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Outline

Twist product constructions are important in the study of
algebraic semantics for paraconsistent, relevant, and fuzzy
logics, but present conceptual difficulties.

Goal: Simplify twist product constructions by finding more
transparent presentations for operations.

Plan: Construct a topological duality appropriately tailored to
a simplified rendering of (a particular variant of) the twist
product construction.

Then transport the twist product across this duality
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Residuated lattices

Definition:

A commutative residuated lattice (CRL) is an algebra
(A,∧,∨,→, ·, t) such that

(A,∧,∨) is a lattice,

(A, ·, t) is a commutative monoid, and

for all a, b, c ∈ A,

a · b ≤ c ⇐⇒ a ≤ b → c

Examples:

CRLs generalize Boolean algebras, Heyting algebras, abelian
lattice-ordered groups, MV-algebras, etc.
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Residuated lattices (cont.)

Definition:

A CRL is called

integral if t is the greatest element with respect to the lattice
order,

distributive if its lattice reduct is distributive,

idempotent if it satisfies the identity a2 = a

Definition:

The expansion of a CRL by a unary operation ¬ satisfying
¬¬a = a and a→ ¬b = b → ¬a is called an involutive CRL. The
expansion of a (involutive) CRL by constants designating universal
bounds for its lattice reduct is called a bounded (involutive) CRL.
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Residuated lattices (cont.)

Examples:

Abelian lattice-ordered groups are involutive CRLs, where the
involution is the group inverse. Boolean algebras are involutive
CRLs, where the involution is the operation of complementation.

Definition:

A distributive, idempotent, involutive CRL is called a Sugihara
monoid.

Remark:

Throughout this talk, we work with bounded Sugihara monoids.
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Residuated lattices (cont.)

Set S = Z ∪ {−∞,∞}. If we impose the obvious order on S and
define

a · b =


a |a| > |b|
b |a| < |b|
a ∧ b |a| = |b|

and

a→ b =

{
(−a) ∨ b a ≤ b

(−a) ∧ b a 6≤ b

Then S gives a Sugihara monoid with identity 0 and ¬ being −.
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Residuated lattices (cont.)

S \ {0} is closed under the operations of S except for the identity.
It turns out that 1 is an identity with respect to every element of S
except for 0, so S \ {0} is a Sugihara monoid with the same
operations as S except with identity 1.

Proposition:

The Sugihara monoids are generated as a quasivariety by
{S,S \ {0}}.

An important consequence of this is that every Sugihara monoid
satisfies the identity a ∧ ¬a ≤ b ∨ ¬b.
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Negative cones

Given a Sugihara monoid A, its negative elements are those a ∈ A
with a ≤ t.

The negative elements of any Sugihara monoid form a Heyting
algebra that satisfies the additional identity

(a→ b) ∨ (b → a) = t

These are called Gödel algebras.

The Gödel algebra of negative elements of a Sugihara monoid is
called its negative cone, and it turns out we can recover the entire
Sugihara monoid from its negative cone and just a little bit more
data via a variant of the twist product construction.
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Negative cones (cont.)

Definition:

We call a Gödel algebra with an additional constant f satisfying
the identity

a ∨ (a→ f ) = t

a Gödel algebra with Boolean constant (or bG-algebra for short).

The name “Boolean constant” comes from the fact that
↑f = {a : f ≤ a} is a Boolean algebra.

Given a Sugihara monoid A, let A./ be the negative cone of A with
an additional designated constant given by ¬t. Then A./ is a
bG-algebra.
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Recovering Sugihara monoids (cont.)

Given a bG-algebra A = (A,∧,∨,→,⊥,>, f ), let

A./ = {(a, b) ∈ A× A : a ∧ b ≤ f and a ∨ b = >}

We endow A./ with an order v given by

(a, b) v (c , d) iff a ≤ c and b ≥ d

and this order has corresponding lattice operations u and t.

This lattice has greatest element (>,⊥), least element (⊥,>), and
an involution ¬ given by ¬(a, b) = (b, a).

We will define operations · and ⇒ that make A./ into a Sugihara
monoid.
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Recovering Sugihara monoids (cont.)

Define auxillary operations on A by a⇀ b = (a ∧ f )→ b and
a∗ = a→ f .

