A Duality for Boolean Contact Algebras

Julien RASKIN

TACL 2017
Boolean contact algebras

A (extensional) Boolean contact algebra (BCA) is a Boolean algebra B endowed with a binary relation C s.t.

C0 $a \perp 0$

C1 $a \neq 0 \Rightarrow a C a$ (reflexivity)

C2 $a C b \Rightarrow b C a$ (symmetry)

C3 $a C b \leq c \Rightarrow a C c$

C4 $a C (b \lor c) \Rightarrow a C b$ or $a C c$

C5 $a \not\leq b \Rightarrow \exists c \; a C c$ and $c \perp b$ (extensionality)
Example

If \((X, \tau)\) is a semiregular topological space, then \(RC(X)\) is a complete non-extensional BCA.

- \(F \lor G = F \cup G\)
- \(F \land G = (F \cap G)^\circ\)
- \(\neg F = F^c\)
- \(F \subseteq G \iff F \cap G \neq \emptyset\)

It satisfies C5 iff \((X, \tau)\) is weakly regular.

Theorem (Düntsch-Winter, 2005)

Every BCA can be densely embedded into the BCA \(RC(X)\) for some \(T_1\) weakly regular topological space \(X\).
Boolean contact algebras

Example
If \((X, \tau)\) is a semiregular topological space, then \(RC(X)\) is a complete non-extensional BCA.

\[
\begin{align*}
\bullet & \quad F \lor G = F \cup G \\
\bullet & \quad F \land G = (F \cap G)^{\circ-} \\
\bullet & \quad \neg F = F^{c-} \\
\bullet & \quad F \sqsubset G \iff F \cap G \neq \emptyset
\end{align*}
\]

It satisfies C5 iff \((X, \tau)\) is weakly regular.

Theorem (Düntsch-Winter, 2005)
Every BCA can be densely embedded into the BCA \(RC(X)\) for some \(T_1\) weakly regular topological space \(X\).
The Representation Theorem

A subset Γ of B is a clan if
- $a \in \Gamma$, $a \leq b \Rightarrow b \in \Gamma$
- $a \lor b \in \Gamma \Rightarrow a \in \Gamma$ or $b \in \Gamma$
- $1 \in \Gamma$
- $a, b \in \Gamma \Rightarrow a \not\leq b$.

A maximal clan is called a cluster.

- Every clan is contained in a cluster.
- If $a \not\leq b$, there exists a clan Γ s.t. $a, b \in \Gamma$.
- Every ultrafilter is a clan.
- Every clan is a union of ultrafilters.
The Representation Theorem

A subset Γ of \mathcal{B} is a **clan** if

- $a \in \Gamma$, $a \leq b \Rightarrow b \in \Gamma$
- $a \lor b \in \Gamma \Rightarrow a \in \Gamma$ or $b \in \Gamma$
- $1 \in \Gamma$
- $a, b \in \Gamma \Rightarrow a \mathcal{C} b$

A maximal clan is called a **cluster**.

- Every clan is contained in a cluster.
- If $a \mathcal{C} b$, there exists a clan Γ s.t. $a, b \in \Gamma$.
- Every ultrafilter is a clan.
- Every clan is a union of ultrafilters.
The Representation Theorem

A subset Γ of B is a clan if

- $a \in \Gamma$, $a \leq b \Rightarrow b \in \Gamma$
- $a \lor b \in \Gamma \Rightarrow a \in \Gamma$ or $b \in \Gamma$
- $1 \in \Gamma$
- $a, b \in \Gamma \Rightarrow a \mathcal{C} b$

A maximal clan is called a cluster.

- Every clan is contained in a cluster.
- If $a \mathcal{C} b$, there exists a clan Γ s.t. $a, b \in \Gamma$.
- Every ultrafilter is a clan.
- Every clan is a union of ultrafilters.
The Representation Theorem

A subset Γ of B is a \emph{clan} if

- $a \in \Gamma, a \leq b \Rightarrow b \in \Gamma$
- $a \lor b \in \Gamma \Rightarrow a \in \Gamma$ or $b \in \Gamma$
- $1 \in \Gamma$
- $a, b \in \Gamma \Rightarrow a \mathcal{C} b$

A maximal clan is called a \emph{cluster}.

