteq D))$
$(\forall x \in X)(x \varepsilon D \rightarrow(\exists a \in S)(a \varepsilon \diamond x \wedge a \varepsilon \square D))$
$(\forall x \in X)(x \varepsilon D \rightarrow \diamond x \ell \square D)$
$(\forall x \in X)(x \varepsilon D \rightarrow x \varepsilon \operatorname{ext} \square D)$
$D \subseteq \operatorname{ext} \square D$
but ext $\square D \subseteq D$ by adjunction!
Hence $D=\operatorname{ext} \square D$
$D \equiv$ communicable message in the following system with X, S individuals

$$
(\mathcal{P}(X),=x) \underset{\square}{\stackrel{\text { ext }}{\longleftrightarrow}}(\mathcal{P}(S),=s)
$$

Closed subsets

A subset D of X is closed if
$(\forall x \in X)((\forall a \in S)(x \Vdash a \rightarrow$ exta $\ell D) \rightarrow x \varepsilon D)$

Closed subsets

A subset D of X is closed if
$(\forall x \in X)((\forall a \in S)(x \Vdash a \rightarrow$ exta $\ell D) \rightarrow x \varepsilon D)$
$(\forall x \in X)((\forall a \in S)(a \varepsilon \diamond x \rightarrow a \varepsilon \diamond D) \rightarrow x \varepsilon D)$

Closed subsets

A subset D of X is closed if
$(\forall x \in X)((\forall a \in S)(x \Vdash a \rightarrow$ exta $\ell D) \rightarrow x \varepsilon D)$
$(\forall x \in X)((\forall a \in S)(a \varepsilon \diamond x \rightarrow a \varepsilon \diamond D) \rightarrow x \varepsilon D)$
$(\forall x \in X)((\forall a \in S)(\diamond x \subseteq \diamond D) \rightarrow x \varepsilon D)$

Closed subsets

A subset D of X is closed if
$(\forall x \in X)((\forall a \in S)(x \Vdash a \rightarrow$ exta $\ell D) \rightarrow x \varepsilon D)$
$(\forall x \in X)((\forall a \in S)(a \varepsilon \diamond x \rightarrow a \varepsilon \diamond D) \rightarrow x \varepsilon D)$
$(\forall x \in X)((\forall a \in S)(\diamond x \subseteq \diamond D) \rightarrow x \in D)$
$(\forall x \in X)(x \varepsilon$ rest $\diamond D \rightarrow x \varepsilon D)$

Closed subsets

```
A subset D of X is closed if
(\forallx\inX)((\foralla\inS)(x\Vdasha-> exta \ell D) }->x\inD
(\forallx\inX)((\foralla\inS)(a\varepsilon\diamondx->a\varepsilon\diamondD) ->x\varepsilonD)
(\forallx\inX)((\foralla\inS)(\diamondx\subseteq\diamondD) ->x\varepsilonD)
(\forallx\inX)(x\varepsilonrest\diamondD->x\inD)
rest}\diamondD\subseteq
```


Closed subsets

A subset D of X is closed if
$(\forall x \in X)((\forall a \in S)(x \Vdash a \rightarrow$ exta $\ell D) \rightarrow x \varepsilon D)$
$(\forall x \in X)((\forall a \in S)(a \varepsilon \diamond x \rightarrow a \varepsilon \diamond D) \rightarrow x \varepsilon D)$
$(\forall x \in X)((\forall a \in S)(\diamond x \subseteq \diamond D) \rightarrow x \in D)$
$(\forall x \in X)(x \varepsilon$ rest $\diamond D \rightarrow x \varepsilon D)$
rest $\diamond D \subseteq D$
but $D \subseteq$ rest $\diamond D$ by adjunction!

Closed subsets

A subset D of X is closed if
$(\forall x \in X)((\forall a \in S)(x \Vdash a \rightarrow \operatorname{exta} \ell D) \rightarrow x \varepsilon D)$
$(\forall x \in X)((\forall a \in S)(a \varepsilon \diamond x \rightarrow a \varepsilon \diamond D) \rightarrow x \varepsilon D)$
$(\forall x \in X)((\forall a \in S)(\diamond x \subseteq \diamond D) \rightarrow x \in D)$
$(\forall x \in X)(x \varepsilon$ rest $\diamond D \rightarrow x \varepsilon D)$
rest $\diamond D \subseteq D$
but $D \subseteq$ rest $\diamond D$ by adjunction!
Hence $D=$ rest $\diamond D$