Definition:

Define · by (a1, b1) · (a2, b2) = (a3, b3), where

a3 = [(a1 ⇀ b2) ∧ (a2 ⇀ b1)]→ (a1 ∧ b2),

and

b3 =[(a1 ⇀ b2) ∧ (a2 ⇀ b1)]

∧ [((a1 ⇀ b2) ∧ (a2 ⇀ b1))→ (a1 ∧ a2)]∗
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Recovering Sugihara monoids (cont.)

Definition:

Define ⇒ by (a1, b1)⇒ (a2, b2) = (a3, b3), where

a3 = (a1 → a2) ∧ (b2 ⇀ b1),

and

b3 =[((a1 → a2) ∧ (b2 ⇀ b1)) ⇀ (a1 ∧ (t ⇀ b2)]

∧ [(a1 → a2) ∧ (b2 ⇀ b1)]∗

Starting with a bG-algebra A, we obtain that A./ is a Sugihara
monoid with the aforedefined operations.
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Recovering Sugihara monoids (cont.)

If SM and bG are the categories of Sugihara monoids and
bG-algebras, respectively, then (−)./ : SM→ bG and
(−)./ : bG→ SM may be lifted to functors.

Theorem:

(−)./ and (−)./ witness a covariant equivalence of categories
between SM and bG.

Theorems of the above improve our understanding of how ordered
algebras can be constructed from simple, more familiar ones.
However, generalizing results like this is difficult due to the
complexity of the construction. Is there some way to recast the
construction in more intuitive terms?
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Urquhart duality

A. Urquhart developed a duality theory for a very general class of
ordered algebras, which includes the Sugihara monoids.

Definition:

An relevant space is a structure of the form (X,R, ′, I ), where
X = (X ,≤, τ) is a Priestley space, R is a ternary relation on X , ′ is
a unary function on X , and I ⊆ X , all satsifying some conditions
stated presently. To state these conditions, we for U,V ⊆ X define

U • V = {z : (∃x , y)(Rxyz and x ∈ U and y ∈ V )}

U  V = {x : (∀y , z)((Rxyz and y ∈ U) implies z ∈ V )}
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Urquhart duality (cont.)

Definition (cont.):

The axioms of a relevant space are

1 If U,V are clopen up-sets, then U •V and U → V are clopen,

2 If Rxyz , u ≤ x , v ≤ y , and z ≤ w , then Ruvw ,

3 For all x , y , z ∈ X , if Rxyz , then there exist clopen up-sets
U,V such that x ∈ U, y ∈ V , and z /∈ U • V ,

4 ′ is continuous and order-reversing.

Additional properties for classes of algebras may be translated
along the Urquhart duality in a simple way. Given x , y in a relevant
space (X,R, ′, I ), set

x � y = {z ∈ X : Rxyz}
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Urquhart duality (cont.)

Definition:

A relevant space (X,R, ′, I ) is called a Sugihara relevant space if it
satisfies

1 x ′′ = x ,

2 x � y = y � x ,

3 x � (y � z) = (x � y)� z ,

4 x � x = x , and

5 If z ∈ x � y , then y ′ ∈ x � z ′.

As their name suggests, Sugihara relevant spaces are precisely the
relevant spaces corresponding to Sugihara monoids.
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Urquhart duality (cont.)

The duality between Sugihara relevant spaces and Sugihara
monoids functions as follows. Given a Sugihara monoid A, let A∗
be the Priestley space of prime filters of A considered as a
distributive lattice. For x , y ∈ A∗, let x · y = ↑{ab : a ∈ x , b ∈ y}.

Define a ternary relation R on A∗ by Rxyz iff x · y ⊆ z , define a
unary operation ′ on A∗ by x ′ = {a ∈ A : ¬a /∈ x}, and set
I = {x ∈ A∗ : t ∈ x}. These definitions give a Sugihara relevant
space (A∗,R, ′, I ).

On the other hand, for a Sugihara relevant space (X,R, ′, I ), let
X∗ be dual of X as a Priestley space (i.e., its bounded distributive
lattice of clopen up-sets).

Then the operations •, →, I , and ¬U = {x : x ′ /∈ U} turn X∗ into
a Sugihara monoid.
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Esakia duality for Sugihara monoids

Urquhart duality is quite general, and a much simpler duality can
be obtained.

Definition:

A structure (X ,≤,D, τ) is called a Sugihara-Esakia space if

(X ,≤, τ) is an Esakia space,

(X ,≤) is a forest (i.e., if x ∈ X , then ↑x is totally-ordered),

D is a clopen subset of minimal elements.