- Every clan is contained in a cluster.
- If $a \mathcal{C} b$, there exists a clan Γ s.t. $a, b \in \Gamma$.
- Every ultrafilter is a clan.
- Every clan is a union of ultrafilters.
The Representation Theorem

A subset Γ of B is a clan if

- $a \in \Gamma$, $a \leq b \Rightarrow b \in \Gamma$
- $a \lor b \in \Gamma \Rightarrow a \in \Gamma$ or $b \in \Gamma$
- $1 \in \Gamma$
- $a, b \in \Gamma \Rightarrow a \mathcal{C} b$.

A maximal clan is called a cluster.

- Every clan is contained in a cluster.
- If $a \mathcal{C} b$, there exists a clan Γ s.t. $a, b \in \Gamma$.
- Every ultrafilter is a clan.
- Every clan is a union of ultrafilters.
The Representation Theorem

A subset Γ of B is a *clan* if

- $a \in \Gamma$, $a \leq b \Rightarrow b \in \Gamma$
- $a \lor b \in \Gamma \Rightarrow a \in \Gamma$ or $b \in \Gamma$
- $1 \in \Gamma$
- $a, b \in \Gamma \Rightarrow a \mathcal{C} b$.

A maximal clan is called a *cluster*.

- Every clan is contained in a cluster.
- If $a \mathcal{C} b$, there exists a clan Γ s.t. $a, b \in \Gamma$.
- Every ultrafilter is a clan.
- Every clan is a union of ultrafilters.
The Representation Theorem

We define on the set \(\text{clu}(B) \) of clusters of \(B \) the topology having the sets

\[
\square b = \{ \Gamma \in \text{clu}(B) : \neg b \notin \Gamma \}
\]

as a basis.

Then \(\text{clu}(B) \) is \(T_1 \) and weakly regular, and

\[
\eta_B : B \to \text{RC}(\text{clu}(B)) : b \mapsto \diamond b = \{ \Gamma \in \text{clu}(B) : b \in \Gamma \}
\]

is a dense embedding.
The Representation Theorem

We define on the set \(\text{clu}(B) \) of clusters of \(B \) the topology having the sets

\[
\Box b = \{ \Gamma \in \text{clu}(B) : \neg b \notin \Gamma \}
\]

as a basis.

Then \(\text{clu}(B) \) is \(T_1 \) and weakly regular, and

\[
\eta_B : B \to \text{RC}(\text{clu}(B)) : b \mapsto \Diamond b = \{ \Gamma \in \text{clu}(B) : b \in \Gamma \}
\]

is a dense embedding.
The Representation Theorem

We define on the set $\text{clu}(B)$ of clusters of B the topology having the sets

$$\Box b = \{\Gamma \in \text{clu}(B) : \neg b \notin \Gamma\}$$

as a basis.

Then $\text{clu}(B)$ is T_1 and weakly regular, and

$$\eta_B : B \to \text{RC}(\text{clu}(B)) : b \mapsto \Diamond b = \{\Gamma \in \text{clu}(B) : b \in \Gamma\}$$

is a dense embedding.
A de Vries algebra is a complete Boolean algebra endowed with a binary relation \(\prec \) satisfying

\[
\begin{align*}
\text{DV0} & \quad 0 \prec a \prec 1 \\
\text{DV1} & \quad a \prec b \implies a \leq b \quad \text{(reflexivity)} \\
\text{DV2} & \quad a \prec b \implies \neg b \prec \neg a \quad \text{(symmetry)} \\
\text{DV3} & \quad a \leq b \prec c \leq d \implies a \prec d \\
\text{DV4} & \quad a \prec b, c \implies a \prec b \land c \\
\text{DV5} & \quad b \neq 0 \implies \exists a \neq 0 \quad a \prec b \quad \text{(extensionality)} \\
\text{DV6} & \quad a \prec b \implies \exists c a \prec c \prec b \quad \text{(transitivity)}
\end{align*}
\]