Closed subsets

A subset D of X is closed if
$(\forall x \in X)((\forall a \in S)(x \Vdash a \rightarrow$ exta $\ell D) \rightarrow x \varepsilon D)$
$(\forall x \in X)((\forall a \in S)(a \varepsilon \diamond x \rightarrow a \varepsilon \diamond D) \rightarrow x \varepsilon D)$
$(\forall x \in X)((\forall a \in S)(\diamond x \subseteq \diamond D) \rightarrow x \in D)$
$(\forall x \in X)(x \varepsilon$ rest $\diamond D \rightarrow x \varepsilon D)$
rest $\diamond D \subseteq D$
but $D \subseteq$ rest $\diamond D$ by adjunction!
Hence $D=$ rest $\diamond D$
Hence D is closed iff it is a faithfully communicable message in the following system with X, S individuals

$$
(\mathcal{P}(X),=x) \underset{\diamond}{\stackrel{\text { rest }}{\rightleftarrows}}(\mathcal{P}(S),=s)
$$

Other decoding procedures (1)

What about these decoding procedures?

$$
(\mathcal{P}(X),=x) \underset{\square}{\stackrel{\text { rest }}{\leftrightarrows}}(\mathcal{P}(S),=s)
$$

$$
(\mathcal{P}(X),=x) \underset{\diamond}{\stackrel{\text { ext }}{\rightleftarrows}}(\mathcal{P}(S),=s)
$$

Other decoding procedures (1)

What about these decoding procedures?

$$
(\mathcal{P}(X),=x) \underset{\square}{\stackrel{\text { rest }}{\leftrightarrows}}(\mathcal{P}(S),=s) \quad(\mathcal{P}(X),=x) \underset{\diamond}{\stackrel{\text { ext }}{\leftrightarrows}}(\mathcal{P}(S),=s)
$$

If (B1) $X=\operatorname{ext} S$ holds, then TFAE for a subset D of X :

Other decoding procedures (1)

What about these decoding procedures?

$$
(\mathcal{P}(X),=x) \underset{\square}{\stackrel{\text { rest }}{\leftrightarrows}}(\mathcal{P}(S),=s) \quad(\mathcal{P}(X),=x) \underset{\diamond}{\stackrel{\text { ext }}{\longleftrightarrow}}(\mathcal{P}(S),=s)
$$

If (B1) $X=$ ext S holds, then TFAE for a subset D of X :
(1) $D=$ rest $\square D$ i. e. D is communicable w.r.t. \square and rest

Other decoding procedures (1)

What about these decoding procedures?

$$
(\mathcal{P}(X),=x) \underset{\square}{\stackrel{\text { rest }}{\leftrightarrows}}(\mathcal{P}(S),=s) \quad(\mathcal{P}(X),=x) \underset{\diamond}{\stackrel{\text { ext }}{\leftrightarrows}}(\mathcal{P}(S),=s)
$$

If (B1) $X=$ ext S holds, then TFAE for a subset D of X :
(1) $D=$ rest $\square D$ i. e. D is communicable w.r.t. \square and rest
(2) $D=e x t \diamond D$ i. e. D is communicable w.r.t. \diamond and ext

Other decoding procedures (1)

What about these decoding procedures?

$$
(\mathcal{P}(X),=x) \underset{\square}{\stackrel{\text { rest }}{\leftrightarrows}}(\mathcal{P}(S),=s) \quad(\mathcal{P}(X),=x) \underset{\diamond}{\stackrel{\text { ext }}{\leftrightarrows}}(\mathcal{P}(S),=s)
$$

If (B1) $X=\operatorname{ext} S$ holds, then TFAE for a subset D of X :
(1) $D=$ rest $\square D$ i. e. D is communicable w.r.t. \square and rest
(2) $D=\operatorname{ext} \diamond D$ i. e. D is communicable w.r.t. \diamond and ext
© $\diamond D \subseteq \square D$

Other decoding procedures (1)

What about these decoding procedures?

$$
(\mathcal{P}(X),=x) \underset{\square}{\stackrel{\text { rest }}{\leftrightarrows}}(\mathcal{P}(S),=s) \quad(\mathcal{P}(X),=x) \underset{\diamond}{\stackrel{\text { ext }}{\leftrightarrows}}(\mathcal{P}(S),=s)
$$

If (B1) $X=\operatorname{ext} S$ holds, then TFAE for a subset D of X :
(1) $D=$ rest $\square D$ i. e. D is communicable w.r.t. \square and rest
(2) $D=\operatorname{ext} \diamond D$ i. e. D is communicable w.r.t. \diamond and ext
© $\diamond D \subseteq \square D$
In particular each one of the previous conditions implies that D is clopen.

