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Congruences on Heyting algebras are determined exactly by
filters of the underlying lattice — what about algebras with a
Heyting algebra reduct?
» Boolean algebras with operators. If B is a boolean
algebra equipped with finitely many (dual normal)
operators, i.e., unary operations fi, .. ., f, satisfying

ilx Ny)=fix Ny, fil =1,

then congruences on B are determined by filters closed
under the map

ax =fixXANhBXAN...AFfx

» Double-Heyting algebras. Double-Heyting algebras have
their congruences determined by filters closed under the
map

dx=(1=-x)—0
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algebra and M is a set of operations on A.

16



Preliminaries

Definition

An algebra A = (A; M, Vv, A\, —,0,1) is an expanded Heyting
algebra (EHA) if the reduct (A, v, A,—,0, 1) is a Heyting
algebra and M is a set of operations on A.

» Letx < y =x — y Ay — x. Recall that if A is a Heyting
algebra and F C Ais a filter, then the binary relation
0(F) ={(x,y) | x <+ y € F} is a congruence on A.

16



Preliminaries

Definition

An algebra A = (A; M, Vv, A\, —,0,1) is an expanded Heyting
algebra (EHA) if the reduct (A, v, A,—,0, 1) is a Heyting
algebra and M is a set of operations on A.

» Letx < y =x — y Ay — x. Recall that if A is a Heyting
algebra and F C Ais a filter, then the binary relation
0(F) ={(x,y) | x <+ y € F} is a congruence on A.

Definition
A filter F C Aiis compatible with an n-ary operation f on A if

{x;i > yi | i < n} C Fimplies f(X) «» f(¥) € F.



Preliminaries

Definition

An algebra A = (A; M, Vv, A\, —,0,1) is an expanded Heyting
algebra (EHA) if the reduct (A, v, A,—,0, 1) is a Heyting
algebra and M is a set of operations on A.

» Letx < y =x — y Ay — x. Recall that if A is a Heyting
algebra and F C Ais a filter, then the binary relation
0(F) ={(x,y) | x <+ y € F} is a congruence on A.

Definition
A filter F C Aiis compatible with an n-ary operation f on A if

{x;i > yi | i < n} C Fimplies f(X) «» f(¥) € F.

Theorem
If A is an EHA then 6(F) is a congruence on A if and only if F is
compatible with f for every f € M.
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Any unquantified A from now on is a fixed but arbitrary EHA.
Definition

A filter F of A will be called a normal filter if it is compatible with
every f € M, or equivalently, if (F) is a congruence on A.

Definition

Let t be a unary term in the language of A. We say that t is a
normal filter term (on A) provided that it is order-preserving,
and for every filter F of A, the filter F is a normal filter if and
only if F is closed under tA.

Example

The identity function is a normal filter term for unexpanded
Heyting algebras.
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Normal filter terms

Hence, the algebras from before have normal filter terms.
» Boolean algebras with operators. If B is a boolean

algebra equipped with unary operators fi, ..., f,, then
congruences on B are determined by filters closed under
the map

ax = fixANbBxA...fhx

» Double-Heyting algebras. Double-Heyting algebras have
their congruences determined by filters closed under the
map

dx=(1-x)—0

Let us say that a class of similar algebras has a normal filter
term tif t is a normal filter term for each of those algebras.
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Constructing normal filter terms

Let f be an n-ary operation on A. For each a € A, define the set

fo(a) = {f(X) < f(y)| (Vi< n)x;,y;€ Aand x; < y; > a}.

X<y fx < fy

a
Now define the partial operation [M] by

Mla= A\ J{r(a) | f € M}

If it is defined everywhere then we say that [M] exists in A.
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Constructing normal filter terms

A unary map f is an operator' if f(x A y) = fx A fy and f1 = 1.

Lemma (Hasimoto, 2001)
If [M] exists, then [M] is a (dual normal) operator.

Lemma (Hasimoto, 2001)

Assume that M is finite, and every map in M is an operator.
Then [M] exists, and

[Mlx = \{fx | f e M}

Lemma (T., 2016)

If there exists a term t in the language of A such that
tAx = [M]x, then t is a normal filter term.

"Actually a dual normal operator
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Constructing normal filter terms

It is easy to show that if normal filter terms t; and & exist for
signatures M; and M, then t; A to is a normal filter term for
M; U Ms, so we will redirect our focus towards normal filter
terms for single functions.

Definition
Let A be a Heyting algebra and let f be a unary operation on A.
The map f is an anti-operatorif f(x A y) = fx V fy, and, f1 = 0.

Lemma (T., 2016)

Let A be an EHA and let f be an anti-operator on A. Then [f]
exists, and
[f]x = —fx,

where - x = x — 0.
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Example (Meskhi, 1982)

Heyting algebras with involution. Let A be a Heyting algebra
equipped with a single unary operation i that is a dual
automorphism. The map tx := —ix is a normal filter term on A.
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Examples

Example (Meskhi, 1982)

Heyting algebras with involution. Let A be a Heyting algebra
equipped with a single unary operation i that is a dual
automorphism. The map tx := —ix is a normal filter term on A.

Definition
A unary operation ~ on a lattice A is a dual pseudocomplement
operation if the following equivalence is satisfied for all x € A:

XVy=1<+= y>~x.

