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Introduction Main Result Consequences

(First- Order) Categorical Logic: Theories as categories with properties
(structure), models as functors preserving them.

Allows for a notion of interpretation between theories as functors
I : T→ T′, inducing by composition a functor by between the respective
categories of models

− · I : Str(T′,Set)→ Str(T,Set)

Allows posing the question when does such an interpretation induce an
equivalence between the categories of models (or just a fully faithful
functor, a question related to definability)

The general answer is: When the theories, seen as categories, have
equivalent completions of some kind (respectively, when we have some
kind of quotient between completions of the theories)
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Introduction Main Result Consequences

In particular we focus on regular theories: They comprise sentences of
the form ∀~x(ϕ(~x)→ ψ(~x)), where ϕ, ψ are built from atomic formulae
by ∃, ∧.

Building a category out of pure syntax (sequences of sorts as objects,
provably functional relations as arrows) we obtain a regular category:
Finite limits, coequalizers of kernel pairs, image factorization stable under
inverse image.

A regular category has the same category of models as its exact
completion as a regular category, or effectivization:

Adding quotients of equivalence relations in a conservative way so that
every equivalence relation is the kernel pair of its coequalizer.
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Introduction Main Result Consequences

Conceptual Completeness for Pretoposes (M. Makkai, G. Reyes
1976) An interpretation of theories I : T→ T′ induces an equivalence
between the categories of models iff P(I ) : P(T)→ P(T′) is an
equivalence between the respective pretopos completions of the theories.

The proof of Makkai and Reyes is model theoretic (compactness,
diagrams).

If we relax the notion of model, allowing models in (a certain class of)
toposes, rather than just in sets, it is possible to have a intuitionistically
valid, categorical proof of the result
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Conceptual Completeness for Pretoposes (M. Makkai, G. Reyes 1976,
A. Pitts 1986) An interpretation of theories I : T→ T′ induces an
equivalence between the categories of models in a sufficient class of
toposes iff P(I ) : P(T)→ P(T′) is an equivalence between the
respective pretopos completions of the theories.

The proof of Makkai and Reyes is model theoretic (compactness,
diagrams).

If we relax the notion of model, allowing models in (a certain class of)
toposes, rather than just in sets, it is possible to have a intuitionistically
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Effectivization Def of a regular category D (idempotent process):

For any effective category E , any regular functor F : D → E ,

D

F
!!DD

DD
DD

DD
ζD // Def

F∗

��

E ,

F ∗ regular, unique up to natural iso.

(−)ef : REG→ EFF is a left biadjoint to the forgetful functor.

It was described initially in terms of equivalence relations in D. S. Lack
gave a sheaf-theoretic description: It is a full subcategory of Sh(D, jreg ).

Objects are quotients in the topos yD1
yd1

//

yd0 //
yD0

e // // X of

equivalence relations coming from D.

The topology: Singleton coverings consisting of regular epis.
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When does a regular functor I : T→ T′ induce an equivalence
− · I : Reg(T′,Set)→ Reg(T,Set)?

Implicit in work of Makkai: When Ief : Tef → T′ef is an equivalence. The
proof is again model theoretic.

Relying on the work of Pitts we can give an intuitionistically valid,
categorical one. (A. V-S, P. K, TACL 2015, to appear in TAC)

When does a regular functor I : T→ T′ induce a fully faithful inclusion
− · I : Reg(T′,Set)→ Reg(T,Set)?

Hongde Hu (corollary to a Stone - type duality for accessible categories):
When Ief : Tef → T′ef is covering, full on subobjects.
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F : C → D is conservative: Reflects isomorphisms

F : C → D is covering: For all D ∈ D there is a regular epimorphism

FC // // D

F : C → D is full on subobjects: For all S → FC ∈ D there is a
subobject R → C ∈ C such that S ∼= FR.

M. Makkai, J. Benabou: regular + conservative + covering + full on
subobjects ⇒ full

M. Makkai, G. Reyes (and possibly J. Giraud): regular + conservative,
full and covering between effective categories ⇒ equivalence
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The result can be improved:

Theorem: A regular functor I : T→ T′ induces a fully faithful inclusion
− · I : Reg(T′,Set)→ Reg(T,Set) iff I is covering, full on subobjects (for
short: I is a quotient).

Proof: The (hard) ”only if” part follows from the result of Hu. Ief is
covering and full on subobjects and these properties are reflected to I .
The ”if” part follows from the fact that if the properties hold for I , they
are preserved by (−)ef .

The least obvious preservation result, that is of some independent
interest is
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Main Lemma: If F : C → D is a full on subobjects regular functor then
F ∗ = Fef : Cef → Def is also full on subobjects.

Proof: For a subobject σ : S → F ∗X let the presentation

FC1
Fc1

//

Fc0 //
FC0

F∗e // // F ∗X of F ∗X , arise from one of X in Cef .

Pull back the subobject S along F ∗e to obtain by our assumption a
subobject Fi : FR0 → FC0, for a subobject i : R0 → C0, and a regular
epimorphism s : FR0 → S . Define the equivalence relation
(r0, r1) : R1 → R0 × R0 as the intersection of (c0, c1) : C1 → C0 × C0 with
the subobject R0 × R0 → C0 × C0.

Its coequalizer ζCR1
r1

//

r0 //
ζCR0

q
// // Q in Cef gives S ∼= F ∗Q.
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F ∗Q

FR1
Fr1

//

Fr0 //

Fj

��

FR0

F∗q

<< <<yyyyyyyy
s // //

Fi

��

S

σ

��

FC1
Fc1

//

Fc0 //
FC0

F∗e // // F ∗X

We find that s · Fr0 = s · Fr1, hence a regular epi r : F ∗Q → S with
r · F ∗q = s. Suffices that it is also a mono:

Let u0 u1 : ζDD → F ∗Q, be such that r · u0 = r · u1.

F ∗q is a regular epi so the ”elements” u0, u1 are locally in ζDDi : There
is a covering d ′ : D ′ → D, i = 0, 1 and factorizations ui · d ′ = F ∗q · vi .
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as kernel pair gives γ : D ′ → FC1 such that Fi · vi = Fci · γ,

The universal property of the pullback defining (Fr0,Fr1) gives an
α : D ′ → FR1 such that (v0, v1) = (Fr0,Fr1) · α.

Hence u0 · d ′ = F ∗q · v0 = F ∗q ·Fr0 ·α = F ∗q ·Fr1 ·α = F ∗q · v1 = u1 · d ′.
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Introduction Main Result Consequences

The lemma gives a characterization of effectivizations:

Theorem: A fully faithful regular functor F : C → D from a regular to an
effective category renders D the effectivization of C iff it is conservative,
covering and full on subobjects.

Proof: Fef : Cef → Def ' D will then be conservative, covering and full
on subobjects, hence conservative, covering and full, hence an
equivalence.

Well-known examples: CHaus ' Stoneef , AbGr ' TFAbGref .
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Introduction Main Result Consequences

Passage from a regular category to its effectivization is the categorical
analogue of the Teq construction for a regular theory T:

We add new sorts for quotients of equivalence relations, function symbols
for projections to quotients and axioms.

Having a quotient between regular categories amounts to extending the
theory of the domain by new axioms without adding new symbols:

Quotients correspond to inverting arrows in the domain category, i.e
postulating that a subobject covers (existential axiom). Hence:

Corollary: If a regular theory S extends another one T by adding axioms,
then Seq extends Teq by adding axioms.
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