Other decoding procedures (1)

What about these decoding procedures?

$$
(\mathcal{P}(X),=x) \underset{\square}{\stackrel{\text { rest }}{\leftrightarrows}}(\mathcal{P}(S),=s) \quad(\mathcal{P}(X),=x) \underset{\diamond}{\stackrel{\text { ext }}{\leftrightarrows}}(\mathcal{P}(S),=s)
$$

If (B1) $X=\operatorname{ext} S$ holds, then TFAE for a subset D of X :
(1) $D=$ rest $\square D$ i. e. D is communicable w.r.t. \square and rest
(2) $D=\operatorname{ext} \diamond D$ i. e. D is communicable w.r.t. \diamond and ext

- $\diamond D \subseteq \square D$

In particular each one of the previous conditions implies that D is clopen.
The inverse statement does not hold:

Other decoding procedures (1)

What about these decoding procedures?

$$
(\mathcal{P}(X),=x) \underset{\square}{\stackrel{\text { rest }}{\leftrightarrows}}(\mathcal{P}(S),=s) \quad(\mathcal{P}(X),=x) \underset{\diamond}{\stackrel{\text { ext }}{\leftrightarrows}}(\mathcal{P}(S),=s)
$$

If (B1) $X=$ ext S holds, then TFAE for a subset D of X :
(1) $D=$ rest $\square D$ i. e. D is communicable w.r.t. \square and rest
(2) $D=\operatorname{ext} \diamond D$ i. e. D is communicable w.r.t. \diamond and ext

- $\diamond D \subseteq \square D$

In particular each one of the previous conditions implies that D is clopen.
The inverse statement does not hold:
in $(\mathbf{2}, \Vdash, \mathbf{3})$ where $x \Vdash a \equiv^{\operatorname{def}} x=a \vee a=2$,

Other decoding procedures (1)

What about these decoding procedures?

$$
(\mathcal{P}(X),=x) \underset{\square}{\stackrel{\text { rest }}{\leftrightarrows}}(\mathcal{P}(S),=s) \quad(\mathcal{P}(X),=x) \underset{\diamond}{\stackrel{\text { ext }}{\leftrightarrows}}(\mathcal{P}(S),=s)
$$

If (B1) $X=\operatorname{ext} S$ holds, then TFAE for a subset D of X :
(1) $D=$ rest $\square D$ i. e. D is communicable w.r.t. \square and rest
(2) $D=\operatorname{ext} \diamond D$ i. e. D is communicable w.r.t. \diamond and ext

- $\diamond D \subseteq \square D$

In particular each one of the previous conditions implies that D is clopen.
The inverse statement does not hold:
in $(\mathbf{2}, \Vdash, \mathbf{3})$ where $x \Vdash a \equiv^{\text {def }} x=a \vee a=2$,
singletons $\{x\}$ are clopen, but ext $\diamond\{x\}=\mathbf{2}$ and rest $\square\{x\}=\varnothing$.

Other decoding procedures (2)

$D^{\rightarrow}:=\{a \in S \mid D \subseteq e x t a\}$ and $U^{\leftarrow}:=\{x \in X \mid U \subseteq \diamond x\}$ (polarities in Birkhoff)

Other decoding procedures (2)

$D^{\rightarrow}:=\{a \in S \mid D \subseteq$ ext $a\}$ and $U^{\leftarrow}:=\{x \in X \mid U \subseteq \diamond x\}$ (polarities in Birkhoff) One impredicative classical example: $(X, \epsilon, \mathcal{T})$ for (X, \mathcal{T}) topological space:

Other decoding procedures (2)

$D^{\rightarrow}:=\{a \in S \mid D \subseteq e x t a\}$ and $U^{\leftarrow}:=\{x \in X \mid U \subseteq \diamond x\}$ (polarities in Birkhoff) One impredicative classical example: $(X, \epsilon, \mathcal{T})$ for (X, \mathcal{T}) topological space:

	ext	rest	\leftarrow
\diamond	\varnothing, X	Closed sets	T_{0}-points inters. of open sets
\square	Open sets	\varnothing, X	\varnothing
\rightarrow	X	closed T_{0}-points	intersections of open sets

Communication of relations

Consider two basic pairs $\mathcal{X}=(X, \Vdash \mathcal{X}, S)$ and $\mathcal{Y}=(Y, \Vdash \mathcal{Y}, T)$

Communication of relations

Consider two basic pairs $\mathcal{X}=(X, \Vdash \mathcal{X}, S)$ and $\mathcal{Y}=(Y, \Vdash \mathcal{Y}, T)$ Individuals are (X, Y) and (S, T)

Communication of relations

Consider two basic pairs $\mathcal{X}=(X, \Vdash \mathcal{X}, S)$ and $\mathcal{Y}=(Y, \Vdash \mathcal{Y}, T)$
Individuals are (X, Y) and (S, T)
Messages are $\operatorname{Rel}(X, Y)$ and $\operatorname{Rel}(S, T)$.

