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Motivation
Congruences on Heyting algebras are determined exactly by
filters of the underlying lattice – what about algebras with a
Heyting algebra reduct?

I Boolean algebras with operators. If B is a boolean
algebra equipped with finitely many (dual normal)
operators, i.e., unary operations f1, . . . , fn satisfying

fi(x ∧ y) = fix ∧ fiy , fi1 = 1,

then congruences on B are determined by filters closed
under the map

dx = f1x ∧ f2x ∧ . . . ∧ fnx

I Double-Heyting algebras. Double-Heyting algebras have
their congruences determined by filters closed under the
map

dx = (1 ·− x)→ 0
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Preliminaries

Definition
An algebra A = 〈A;M,∨,∧,→,0,1〉 is an expanded Heyting
algebra (EHA) if the reduct 〈A,∨,∧,→,0,1〉 is a Heyting
algebra and M is a set of operations on A.

I Let x ↔ y = x → y ∧ y → x . Recall that if A is a Heyting
algebra and F ⊆ A is a filter, then the binary relation
θ(F ) = {(x , y) | x ↔ y ∈ F} is a congruence on A.

Definition
A filter F ⊆ A is compatible with an n-ary operation f on A if

{xi ↔ yi | i ≤ n} ⊆ F implies f (~x)↔ f (~y) ∈ F .

Theorem
If A is an EHA then θ(F ) is a congruence on A if and only if F is
compatible with f for every f ∈ M.
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Normal filter terms

Any unquantified A from now on is a fixed but arbitrary EHA.

Definition
A filter F of A will be called a normal filter if it is compatible with
every f ∈ M, or equivalently, if θ(F ) is a congruence on A.

Definition
Let t be a unary term in the language of A. We say that t is a
normal filter term (on A) provided that it is order-preserving,
and for every filter F of A, the filter F is a normal filter if and
only if F is closed under tA.

Example
The identity function is a normal filter term for unexpanded
Heyting algebras.
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Normal filter terms

Hence, the algebras from before have normal filter terms.
I Boolean algebras with operators. If B is a boolean

algebra equipped with unary operators f1, . . . , fn, then
congruences on B are determined by filters closed under
the map

dx = f1x ∧ f2x ∧ . . . fnx

I Double-Heyting algebras. Double-Heyting algebras have
their congruences determined by filters closed under the
map

dx = (1 ·− x)→ 0

Let us say that a class of similar algebras has a normal filter
term t if t is a normal filter term for each of those algebras.
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Constructing normal filter terms
Let f be an n-ary operation on A. For each a ∈ A, define the set

f↔(a) = {f (~x)↔ f (~y) | (∀i ≤ n) xi , yi ∈ A and xi ↔ yi ≥ a}.

a

x ↔ y fx ↔ fy

Now define the partial operation [M] by

[M]a =
∧⋃

{f↔(a) | f ∈ M}.

If it is defined everywhere then we say that [M] exists in A.
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Constructing normal filter terms

A unary map f is an operator1 if f (x ∧ y) = fx ∧ fy and f1 = 1.

Lemma (Hasimoto, 2001)
If [M] exists, then [M] is a (dual normal) operator.

Lemma (Hasimoto, 2001)
Assume that M is finite, and every map in M is an operator.
Then [M] exists, and

[M]x =
∧
{fx | f ∈ M}

Lemma (T., 2016)
If there exists a term t in the language of A such that
tAx = [M]x, then t is a normal filter term.

1Actually a dual normal operator
7 / 16
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Constructing normal filter terms

It is easy to show that if normal filter terms t1 and t2 exist for
signatures M1 and M2 then t1 ∧ t2 is a normal filter term for
M1 ∪M2, so we will redirect our focus towards normal filter
terms for single functions.

Definition
Let A be a Heyting algebra and let f be a unary operation on A.
The map f is an anti-operator if f (x ∧ y) = fx ∨ fy , and, f1 = 0.

Lemma (T., 2016)
Let A be an EHA and let f be an anti-operator on A. Then [f ]
exists, and

[f ]x = ¬fx ,

where ¬x = x → 0.
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Examples

Example (Meskhi, 1982)
Heyting algebras with involution. Let A be a Heyting algebra
equipped with a single unary operation i that is a dual
automorphism. The map tx := ¬ix is a normal filter term on A.

Definition
A unary operation ∼ on a lattice A is a dual pseudocomplement
operation if the following equivalence is satisfied for all x ∈ A:

x ∨ y = 1 ⇐⇒ y ≥ ∼x .

Example (Sankappanavar, 1985)
Dually pseudocomplemented Heyting algebras. Let A be a
Heyting algebra expanded by a dual pseudocomplement
operation. Then ¬∼ is a normal filter term on A.
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Double-Heyting algebras

Definition
A double-Heyting algebra is an EHA with M = { ·−}, where ·− is
a binary operation satisfying

x ∨ y ≥ z ⇐⇒ y ≥ z ·− x .