If \(a \not C b \iff a \not \not \prec b \), then DV0-DV5 correspond to C0-C5. The axiom DV6 correspond to

\[
\begin{align*}
\text{C6} & \quad a \perp b \implies \exists c \quad a \perp c \quad \text{and} \quad \neg c \perp b
\end{align*}
\]
de Vries duality

A de Vries algebra is a complete Boolean algebra endowed with a binary relation \prec satisfying

\begin{align*}
\text{DV0} & \quad 0 \prec a \prec 1 \\
\text{DV1} & \quad a \prec b \Rightarrow a \leq b \quad \text{(reflexivity)} \\
\text{DV2} & \quad a \prec b \Rightarrow \neg b \prec \neg a \quad \text{(symmetry)} \\
\text{DV3} & \quad a \leq b \prec c \leq d \Rightarrow a \prec d \\
\text{DV4} & \quad a \prec b, c \Rightarrow a \prec b \land c \\
\text{DV5} & \quad b \neq 0 \Rightarrow \exists a \neq 0 \ a \prec b \quad \text{(extensionality)} \\
\text{DV6} & \quad a \prec b \Rightarrow \exists c \ a \prec c \prec b \quad \text{(transitivity)}
\end{align*}

If $a \not\sim b \iff a \not\prec \neg b$, then DV0-DV5 correspond to C0-C5. The axiom DV6 correspond to

\begin{align*}
\text{C6} & \quad a \perp b \Rightarrow \exists c \ a \perp c \text{ and } \neg c \perp b
\end{align*}
A filter \mathcal{F} is \textit{round} if $b \in \mathcal{F} \Rightarrow \exists a \in \mathcal{F} \ a \prec b$. An \textit{end} is a maximal round filter. The set $\text{end}(B)$ of ends is endowed with the topology having the sets

$$r_B(b) = \{ \mathcal{F} \in \text{end} b : b \in \mathcal{F} \}$$

as a basis. This space is compact Hausdorff.

If X is a compact Hausdorff space, then the set $RO(X)$ of regular open sets of X, endowed with the relation \prec defined by $U \prec V \Rightarrow \overline{U} \subseteq V$, is a de Vries algebra.
A filter \mathcal{F} is *round* if $b \in \mathcal{F} \Rightarrow \exists a \in \mathcal{F} \ a \prec b$. An *end* is a maximal round filter. The set $\text{end}(B)$ of ends is endowed with the topology having the sets

$$ r_B(b) = \{ \mathcal{F} \in \text{end} b : b \in \mathcal{F} \} $$

as a basis. This space is compact Hausdorff. If X is a compact Hausdorff space, then the set $\text{RO}(X)$ of regular open sets of X, endowed with the relation \prec defined by $U \prec V \Rightarrow \bar{U} \subseteq V$, is a de Vries algebra.
A map $\alpha : B \to B'$ is a *de Vries morphism* if it satisfies

- **DVM1** $\alpha(0) = 0$
- **DVM2** $\alpha(a \wedge b) = \alpha(a) \wedge \alpha(b)$
- **DVM3** $a \prec b \Rightarrow \neg \alpha(\neg a) \prec \alpha(b)$
- **DVM4** $\alpha(b) = \bigvee \{ \alpha(a) : a \prec b \}$.

If α is a de Vries morphism, then the map

$$f_\alpha : \text{end}(B') \to \text{end}(B) : \mathcal{F}' \mapsto \alpha^{-1}(\mathcal{F}') \uparrow$$

is continuous.