Communication of relations

Consider two basic pairs $\mathcal{X}=(X, \Vdash \mathcal{X}, S)$ and $\mathcal{Y}=(Y, \Vdash \mathcal{Y}, T)$
Individuals are (X, Y) and (S, T)
Messages are $\operatorname{Rel}(X, Y)$ and $\operatorname{Rel}(S, T)$.
$r \sim(x, Y) r^{\prime}$ iff for every $b \in T, r^{-} \operatorname{ext} b=r^{\prime-}$ extb i.e.
$1 \vdash \mathcal{y}$ coequalizes r and r^{\prime} in Rel.

Communication of relations

Consider two basic pairs $\mathcal{X}=(X, \Vdash \mathcal{X}, S)$ and $\mathcal{Y}=(Y, \Vdash \mathcal{Y}, T)$
Individuals are (X, Y) and (S, T)
Messages are $\operatorname{Rel}(X, Y)$ and $\operatorname{Rel}(S, T)$.
$r \sim(X, Y) r^{\prime}$ iff for every $b \in T, r^{-} \operatorname{ext} b=r^{\prime-}$ extb i.e.
$\Vdash_{\mathcal{Y}}$ coequalizes r and r^{\prime} in Rel.
$s \sim(s, T) s^{\prime}$ iff for every $x \in X, s \diamond x=s^{\prime} \diamond x$.
$\Vdash \mathcal{X}$ equalizes s and s^{\prime} in Rel.

Communication of relations

Consider two basic pairs $\mathcal{X}=(X, \Vdash \mathcal{X}, S)$ and $\mathcal{Y}=(Y, \Vdash \mathcal{Y}, T)$
Individuals are (X, Y) and (S, T)
Messages are $\operatorname{Rel}(X, Y)$ and $\operatorname{Rel}(S, T)$.
$r \sim(X, Y) r^{\prime}$ iff for every $b \in T, r^{-} \operatorname{ext} b=r^{\prime-}$ extb i.e.
$\Vdash_{\mathcal{Y}}$ coequalizes r and r^{\prime} in Rel.
$s \sim(s, T) s^{\prime}$ iff for every $x \in X, s \diamond x=s^{\prime} \diamond x$.
$\Vdash \mathcal{X}$ equalizes s and s^{\prime} in Rel.

Continuous relations

A function (single-valued total relation) f from X to Y is continuous from \mathcal{X} to \mathcal{Y} if for all $b \in T$ and $x \in X$

$$
f(x) \varepsilon \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \varepsilon \operatorname{ext} a \wedge\left(\forall x^{\prime} \in X\right)\left(x^{\prime} \varepsilon \operatorname{exta} \rightarrow f\left(x^{\prime}\right) \varepsilon \operatorname{ext} b\right)\right)
$$

Continuous relations

A function (single-valued total relation) f from X to Y is continuous from \mathcal{X} to \mathcal{Y} if for all $b \in T$ and $x \in X$

$$
\begin{aligned}
& f(x) \varepsilon \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \varepsilon \operatorname{ext} a \wedge\left(\forall x^{\prime} \in X\right)\left(x^{\prime} \varepsilon \operatorname{exta} \rightarrow f\left(x^{\prime}\right) \varepsilon \operatorname{ext} b\right)\right) \\
& f x \ell \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \varepsilon \operatorname{ext} a \wedge\left(\forall x^{\prime} \in X\right)\left(x^{\prime} \varepsilon \operatorname{exta} \rightarrow f x^{\prime} \ell \operatorname{ext} b\right)\right)
\end{aligned}
$$

Continuous relations

A function (single-valued total relation) f from X to Y is continuous from \mathcal{X} to \mathcal{Y} if for all $b \in T$ and $x \in X$

$$
\begin{aligned}
& f(x) \varepsilon \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \varepsilon \operatorname{ext} a \wedge\left(\forall x^{\prime} \in X\right)\left(x^{\prime} \varepsilon \operatorname{exta} \rightarrow f\left(x^{\prime}\right) \varepsilon \operatorname{ext} b\right)\right) \\
& f x \ell \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \varepsilon \operatorname{ext} a \wedge\left(\forall x^{\prime} \in X\right)\left(x^{\prime} \varepsilon \operatorname{exta} \rightarrow f x^{\prime} \ell \operatorname{ext} b\right)\right) \\
& x \varepsilon f^{-} \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \varepsilon \operatorname{ext} a \wedge\left(\forall x^{\prime} \in X\right)\left(x^{\prime} \varepsilon \operatorname{exta} \rightarrow x^{\prime} \varepsilon f^{-} \operatorname{ext} b\right)\right)
\end{aligned}
$$