Theorem:

The category of Sugihara monoids is dually equivalent to the
category of Sugihara-Esakia spaces, with morphisms the Esakia
maps that preserve D and D{.
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Esakia duality for Sugihara monoids (cont.)

The Esakia duality for Sugihara monoids is based on the
Davey-Werner natural duality for Kleene algebras instead of the
Priestley duality. Define an algebra K with universe {−1, 0, 1},
lattice operations coming from the order −1 < 0 < 1, and the
involution ¬a = −a.

Define also another order on K by −1 v 0 and 1 v 0, and set
D(K˜) = {−1, 1}

•0

•○-1 •○ 1

Denote by K˜ the ordered topological space with underlying set
{−1, 0, 1}, order v, the discrete topology, and designated subset
D(K˜).
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Esakia duality for Sugihara monoids (cont.)

For a Sugihara monoid A, let A+ be the collection of
(∧,∨,¬,⊥,>)-homomorphisms into K. Give A+ the order,
topology, and designated subset D(A+) inherited pointwise from
K˜ . This makes A+ into Sugihara-Esakia space.

For a Sugihara-Esakia space X, let X+ be the collection of
continuous monotone maps preserving D(X) from X into K˜ . Give
X+ the lattice operations and involution inherited pointwise from
K. With some additional operations defined by terms as before,
this makes X+ into a Sugihara monoid.
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Dualized twist products

Our strategy to simplify the construction (−)./: Transport the
construction along the Urquhart duality and Esakia duality for
Sugihara monoids.

More specifically, let X be a Sugihara-Esakia space. We construct
a new structured topological space that we call (by abuse of
notation) X./ as follows.

Make a new copy of those elements of X outside of D(X):

−D(X) = {−x : x /∈ D(X)}

Set X ./ = X ∪−D(X). Endow X./ with the disjoint union topology
τ coming from X and −D(X) (considered as a subspace of X).

21 / 32



DR
AF
T
2

Dualized twist products

Our strategy to simplify the construction (−)./: Transport the
construction along the Urquhart duality and Esakia duality for
Sugihara monoids.

More specifically, let X be a Sugihara-Esakia space. We construct
a new structured topological space that we call (by abuse of
notation) X./ as follows.

Make a new copy of those elements of X outside of D(X):

−D(X) = {−x : x /∈ D(X)}

Set X ./ = X ∪−D(X). Endow X./ with the disjoint union topology
τ coming from X and −D(X) (considered as a subspace of X).

21 / 32



DR
AF
T
2

Dualized twist products

Our strategy to simplify the construction (−)./: Transport the
construction along the Urquhart duality and Esakia duality for
Sugihara monoids.

More specifically, let X be a Sugihara-Esakia space. We construct
a new structured topological space that we call (by abuse of
notation) X./ as follows.

Make a new copy of those elements of X outside of D(X):

−D(X) = {−x : x /∈ D(X)}

Set X ./ = X ∪−D(X). Endow X./ with the disjoint union topology
τ coming from X and −D(X) (considered as a subspace of X).

21 / 32



DR
AF
T
2

Dualized twist products (cont.)

We put additional structure on X ./ as follows. First, put an order
≤./ on X ./ by the conditions

If x , y ∈ X , then x ≤./ y if and only if x ≤ y ,

If −x ,−y ∈ −X , then −x ≤./ −y if and only if y ≤ x ,

If −x ∈ −X and y ∈ X , then −x ≤./ y if and only if x is
comparable to y in X .

Extend − to an operation on X ./ by stipulating that −(−x) = x
for −x ∈ −D(X).

Set I (X ./) = X .

22 / 32
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Dualized twist products (cont.)

Finally, define the notion of the absolute value of an element of
X ./ in the obvious way, and define a partial binary operation · on
X ./ by

x · y =



x ∨ y if x ‖ y , provided the join exists

y if x ⊥ y and |x | < |y |
x if x ⊥ y and |y | < |x |
x ∧ y if x ⊥ y and |x | = |y |
undefined otherwise

where ⊥ denotes the relation of comparability and ‖ denotes the
relation of incomparability. For x , y , z ∈ X ./, define Rxyz iff x · y
exists and x · y ≤./ z . The resulting structure X./ is a Sugihara
relevant space.
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Dualized negative cones

On the other hand, if X = (X ,≤, τ,R, ′, I ) is a Sugihara relevant
space, set X./ = (I ,≤,D, τI ), where

≤ is the order of X restricted to I ,

τI is the topology on I as a subspace of X, and

D = {x ∈ X : x ′ = x}.

