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The Matthew effect (Merton 1968)

For whoever has will be given more, and they will have an abundance.
Whoever does not have, even what they have will be taken from them.

Matthew, 25:29
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The Matthew effect (Merton 1968)

For whoever has will be given more, and they will have an abundance.
Whoever does not have, even what they have will be taken from them.

Matthew, 25:29

“The rich get richer; the poor get poorer.”
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@ sociology of science: (Merton 1968)
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Data sets and regression analysis

Sales|Reviews| Time
0 2 2010
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6 8 2012
8 10 2013
9 14 2014
12 15 2015
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Data sets and regression analysis
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Sty = Bo + Bil(t-ey + &
where 31 > 0.
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Dependence relation

Dependent variable

Indepenie_nt/v@es /
Xy ... Xn W4 w Yy t
1 2 3 2000
3 5 6 2001
6 7 10 2002
7 8 15 2003
12 8 21 2004

Yty = Bo + B1(X1) t-ey + B2(X2) (t-¢) + -+ Bn(Xn) (1-1) + €
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Team semantics & (In)dependence logic

u w x y t
1 3 2000
ateam D: 3 6 2002
a set of assignments 6 10 2004
7 15 2006
12 21 2008

@ Team semantics (Hodges 1997)
@ Dependence logic (Vaananen 2007): FO+ =(t,y)

@ Independence logic (Gradel, Vaananen 2013): FO + x | y

@ Inquisitive logic (Ciardelli, Groenendijk, Roelofsen 2011)
[stay tuned,
stay for the next two talks...]
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Team semantics & (In)dependence logic

u w x y t
1 3 2000
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a set of assignments 6 10 2004
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@ Team semantics (Hodges 1997)
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@ Dependence logic (Vaananen 2007): FO+ =(t,y)
A

3f

@ Independence logic (Gradel, Vaananen 2013): FO + x | y

Noe”

® x term =6 | ko
R4 J |

V(1) = 00 + BX(t—¢y + 1 (W) =gy + -+ + cn(Wn) (1—p) + €

Definition. M =p x +, y iff 3p(x, w, y) as above with 3> 0 s.t.

Mep x % y, namely, for all s,s" € D,

s(t) = §'(t) + ' () = s(y) =M ' (x) + g(s' ().
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Dependence relation

® Mip xi,....xp ~ yiffforall s,s" e D,
s(t) = ' (1)+8' (M) = s(y) &M B18' (1) +---+Bns' (xn) +q(8' (W),

where p is the above polynomial and 3y,..., 5, > 0.

iff there exists p(x, w, y) with B1,...,8,>0s.t. Mepx 0 y
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s(t) = ' (1)+8' (M) = s(y) &M B18' (1) +---+Bns' (xn) +q(8' (W),

where p is the above polynomial and 3y,..., 5, > 0.

iff there exists p(x, w, y) with B1,...,8,>0s.t. Mepx 0 y

® Xi{,...,Xp u, yis defined similarly except that 34,..., 5, are
required to be < 0.
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Matthew effects

Like D

@ y is subject to a (positive) direct /-Matthew effect if

Yty = 0 + BY(t-oy + a1 (X1 ) (t-gy + -+ + an(Xn) (1) + €
where 5 > 0.

@ Define DME,y:=y ~, y.
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Matthew effects

Y

Xt-¢ Yt-v

+
Xt-2¢ V-2t /\

reviews sales
Yt-3¢ +

@ y is subject to a (positive) x-mediated /-Matthew effect if

Yty = a0 + B(X) ey + @1 (X1) (t=¢) + -+ Bn(Xn) (t-¢) + €
Xty =70+ 0(Y) (t-0) + 71 (X1) (4-0) + -+ + Yn(Xn) (t-0) + €,
where 3,6 > 0.

@ Define MME,(y,x) := (x #, ¥) A (y &, X)
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@ y is subject to a (positive) x-mediated /-Matthew effect if
Yty = a0 + B(X) ey + @1 (X1) (t=¢) + -+ Bn(Xn) (t-¢) + €
Xty =70+ 0(Y) (t-0) + 71 (X1) (4-0) + -+ + Yn(Xn) (t-0) + €,
where 3,6 > 0.