Continuous relations

A function (single-valued total relation) f from X to Y is continuous from \mathcal{X} to \mathcal{Y} if for all $b \in T$ and $x \in X$

$$
\begin{aligned}
& f(x) \varepsilon \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \varepsilon \operatorname{ext} a \wedge\left(\forall x^{\prime} \in X\right)\left(x^{\prime} \varepsilon \operatorname{exta} \rightarrow f\left(x^{\prime}\right) \varepsilon \operatorname{ext} b\right)\right) \\
& f x \ell \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \varepsilon \operatorname{ext} a \wedge\left(\forall x^{\prime} \in X\right)\left(x^{\prime} \varepsilon \operatorname{exta} \rightarrow f x^{\prime} \ell \operatorname{ext} b\right)\right) \\
& x \varepsilon f^{-} \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \varepsilon \operatorname{ext} a \wedge\left(\forall x^{\prime} \in X\right)\left(x^{\prime} \varepsilon \operatorname{exta} \rightarrow x^{\prime} \varepsilon f^{-} \operatorname{ext} b\right)\right) \\
& x \varepsilon f^{-} \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \Vdash a \wedge \operatorname{exta\subseteq f^{-}\operatorname {ext}b))}\right.
\end{aligned}
$$

Continuous relations

A function (single-valued total relation) f from X to Y is continuous from \mathcal{X} to \mathcal{Y} if for all $b \in T$ and $x \in X$

$$
\begin{aligned}
& f(x) \varepsilon \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \varepsilon \operatorname{ext} a \wedge\left(\forall x^{\prime} \in X\right)\left(x^{\prime} \varepsilon \operatorname{exta} \rightarrow f\left(x^{\prime}\right) \varepsilon \operatorname{ext} b\right)\right) \\
& f x \ell \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \varepsilon \operatorname{ext} a \wedge\left(\forall x^{\prime} \in X\right)\left(x^{\prime} \varepsilon \operatorname{exta} \rightarrow f x^{\prime} \ell \operatorname{ext} b\right)\right) \\
& x \varepsilon f^{-} \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \varepsilon \operatorname{ext} a \wedge\left(\forall x^{\prime} \in X\right)\left(x^{\prime} \varepsilon \operatorname{exta} \rightarrow x^{\prime} \varepsilon f^{-} \operatorname{ext} b\right)\right) \\
& \left.x \varepsilon f^{-} \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \Vdash a \wedge \operatorname{ext} a \subseteq f^{-} \operatorname{ext} b\right)\right)
\end{aligned}
$$

We extend this notion to relations $r: X \rightarrow Y . r$ is continuous if for all $b \in T$ and $x \in X$

$$
\left.x \in r^{-} \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \Vdash a \wedge e x t a \subseteq r^{-} \operatorname{ext} b\right)\right)
$$

Continuous relations

A function (single-valued total relation) f from X to Y is continuous from \mathcal{X} to \mathcal{Y} if for all $b \in T$ and $x \in X$

$$
\begin{aligned}
& f(x) \varepsilon \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \varepsilon \operatorname{ext} a \wedge\left(\forall x^{\prime} \in X\right)\left(x^{\prime} \varepsilon \operatorname{exta} \rightarrow f\left(x^{\prime}\right) \varepsilon \operatorname{ext} b\right)\right) \\
& f x \ell \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \varepsilon \operatorname{ext} a \wedge\left(\forall x^{\prime} \in X\right)\left(x^{\prime} \varepsilon \operatorname{exta} \rightarrow f x^{\prime} \ell \operatorname{ext} b\right)\right) \\
& x \varepsilon f^{-} \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \varepsilon \operatorname{ext} a \wedge\left(\forall x^{\prime} \in X\right)\left(x^{\prime} \varepsilon \operatorname{exta} \rightarrow x^{\prime} \varepsilon f^{-} \operatorname{ext} b\right)\right) \\
& x \varepsilon f^{-} \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \Vdash a \wedge \operatorname{exta\subseteq f^{-}\operatorname {ext}b))}\right.
\end{aligned}
$$

We extend this notion to relations $r: X \rightarrow Y . r$ is continuous if for all $b \in T$ and $x \in X$

$$
\begin{aligned}
& \left.x \varepsilon r^{-} \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \Vdash a \wedge \operatorname{ext} a \subseteq r^{-} \operatorname{ext} b\right)\right) \\
& \left.x \varepsilon r^{-} \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \Vdash a \wedge a \varepsilon \square r^{-} \operatorname{ext} b\right)\right)
\end{aligned}
$$