Then X./ is a Sugihara-Esakia space.

Moreover, (−)./ and (−)./ can be lifted to functors between the
category of Sugihara-Esakia spaces and the category of Sugihara
relevant spaces.
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Lifting to morphisms

Let SES be the category of Sugihara-Esakia spaces with morphisms
the continuous Esakia maps preserving both D and D{. Let SRS
be the category of Sugihara relevant spaces with morphisms the
relevant maps between them, i.e., maps ϕ : X→ Y between
Sugihara relevant spaces with

1 ϕ is continuous and isotone,

2 If RXxyx , then RYϕ(x)ϕ(y)ϕ(z),

3 If RYxyϕ(z), then there exists u, v ∈ X such that RXuvz ,
x ≤ ϕ(u), and y ≤ ϕ(v).

4 If RYϕ(x)yz , then there exists u, v ∈ X such that RXxuv ,
y ≤ ϕ(u), and ϕ(v) ≤ z ,

5 ϕ(x ′) = ϕ(x)′, and

6 ϕ−1[IY] = IX.
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Lifting to morphisms (cont.)

If ϕ : X→ Y is a morphism of SRS, let ϕ./ : X./ → Y./ by
ϕ./ = ϕ �X./ . Then ϕ./ is a morphism of SES.

On the other hand, for ϕ : X→ Y a morphism of SES, define
ϕ./ : X./ → Y./ by

ϕ./(x) =

{
ϕ(x) if x ∈ X ,

−ϕ(−x) if x ∈ −D{

Then ϕ./ is a morphism of SRS.
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The main theorem

With these definitions, we obtain

Theorem:

(−)./ and (−)./ witness a covariant equivalence of categories
between SES and SRS.

This provides a vast simplification of the algebraic functors
described previously.
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Proof of the main theorem

The proof is lengthy and involves some intricate case analysis. The
idea is to go in two stages:

First, for a Sugihara monoid A, show that A∗ and (A+)./ are
isomorphic Priestley spaces,

Second, characterize the ternary relation R on A∗ and show
that it coincides with the one given by our partial binary
operation on (A+)./.

We consider only some key pieces. First, A+ and {x ∈ A∗ : t ∈ x}
are order-isomorphic via the map h 7→ h−1[{0, 1}], and this map
can be extended to an isomorphism of Priestley spaces due to the
following fact.

Lemma:

Let A be a Sugihara monoid and let x ∈ A∗. Then t ∈ x or t ∈ x ′,
and t ∈ x , x ′ iff x = x ′.
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Proof of the main theorm (cont.)

The harder part of the proof consists of characterizing the ternary
relation. The following fact is crucial.

Lemma:

Let A be a Sugihara monoid and let x , y ∈ A∗. Then
x · y = ↑{ab : a ∈ x , b ∈ y} is either a prime filter of A∗ or else is
A itself.

This lemma allows us to work with the (partial) binary operation ·
on A∗ instead of with the ternary relation. We consider an
example to illustrate the flavor of the proofs.
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Proof of the main theorem (cont.)

Lemma:

Let A be a Sugihara monoid and let x ∈ A∗. Then x ′ · x = x ∧ x ′.

Proof:

Either x ⊆ x ′ or x ′ ⊆ x , so without loss of generality assume
x ′ ⊆ x . Then e ∈ x , so x ′ ⊆ x ′ · x . On the other hand, let
c ∈ x ′ · x . Then there exists a ∈ x ′ and b ∈ x with ab ≤ c . This
holds iff b · ¬c ≤ ¬a. If ¬c ∈ x , then b · ¬c ≤ ¬a would give
¬a ∈ x , a contradiction to a ∈ x ′. Hence ¬c /∈ x , so c ∈ x ′. Thus
x ′ · x ⊆ x ′ and x ′ · x = x ∧ x ′.
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Consequences

The dual rendering of (−)./ vastly simplifies its definition, opening
the door to generalizing the algebraic construction to neighboring
conexts.

It also has a number of both algebraic and logical consequences.
For example, it resolves the question of how the Dunn and
Routley-Meyer relational semantics for the logic R-mingle are
connected (the answer: via the topological version of the twist
product).

Similar techniques can be used to obtain dualized presentations of
other complicated algebraic constructions.
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Thank you!

Thank you!
For additional information, visit my website at

http://www.cs.du.edu/˜wesfussn/.
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