If $f : X' \to X$ is a continuous map, then

$$\alpha_f : \text{RO}(X) \to \text{RO}(X') : U \mapsto (f^{-1}(U))^{-\circ}$$

is a de Vries morphism.
de Vries duality

A map $\alpha : B \to B'$ is a de Vries morphism if it satisfies

\begin{align*}
\text{DVM1} & \quad \alpha(0) = 0 \\
\text{DVM2} & \quad \alpha(a \land b) = \alpha(a) \land \alpha(b) \\
\text{DVM3} & \quad a \prec b \implies \neg\alpha(\neg a) \prec \alpha(b) \\
\text{DVM4} & \quad \alpha(b) = \bigvee \{\alpha(a) : a \prec b\}.
\end{align*}

If α is a de Vries morphism, then the map

$$f_\alpha : \text{end}(B') \to \text{end}(B) : \mathcal{F}' \mapsto \alpha^{-1}(\mathcal{F}') \uparrow$$

is continuous.

If $f : X' \to X$ is a continuous map, then

$$\alpha_f : \text{RO}(X) \to \text{RO}(X') : U \mapsto (f^{-1}(U))^{-\circ}$$

is a de Vries morphism.
de Vries duality

A map $\alpha : B \rightarrow B'$ is a de Vries morphism if it satisfies

DVM1 $\alpha(0) = 0$

DVM2 $\alpha(a \land b) = \alpha(a) \land \alpha(b)$

DVM3 $a \preceq b \Rightarrow \neg \alpha(\neg a) \preceq \alpha(b)$

DVM4 $\alpha(b) = \bigvee \{\alpha(a) : a \prec b\}$.

If α is a de Vries morphism, then the map

$$f_\alpha : \text{end}(B') \rightarrow \text{end}(B) : \mathcal{F}' \mapsto \alpha^{-1}(\mathcal{F}') \uparrow$$

is continuous.

If $f : X' \rightarrow X$ is a continuous map, then

$$\alpha_f : \text{RO}(X) \rightarrow \text{RO}(X') : U \mapsto (f^{-1}(U))^{-\circ}$$

is a de Vries morphism.
de Vries duality

The composition of two de Vries morphisms is defined by

$$(\alpha_2 \star \alpha_1)(b) = (\alpha_2 \circ \alpha_1)^*(b) = \bigvee \{\alpha_2(\alpha_1(a)) : a \preceq b\}.$$

Then, the category Dev of de Vries algebras is dually equivalent to the category KHaus of compact Hausdorff spaces.
The composition of two de Vries morphisms is defined by

$$(\alpha_2 \ast \alpha_1)(b) = (\alpha_2 \circ \alpha_1)^*(b) = \bigvee \{ \alpha_2(\alpha_1(a)) : a \prec b \}.$$

Then, the category \textbf{DeV} of de Vries algebras is dually equivalent to the category \textbf{KHaus} of compact Hausdorff spaces.
The map

$$\theta_B : \text{clu}(B) \to \text{end}(B) : \Gamma \mapsto \{ b \in B : \neg b \notin \Gamma \}$$

is a homeomorphism.
A subordination \prec on B yields a closed relation on the Stone dual of B.

If (B, \prec) is a de Vries algebra, then R is an equivalence relation. There is a 1-1 correspondence between the equivalence classes and the clusters. Bezhanishvili et al. established (2016) a duality for Boolean algebras with subordinations.
A little digression
Modal-like duality

A subordination \prec on B yields a closed relation on the Stone dual of B.
If (B, \prec) is a de Vries algebra, then R is an equivalence relation. There is a 1-1 correspondence between the equivalence classes and the clusters.
Bezhanishvili et al. established (2016) a duality for Boolean algebras with subordinations.
A subordination \prec on B yields a closed relation on the Stone dual of B.

If (B, \prec) is a de Vries algebra, then R is an equivalence relation. There is a 1-1 correspondence between the equivalence classes and the clusters.

Bezhanishvili et al. established (2016) a duality for Boolean algebras with subordinations.
Towards a duality

Goal

Theorem (Düntsch-Winter, 2005)
Every BCA can be densely embedded into $\mathbb{R}C(X)$ for some T_1 weakly regular topological space X.

Corollary
Every complete BCA is isomorphic to $\mathbb{R}C(X)$ for some T_1 weakly regular topological space X.

Our aim is to turn this representation theorem into a duality.
Towards a duality

Goal

Theorem (Düntsch-Winter, 2005)
Every BCA can be densely embedded into $RC(X)$ for some T_1 weakly regular topological space X.