Continuous relations

A function (single-valued total relation) f from X to Y is continuous from \mathcal{X} to \mathcal{Y} if for all $b \in T$ and $x \in X$

$$
\begin{aligned}
& f(x) \varepsilon \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \varepsilon \operatorname{ext} a \wedge\left(\forall x^{\prime} \in X\right)\left(x^{\prime} \varepsilon \operatorname{exta} \rightarrow f\left(x^{\prime}\right) \varepsilon \operatorname{ext} b\right)\right) \\
& f x \ell \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \varepsilon \operatorname{ext} a \wedge\left(\forall x^{\prime} \in X\right)\left(x^{\prime} \varepsilon \operatorname{exta} \rightarrow f x^{\prime} \ell \operatorname{ext} b\right)\right) \\
& x \varepsilon f^{-} \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \varepsilon \operatorname{ext} a \wedge\left(\forall x^{\prime} \in X\right)\left(x^{\prime} \varepsilon \operatorname{exta} \rightarrow x^{\prime} \varepsilon f^{-} \operatorname{ext} b\right)\right) \\
& x \varepsilon f^{-} \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \Vdash a \wedge \operatorname{exta\subseteq f^{-}\operatorname {ext}b))}\right.
\end{aligned}
$$

We extend this notion to relations $r: X \rightarrow Y . r$ is continuous if for all $b \in T$ and $x \in X$

$$
\begin{aligned}
& \left.x \varepsilon r^{-} \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \Vdash a \wedge \operatorname{ext} a \subseteq r^{-} \operatorname{ext} b\right)\right) \\
& \left.x \varepsilon r^{-} \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \Vdash a \wedge a \varepsilon \square r^{-} \operatorname{ext} b\right)\right) \\
& x \varepsilon r^{-} \operatorname{ext} b \rightarrow \diamond x \ell \square r^{-} \operatorname{ext} b
\end{aligned}
$$

Continuous relations

A function (single-valued total relation) f from X to Y is continuous from \mathcal{X} to \mathcal{Y} if for all $b \in T$ and $x \in X$

$$
\begin{aligned}
& f(x) \varepsilon \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \varepsilon \operatorname{ext} a \wedge\left(\forall x^{\prime} \in X\right)\left(x^{\prime} \varepsilon \operatorname{exta} \rightarrow f\left(x^{\prime}\right) \varepsilon \operatorname{ext} b\right)\right) \\
& f x \ell \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \varepsilon \operatorname{ext} a \wedge\left(\forall x^{\prime} \in X\right)\left(x^{\prime} \varepsilon \operatorname{exta} \rightarrow f x^{\prime} \ell \operatorname{ext} b\right)\right) \\
& x \varepsilon f^{-} \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \varepsilon \operatorname{ext} a \wedge\left(\forall x^{\prime} \in X\right)\left(x^{\prime} \varepsilon \operatorname{exta} \rightarrow x^{\prime} \varepsilon f^{-} \operatorname{ext} b\right)\right) \\
& x \varepsilon f^{-} \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \Vdash a \wedge \operatorname{exta\subseteq f^{-}\operatorname {ext}b))}\right.
\end{aligned}
$$

We extend this notion to relations $r: X \rightarrow Y . r$ is continuous if for all $b \in T$ and $x \in X$

$$
\begin{aligned}
& \left.x \varepsilon r^{-} \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \Vdash a \wedge \operatorname{ext} a \subseteq r^{-} \operatorname{ext} b\right)\right) \\
& \left.x \varepsilon r^{-} \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \Vdash a \wedge a \varepsilon \square r^{-} \operatorname{ext} b\right)\right) \\
& x \varepsilon r^{-} \operatorname{ext} b \rightarrow \diamond x \vee \square r^{-} \operatorname{ext} b \\
& x \in r^{-} \operatorname{ext} b \rightarrow x \varepsilon \operatorname{ext} \square r^{-} \operatorname{ext} b
\end{aligned}
$$

Continuous relations

A function (single-valued total relation) f from X to Y is continuous from \mathcal{X} to \mathcal{Y} if for all $b \in T$ and $x \in X$

$$
\begin{aligned}
& f(x) \varepsilon \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \varepsilon \operatorname{ext} a \wedge\left(\forall x^{\prime} \in X\right)\left(x^{\prime} \varepsilon \operatorname{exta} \rightarrow f\left(x^{\prime}\right) \varepsilon \operatorname{ext} b\right)\right) \\
& f x \ell \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \varepsilon \operatorname{ext} a \wedge\left(\forall x^{\prime} \in X\right)\left(x^{\prime} \varepsilon \operatorname{exta} \rightarrow f x^{\prime} \ell \operatorname{ext} b\right)\right) \\
& x \varepsilon f^{-} \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \varepsilon \operatorname{ext} a \wedge\left(\forall x^{\prime} \in X\right)\left(x^{\prime} \varepsilon \operatorname{exta} \rightarrow x^{\prime} \varepsilon f^{-} \operatorname{ext} b\right)\right) \\
& x \varepsilon f^{-} \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \Vdash a \wedge \operatorname{exta\subseteq f^{-}\operatorname {ext}b))}\right.
\end{aligned}
$$