Example (Sankappanavar, 1985)

Dually pseudocomplemented Heyting algebras. Let A be a
Heyting algebra expanded by a dual pseudocomplement
operation. Then —~ is a normal filter term on A.
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Double-Heyting algebras

Definition
A double-Heyting algebra is an EHA with M = {=}, where ~ is
a binary operation satisfying

XVy>2z < y>z=-X.

Observe that 1 — x defines a dual pseudocomplement
operation.

Theorem (Sankappanavar, 1985)

Congruences on a double-Heyting algebra are exactly the
congruences of the (V, A, —,~,0,1) term-reduct.

We can also prove directly that [~] = —~, but it does not fall
into the general cases seen earlier.
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Double-Heyting algebras
Definition

Let A be an expanded double-Heyting algebra. For a filter
FCAletZ(F)=]~F:={y e A|(3x € F) y < ~x}.
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Double-Heyting algebras

Definition
Let A be an expanded double-Heyting algebra. For a filter
FCAletZ(F)=]~F:={y e A|(3x € F) y < ~x}.

Theorem (T., 2016)
Let A be a double-Heyting algebra and let F be a normal filter
of A.
» The map I is an isomorphism from normal filters to the
lattice of ideals closed under ~—.
» Iff is a unary order-preserving map then
» F is closed under f if and only if Z(F) is closed under ~f-,

and,
» I(F) is closed under f if and only if F is closed under —f~.

The above theorem holds for dually pseudocomplemented
Heyting algebras as well.
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Theorem (T., 2016)

Let A be an EHA and assume — € M. Let f be a unary
operation on A

» If f preserves joins and f0 = 0 then —f~x is a normal filter
term for f.

» If f reverses joins and f1 = 0 then —~f~x is a normal filter
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Double-Heyting algebras

» Fis closed under f if and only if Z(F) is closed under ~f-.
» Z(F) is closed under f if and only if F is closed under —f~.

Theorem (T., 2016)

Let A be an EHA and assume — € M. Let f be a unary
operation on A

» If f preserves joins and f0 = 0 then —f~x is a normal filter
term for f.

» If f reverses joins and f1 = 0 then —~f~x is a normal filter
term for f.

Open problem

The proof of the above very explicitly relies on the operation —
in the signature. Does the result still apply if we dispose of it?
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Subdirectly irreducibles

Lemma

Let A be an EHA, let t be a normal filter term on A, and let
dx = x A tx. Then (y,1) € Cg™(x,1) ifand only if y > d"x for
somen € w.
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Subdirectly irreducibles

Lemma

Let A be an EHA, let t be a normal filter term on A, and let
dx = x A tx. Then (y,1) € Cg™(x,1) ifand only if y > d"x for
somen € w.

Lemma
Let A be an EHA, let t be a normal filter term on A, and let
ax = x A Ix.

1. A is subdirectly irreducible if and only if there exists
b € A\{1} such that for all x € A\{1} there exists n € w
such that d"x < b.

2. A is simple if and only if for all x € A\{1} there exists n € w
such that d"x = 0.
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EDPC

Definition
A variety V has definable principal congruences (DPC) if there
exists a first-order formula ¢(x, y, z, w) in the language of V
such that, for all A € V, and all a, b, ¢, d € A, we have

(a.b) € Cgh(c.d) «= Ak p(a,b,c.d).
If © is a finite conjunction of equations then V has equationally
definable principal congruences (EDPC).
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EDPC

Definition

A variety V has definable principal congruences (DPC) if there
exists a first-order formula ¢(x, y, z, w) in the language of V
such that, forall A € V,and all a, b, ¢, d € A, we have

(a.b) € Cgh(c.d) «= Ak p(a,b,c.d).
If © is a finite conjunction of equations then V has equationally
definable principal congruences (EDPC).

Theorem (T., 2016)

LetV be a variety of EHAs with a common normal filter term t,
and let dx = x A tx. The following are equivalent:

1.V has EDPC,
2. V has DPC,
3. VEd"'x =d"x forsomen c w.
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Discriminator varieties

Definition

A variety is semisimple if every subdirectly irreducible member
of V is simple. If there is a ternary term t in the language of V
such that t is a discriminator term on every subdirectly
irreducible member of V, i.e.,

t(x,y,z>:{x Tx#y

z ifx=y,

then V is a discriminator variety.
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Discriminator varieties

Definition

A variety is semisimple if every subdirectly irreducible member
of V is simple. If there is a ternary term t in the language of V
such that t is a discriminator term on every subdirectly
irreducible member of V, i.e.,

t(x,y,z>:{x Tx#y

z ifx=y,
then V is a discriminator variety.

Theorem (Blok, Kéhler and Pigozzi, 1984)

LetV be a variety of any signature. The following are
equivalent:

1. V is semisimple, congruence permutable, and has EDPC.
2. V is a discriminator variety.

15/16



Discriminator varieties

Theorem (T., 2016)

LetV be a variety of dually pseudocomplemented EHAS,
assume 'V has a normal filter term t, and let dx = —~x A tx.
The following are equivalent.

1. V is semisimple.

2. V is a discriminator variety.

3. V has DPC and 3m € w such thatV = x < d~d"™-x.
4.V has EDPC and 3m € w such thatV |= x < d~d™—x.
5 VEd"'x =d"x andV |= d~d"x = ~d"x for some n

This generalises a result by Kowalski and Kracht (2006) for
BAOs.
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