Corollary
Every complete BCA is isomorphic to $RC(X)$ for some T_1 weakly regular topological space X.

Our aim is to turn this representation theorem into a duality.
Towards a duality
Characterizing the dual spaces

If B is complete, then the clans of $\text{clu}(B)$ are fixed: if γ is a clan of $\text{RC}(\text{clu}(B))$, then $\bigcap \gamma \neq \emptyset$.

A topological space Y is a *cluster space* if it is T_1, weakly regular and if its clans are fixed.

If Y is a cluster space, the map

$$\varepsilon_Y : Y \to \text{clu}(\text{RC}(Y)) : y \mapsto \{ F \in \text{RC}(Y) : y \in F \}$$

is a homeomorphism.
Towards a duality
Characterizing the dual spaces

If B is complete, then the clans of $\text{clu}(B)$ are fixed: if γ is a clan of $\text{RC}(\text{clu}(B))$, then $\bigcap \gamma \neq \emptyset$.

A topological space Y is a cluster space if it is T_1, weakly regular and if its clans are fixed.

If Y is a cluster space, the map

$$\epsilon_Y : Y \to \text{clu}(\text{RC}(Y)) : y \mapsto \{ F \in \text{RC}(Y) : y \in F \}$$

is a homeomorphism.
Towards a duality
Characterizing the dual spaces

If B is complete, then the clans of $\text{clus}(B)$ are fixed: if γ is a clan of $\text{RC}(\text{clus}(B))$, then $\bigcap \gamma \neq \emptyset$.

A topological space Y is a cluster space if it is T_1, weakly regular and if its clans are fixed. If Y is a cluster space, the map

$$\varepsilon_Y : Y \to \text{clus}(\text{RC}(Y)) : y \mapsto \{F \in \text{RC}(Y) : y \in F\}$$

is a homeomorphism.
A map $\beta : B \to B'$ between two BCAs is a contact morphism if

CM1 $\beta(1) = 1$

CM2 $\beta(a \lor b) = \beta(a) \lor \beta(b)$

CM3 $a \perp b \Rightarrow \beta(a) \perp \beta(b)$.

The inverse image of a clan under a contact morphism is a clan.

Dual: $N_{\beta} : \text{clu}(B') \to \text{clu}(B)$?
A map $\beta : B \to B'$ between two BCAs is a *contact morphism* if

1. **CM1** $\beta(1) = 1$
2. **CM2** $\beta(a \lor b) = \beta(a) \lor \beta(b)$
3. **CM3** $a \perp b \Rightarrow \beta(a) \perp \beta(b)$.

The inverse image of a clan under a contact morphism is a clan.

Dual: $N_\beta : \text{clu}(B') \to \text{clu}(B)$?
Towards a duality

Morphisms

A map $\beta : B \rightarrow B'$ between two BCAs is a contact morphism if

CM1 $\beta(1) = 1$

CM2 $\beta(a \lor b) = \beta(a) \lor \beta(b)$

CM3 $a \perp b \Rightarrow \beta(a) \perp \beta(b)$.

The inverse image of a clan under a contact morphism is a clan.

Dual: $N_{\beta} : \text{clu}(B') \rightarrow \text{clu}(B)$?
Towards a duality

Morphisms

\[N_\beta : \text{clu}(B') \to \text{clan}(\text{RC}(\text{clu}(B))) \]
\[\Gamma' \mapsto \{ F \in \text{RC}(\text{clu}(B)) : \beta(\eta_B^{-1}(F)) \in \Gamma' \} \]

We define on \(\text{clan}(\text{RC}(Y)) \) the topology which has the family \(\{ \{ \gamma \in \text{clan}(\text{RC}(Y)) : F \in \gamma \} : F \in \text{RC}(Y) \} \) as a basis for closed sets.