We extend this notion to relations $r: X \rightarrow Y . r$ is continuous if for all $b \in T$ and $x \in X$

$$
\begin{aligned}
& \left.x \varepsilon r^{-} \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \Vdash a \wedge \operatorname{ext} a \subseteq r^{-} \operatorname{ext} b\right)\right) \\
& \left.x \varepsilon r^{-} \operatorname{ext} b \rightarrow(\exists a \in S)\left(x \Vdash a \wedge a \varepsilon \square r^{-} \operatorname{ext} b\right)\right) \\
& x \varepsilon r^{-} \operatorname{ext} b \rightarrow \diamond x \vee \square r^{-} \operatorname{ext} b \\
& x \in r^{-} \operatorname{ext} b \rightarrow x \varepsilon \operatorname{ext} \square r^{-} \operatorname{ext} b
\end{aligned}
$$

i. e. if for every $b, r^{-} \operatorname{ext} b=\operatorname{ext} \square r^{-} \operatorname{ext} b$ is open.

Continuous relations as communicable relations

$$
(\operatorname{Rel}(X, Y), \sim(X, Y)) \underset{\sigma}{\stackrel{\rho}{\leftrightarrows}}(\operatorname{Rel}(S, T), \sim(S, T))
$$

where

Continuous relations as communicable relations

$$
(\operatorname{Rel}(X, Y), \sim(X, Y)) \underset{\sigma}{\stackrel{\rho}{\leftrightarrows}}(\operatorname{Rel}(S, T), \sim(S, T))
$$

where
(1) $\sigma(r)(a, b) \equiv{ }^{\operatorname{def}} \operatorname{ext} a \subseteq r^{-} \operatorname{ext} b[a \in S, b \in T]$

Continuous relations as communicable relations

$$
(\operatorname{Rel}(X, Y), \sim(X, Y)) \underset{\sigma}{\stackrel{\rho}{\leftrightarrows}}(\operatorname{Rel}(S, T), \sim(S, T))
$$

where
(1) $\sigma(r)(a, b) \equiv{ }^{\text {def }}$ ext $a \subseteq r^{-} \operatorname{ext} b[a \in S, b \in T]$
(2) $\rho(s)(x, y) \equiv^{d e f} \diamond y \subseteq s \diamond x[x \in X, y \in Y]$

Continuous relations as communicable relations

$$
(\operatorname{Rel}(X, Y), \sim(X, Y)) \underset{\sigma}{\stackrel{\rho}{\leftrightarrows}}(\operatorname{Rel}(S, T), \sim(S, T))
$$

where
(1) $\sigma(r)(a, b) \equiv^{\text {def }} \operatorname{ext} a \subseteq r^{-} \operatorname{ext} b[a \in S, b \in T]$
(2) $\rho(s)(x, y) \equiv{ }^{\text {def }} \diamond y \subseteq s \diamond x[x \in X, y \in Y]$

Then r is communicable if and only if r is continuous.

Continuous relations as commutative diagram

Notice that $r: X \rightarrow Y$ is continuous from \mathcal{X} to \mathcal{Y} if and only if there exists $s: S \rightarrow T$ such that the following diagram commutes in Rel:

Continuous relations as commutative diagram

Notice that $r: X \rightarrow Y$ is continuous from \mathcal{X} to \mathcal{Y} if and only if there exists $s: S \rightarrow T$ such that the following diagram commutes in Rel:

Equivalent continuos relations corresponds to squares with equal diagonals.

Continuous relations as commutative diagram

Notice that $r: X \rightarrow Y$ is continuous from \mathcal{X} to \mathcal{Y} if and only if there exists $s: S \rightarrow T$ such that the following diagram commutes in Rel:

Equivalent continuos relations corresponds to squares with equal diagonals. Basic pairs and continuous relations form a category which is equivalent to the Freyd completion of Rel.

Concrete spaces

A concrete space is a basic pair $(X, \Vdash-S)$ such that
(1) $X=e x t S$
(2) for all $a, b \in S$, ext $a \cap \operatorname{ext} b=\bigcup\{\operatorname{ext} c \mid \operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b\}$

Communication of points

What is a point of X for S ?