Observe that 1 ·− x defines a dual pseudocomplement
operation.

Theorem (Sankappanavar, 1985)
Congruences on a double-Heyting algebra are exactly the
congruences of the 〈∨,∧,→,∼,0,1〉 term-reduct.
We can also prove directly that [ ·−] = ¬∼, but it does not fall
into the general cases seen earlier.
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Double-Heyting algebras

Definition
Let A be an expanded double-Heyting algebra. For a filter
F ⊆ A, let I(F ) = ↓∼F := {y ∈ A | (∃x ∈ F ) y ≤ ∼x}.

Theorem (T., 2016)
Let A be a double-Heyting algebra and let F be a normal filter
of A.

I The map I is an isomorphism from normal filters to the
lattice of ideals closed under ∼¬.

I If f is a unary order-preserving map then
I F is closed under f if and only if I(F ) is closed under ∼f¬,

and,
I I(F ) is closed under f if and only if F is closed under ¬f∼.

The above theorem holds for dually pseudocomplemented
Heyting algebras as well.
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Double-Heyting algebras

I F is closed under f if and only if I(F ) is closed under ∼f¬.
I I(F ) is closed under f if and only if F is closed under ¬f∼.

Theorem (T., 2016)
Let A be an EHA and assume ·− ∈ M. Let f be a unary
operation on A

I If f preserves joins and f0 = 0 then ¬f∼x is a normal filter
term for f .

I If f reverses joins and f1 = 0 then ¬∼f∼x is a normal filter
term for f .

Open problem
The proof of the above very explicitly relies on the operation ·−
in the signature. Does the result still apply if we dispose of it?
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Subdirectly irreducibles

Lemma
Let A be an EHA, let t be a normal filter term on A, and let
dx = x ∧ tx. Then (y ,1) ∈ CgA(x ,1) if and only if y ≥ dnx for
some n ∈ ω.

Lemma
Let A be an EHA, let t be a normal filter term on A, and let
dx = x ∧ tx.

1. A is subdirectly irreducible if and only if there exists
b ∈ A\{1} such that for all x ∈ A\{1} there exists n ∈ ω
such that dnx ≤ b.

2. A is simple if and only if for all x ∈ A\{1} there exists n ∈ ω
such that dnx = 0.
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EDPC

Definition
A variety V has definable principal congruences (DPC) if there
exists a first-order formula ϕ(x , y , z,w) in the language of V
such that, for all A ∈ V, and all a,b, c,d ∈ A, we have

(a,b) ∈ CgA(c,d) ⇐⇒ A |= ϕ(a,b, c,d).
If ϕ is a finite conjunction of equations then V has equationally
definable principal congruences (EDPC).

Theorem (T., 2016)
Let V be a variety of EHAs with a common normal filter term t,
and let dx = x ∧ tx. The following are equivalent:

1. V has EDPC,
2. V has DPC,
3. V |= dn+1x = dnx for some n ∈ ω.

14 / 16



EDPC

Definition
A variety V has definable principal congruences (DPC) if there
exists a first-order formula ϕ(x , y , z,w) in the language of V
such that, for all A ∈ V, and all a,b, c,d ∈ A, we have

(a,b) ∈ CgA(c,d) ⇐⇒ A |= ϕ(a,b, c,d).
If ϕ is a finite conjunction of equations then V has equationally
definable principal congruences (EDPC).

Theorem (T., 2016)
Let V be a variety of EHAs with a common normal filter term t,
and let dx = x ∧ tx. The following are equivalent:

1. V has EDPC,
2. V has DPC,
3. V |= dn+1x = dnx for some n ∈ ω.
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Discriminator varieties

Definition
A variety is semisimple if every subdirectly irreducible member
of V is simple. If there is a ternary term t in the language of V
such that t is a discriminator term on every subdirectly
irreducible member of V, i.e.,

t(x , y , z) =

{
x if x 6= y
z if x = y ,

then V is a discriminator variety.

Theorem (Blok, Köhler and Pigozzi, 1984)
Let V be a variety of any signature. The following are
equivalent:

1. V is semisimple, congruence permutable, and has EDPC.
2. V is a discriminator variety.
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Discriminator varieties

Theorem (T., 2016)
Let V be a variety of dually pseudocomplemented EHAs,
assume V has a normal filter term t, and let dx = ¬∼x ∧ tx.
The following are equivalent.

1. V is semisimple.
2. V is a discriminator variety.
3. V has DPC and ∃m ∈ ω such that V |= x ≤ d∼dm¬x.
4. V has EDPC and ∃m ∈ ω such that V |= x ≤ d∼dm¬x.
5. V |= dn+1x = dnx and V |= d∼dnx = ∼dnx for some n

This generalises a result by Kowalski and Kracht (2006) for
BAOs.
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