The inverse image of a regular closed set under \(N_\beta \) is regular closed.
Towards a duality
Morphisms

\[N_\beta : \text{clu}(B') \to \text{clan}(\text{RC(\text{clu}(B)))) \]
\[: \Gamma' \mapsto \{ F \in \text{RC(\text{clu}(B))) : \beta(\eta_B^{-1}(F)) \in \Gamma' \} \]

We define on \(\text{clan}(\text{RC}(Y)) \) the topology which has the family
\(\{ \{ \gamma \in \text{clan}(\text{RC}(Y)) : F \in \gamma \} : F \in \text{RC}(Y) \} \) as a basis for closed sets.

The inverse image of a regular closed set under \(N_\beta \) is regular closed.
Towards a duality

Morphisms

\[N_\beta : \text{clu}(B') \to \text{clan}(\text{RC}(\text{clu}(B))) \]
\[: \Gamma' \mapsto \{ F \in \text{RC}(\text{clu}(B)) : \beta(\eta_B^{-1}(F)) \in \Gamma' \} \]

We define on \(\text{clan}(\text{RC}(Y))\) the topology which has the family
\[\{ \{ \gamma \in \text{clan}(\text{RC}(Y)) : F \in \gamma \} : F \in \text{RC}(Y) \} \]
as a basis for closed sets.

The inverse image of a regular closed set under \(N_\beta\) is regular closed.
Towards a duality

Morphisms

If Y, Y' are cluster spaces, a morphism from Y' to Y is a map

$$N : Y' \rightarrow \text{clan}(\text{RC}(Y))$$

s.t. the inverse image of a regular closed set is regular closed. Then

$$\beta_N : \text{RC } Y \rightarrow \text{RC } Y' : F \mapsto N^{-1}(\{\gamma : F \in \gamma\})$$

is a contact morphism.
Towards a duality
Morphisms

If Y, Y' are cluster spaces, a morphism from Y' to Y is a map

$$N : Y' \to \text{clan}(\text{RC}(Y))$$

s.t. the inverse image of a regular closed set is regular closed. Then

$$\beta_N : \text{RC} Y \to \text{RC} Y' : F \mapsto N^{-1}(\{\gamma : F \in \gamma\})$$

is a contact morphism.
The composition of $N : Y' \to \text{clan}(\text{RC}(Y))$ and $N' : Y'' \to \text{clan}(\text{RC}(Y'))$ is defined by

$$(N \ast N')(y'') = \beta^{-1}_N(N'(y'')).$$
Towards a duality

The duality

- **EBCA**: category of complete extensional BCAs with contact morphisms (and normal composition)
- **CluSp**: category of cluster spaces with cluster spaces morphisms and composition

The categories **EBCA** and **CluSp** are dually equivalent.
Towards a duality

The duality

- **EBCA**: category of complete extensional BCAs with contact morphisms (and normal composition)
- **CluSp**: category of cluster spaces with cluster spaces morphisms and composition ⋆

The categories **EBCA** and **CluSp** are dually equivalent.
Towards a duality

The duality

- **EBCA**: category of complete extensional BCAs with contact morphisms (and normal composition)
- **CluSp**: category of cluster spaces with cluster spaces morphisms and composition

The categories **EBCA** and **CluSp** are dually equivalent.
\[\alpha = \neg \beta(\neg \cdot) \] de Vries morphism between \(B \) and \(B' \):

\[
\begin{align*}
N_\beta &: \text{clu}(B') \to \text{clan}(\text{RC}(\text{clu}(B))) \\
f_\alpha &: \text{clu}(B') \to \text{clu}(B)
\end{align*}
\]

Then,

\[
N_\beta(\Gamma') \subseteq \varepsilon_{\text{clu}(B)}(f_\alpha(\Gamma')).
\]
Generalizing de Vries duality

\[\alpha = \neg \beta (\neg \cdot) \text{ de Vries morphism between } B \text{ and } B': \]

\[
N_\beta : \text{clu}(B') \to \text{clan}(RC(\text{clu}(B)))
\]

\[
f_\alpha : \text{clu}(B') \to \text{clu}(B)
\]