Communication of points

What is a point of X for S ?
A subset D of X is seen as a point if it is an atom for S

Communication of points

What is a point of X for S ?
A subset D of X is seen as a point if it is an atom for S
(1) it is inhabited (there is $a \in S$, such that exta $\downarrow D$)

Communication of points

What is a point of X for S ?
A subset D of X is seen as a point if it is an atom for S
(1) it is inhabited (there is $a \in S$, such that exta $\searrow D$)
(2) it is indivisible by using concepts in S : for every a and b in S

Communication of points

What is a point of X for S ?
A subset D of X is seen as a point if it is an atom for S
(1) it is inhabited (there is $a \in S$, such that exta $\downarrow D$)
(2) it is indivisible by using concepts in S : for every a and b in S

$$
\operatorname{exta} \ell D \wedge \operatorname{ext} b \searrow D \rightarrow(\exists c \in S)(\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \wedge D \ell \operatorname{ext} c)
$$

In this case D is called convergent.

Communication of points

What is a point of X for S ?
A subset D of X is seen as a point if it is an atom for S
(1) it is inhabited (there is $a \in S$, such that exta $\searrow D$)
(2) it is indivisible by using concepts in S : for every a and b in S

$$
\operatorname{exta} \ell D \wedge \operatorname{ext} b \ell D \rightarrow(\exists c \in S)(\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \wedge D \ell \operatorname{ext} c)
$$

In this case D is called convergent.
Moreover S cannot distinguish two subsets for which $\diamond D=\diamond E$, i. e. which have the same closure.

Communication of points

What is a point of X for S ?
A subset D of X is seen as a point if it is an atom for S
(1) it is inhabited (there is $a \in S$, such that exta $\searrow D$)
(2) it is indivisible by using concepts in S : for every a and b in S

$$
\text { exta } \ell D \wedge \operatorname{ext} b \ell D \rightarrow(\exists c \in S)(\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \wedge D \ell \operatorname{ext} c)
$$

In this case D is called convergent.
Moreover S cannot distinguish two subsets for which $\diamond D=\diamond E$, i. e. which have the same closure.
The right notion of point in terms of communication: equivalence class of convergent subsets!

Communication of points

What is a point of X for S ?
A subset D of X is seen as a point if it is an atom for S
(1) it is inhabited (there is $a \in S$, such that exta $\searrow D$)
(2) it is indivisible by using concepts in S : for every a and b in S

$$
\text { exta } \ell D \wedge \operatorname{ext} b \ell D \rightarrow(\exists c \in S)(\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \wedge D \ell \operatorname{ext} c)
$$

In this case D is called convergent.
Moreover S cannot distinguish two subsets for which $\diamond D=\diamond E$, i. e. which have the same closure.
The right notion of point in terms of communication: equivalence class of convergent subsets!
In a concrete space $\{x\}$ is convergent.

Communication of points

What is a point of X for S ?
A subset D of X is seen as a point if it is an atom for S
(1) it is inhabited (there is $a \in S$, such that exta $\downarrow D$)
(2) it is indivisible by using concepts in S : for every a and b in S

$$
\operatorname{exta} \ell D \wedge \operatorname{ext} b \ell D \rightarrow(\exists c \in S)(\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \wedge D \ell \operatorname{ext} c)
$$

In this case D is called convergent.
Moreover S cannot distinguish two subsets for which $\diamond D=\diamond E$, i. e. which have the same closure.
The right notion of point in terms of communication: equivalence class of convergent subsets!
In a concrete space $\{x\}$ is convergent.
We call a continuous relation $r: X \rightarrow Y$ convergent if it preserves convergent subsets (topological points).

Communication of points

What is a point of X for S ?
A subset D of X is seen as a point if it is an atom for S
(1) it is inhabited (there is $a \in S$, such that exta $\searrow D$)
(2) it is indivisible by using concepts in S : for every a and b in S

$$
\operatorname{exta} \ell D \wedge \operatorname{ext} b \ell D \rightarrow(\exists c \in S)(\operatorname{ext} c \subseteq \operatorname{ext} a \cap \operatorname{ext} b \wedge D \ell \operatorname{ext} c)
$$

In this case D is called convergent.
Moreover S cannot distinguish two subsets for which $\diamond D=\diamond E$, i. e. which have the same closure.
The right notion of point in terms of communication: equivalence class of convergent subsets!
In a concrete space $\{x\}$ is convergent.
We call a continuous relation $r: X \rightarrow Y$ convergent if it preserves convergent subsets (topological points). This is the right notion of function for concrete spaces from the point of view of communication.

Thank you for your attention!