@ Define MME,(y,x) :=(x #,¥) A (Y &, X)

@ DME,y = MME,(y,y)
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Matthew effects
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e——H e —H e —)Xx
e —e— e —He—re—<

@ y is subject to a (positive) comple /-Matthew effect w.r.t. x:
CME,y(x) == MME,(y, x) A DME,y
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Matthew effects

e——H e —H e —)Xx
e —e— e —He—re—<

@ y is subject to a (positive) comple /-Matthew effect w.r.t. x:
CME,y(x) == MME,(y, x) A DME,y

@ x and y are subject to a (positive) double comple /-Matthew effect:
CME,(x,y) == MME,(y, x) A DME,x A DME,y
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Properties of dependence relation

@ (Commutativity) Xy, Xp #, ¥ E Xjj, - Xj, @4 ¥

@ (Duplication) Xy,...,Xn @, Y E X\, X{,...,Xn &, ¥

@ (Projection) xy,...,Xp &, Y E Xj,,.... X #, Y, Where k<n
@ (Regrouping) (x #Y y),(Z Y y)ex,2 2Dy

@ (Transitivity) (X #,¥), (¥ #p 2)EX *pop Z

@ (Enhancing) x #, xEx &, x
@ (Reflexivity) = x #y x
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Properties of Matthew effects

@ MME,(x,y),MME,(y, z) = MME,,(x, 2), i.e.,
X2 Y) (Y 2 %), (¥ 70 2),(Z 2, ¥)E (X 2o Z2) A(Z Fgy X)
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Properties of Matthew effects
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A logic of Matthew effects (ML)

Syntax
pr=al-a|X Ay X s, y|ong|ove|d®o|Ixe| Ve

Team semantics

@ Mepciffforall se D, M5

@ Miep—aiffforall se D, Mits o

@ Mepopnyift Mep pand Mep ¢

@ Mepopvyiff MepporMep

@ MEp ¢ ® 4 iff there exist Dy, Dy ¢ D with D = Dy u Dy s.t.
MEp, ¢ and M Ep, ¥
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A logic of Matthew effects (ML)

Syntax
pu=al-alX A y|X s, ylond|oveldee|Ixg| VX
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Comparison with dependence and independence logic

@ (Vaananen, Kontinen 2009) Dependence Logic (D := FO+=(x, y))
can express all existential second-order downward closed
properties.

@ (Galliani 2012) Independence Logic (I := FO +Xx 1 y) can express
all existential second-order properties.

@ ML<D <, i.e., for every ML-formula ¢, there is D-formula 7(¢) s.t.

Mi=D¢ <~ M|=DT(¢).
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@ (Vaananen, Kontinen 2009) Dependence Logic (D := FO+=(x, y))
can express all existential second-order downward closed
properties.

@ (Galliani 2012) Independence Logic (I := FO +Xx 1 y) can express
all existential second-order properties.

@ ML<D <, i.e., for every ML-formula ¢, there is D-formula 7(¢) s.t.

Mi=D¢ <~ MbDT(gb).

@ There is a deduction system (via translation into independence
logic) such that
Nle¢p < [+ 0,

where ¢ is ®-free and has no quantification over x +, y. (follows
from (Hannula 2013)&(Y. 2016))
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@ (Full) axiomatization of ML without going through the translation.

@ Comparison with other dependency notions.
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@ Comparison with other dependency notions.

@ To study the notion of X +} y, where r represents a regression
that has been (actually) performed on the dataset in question.

There is (indeed) a difference between x rﬂ? yand x ) y, even if
r generates the same regression function for y as p.

e Different levels of abstraction: X #,y, X #% yandx +y
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@ (Full) axiomatization of ML without going through the translation.
@ Comparison with other dependency notions.

@ To study the notion of X +} y, where r represents a regression
that has been (actually) performed on the dataset in question.

There is (indeed) a difference between x rﬂ? yand x ) y, even if
r generates the same regression function for y as p.

e Different levels of abstraction: X #,y, X #% yandx +y

@ To consider other parameters in a Matthew effect.
E.g., the strength of a Matthew effect (which roughly corresponds

to the Bin y(y) = B(Y)(t-r) + q(W)).
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