Then,

\[N_\beta (\Gamma') \subseteq \varepsilon_{\text{clu}(B)} (f_\alpha (\Gamma')). \]
Generalizing de Vries duality

\[\alpha = \neg \beta(\neg \cdot) \text{ de Vries morphism between } B \text{ and } B': \]

\[N_\beta : \text{clu}(B') \rightarrow \text{clan}(\text{RC}(\text{clu}(B))) \]

\[f_\alpha : \text{clu}(B') \rightarrow \text{clu}(B) \]

Then,

\[N_\beta(\Gamma') \subseteq \varepsilon_{\text{clu}(B)}(f_\alpha(\Gamma')). \]
Generalizing de Vries duality

- Not the same composition!
 - \(\beta : B \to B' \) satisfying CM1-4
 - \(\beta' \star \beta \) defined as in de Vries duality
 - Corresponding cluster space morphisms with corresponding composition
 - Dual equivalence between the two modified categories extending de Vries duality
Generalizing de Vries duality

- Not the same composition!
- $\beta : B \to B'$ satisfying CM1-4
- $\beta' \ast \beta$ defined as in de Vries duality
- Corresponding cluster space morphisms with corresponding composition
- Dual equivalence between the two modified categories extending de Vries duality
Generalizing de Vries duality

- Not the same composition!
- $\beta : B \rightarrow B'$ satisfying CM1-4
- $\beta' \star \beta$ defined as in de Vries duality
- Corresponding cluster space morphisms with corresponding composition
- Dual equivalence between the two modified categories extending de Vries duality
Generalizing de Vries duality

- Not the same composition!
- $\beta : B \to B'$ satisfying CM1-4
- $\beta' \ast \beta$ defined as in de Vries duality
- Corresponding cluster space morphisms with corresponding composition
- Dual equivalence between the two modified categories extending de Vries duality
Generalizing de Vries duality

- Not the same composition!
- $\beta : B \to B'$ satisfying CM1-4
- $\beta' \ast \beta$ defined as in de Vries duality
- Corresponding cluster space morphisms with corresponding composition
- Dual equivalence between the two modified categories extending de Vries duality
From now, we will consider complete BCAs satisfying C0-C4. Let’s equip $\text{clan}(B)$ with the topology having $\{\Box b : b \in B\}$ as a basis, where $\Box b = \{\Gamma \in \text{clan}(B) : \neg b \notin \Gamma\}$.

Theorem
The space $\text{clan}(B)$ is semiregular, sober, and its clans are full. The clans of Z are full if

$$\forall \gamma \in \text{clan}(\text{RC}(Z)) \forall F \in \text{RC}(Z) \left(\bigcap \gamma \subseteq F \Rightarrow F \in \gamma \right).$$
Duality through clans

From now, we will consider complete BCAs satisfying C0-C4. Let’s equip \(\text{clan}(B) \) with the topology having \(\{ \square b : b \in B \} \) as a basis, where \(\square b = \{ \Gamma \in \text{clan}(B) : \neg b \notin \Gamma \} \).

Theorem
The space \(\text{clan}(B) \) is semiregular, sober, and its clans are full. The clans of \(Z \) are full if

\[
\forall \gamma \in \text{clan}(\text{RC}(Z)) \forall F \in \text{RC}(Z) \left(\bigcap \gamma \subseteq F \Rightarrow F \in \gamma \right).
\]
From now, we will consider complete BCAs satisfying C0-C4. Let’s equip \(\text{clan}(B) \) with the topology having \(\{ \Box b : b \in B \} \) as a basis, where \(\Box b = \{ \Gamma \in \text{clan}(B) : \neg b \notin \Gamma \} \).

Theorem
The space \(\text{clan}(B) \) is semiregular, sober, and its clans are full. The clans of \(Z \) are full if

\[
\forall \gamma \in \text{clan}(\text{RC}(Z)) \ \forall F \in \text{RC}(Z) \ \left(\bigcap \gamma \subseteq F \Rightarrow F \in \gamma \right).
\]
A topological space is called a *clan space* if it is semiregular, sober and if its clans are full.

If Z is a clan space, then $RC(Z)$ is a BCA.
A topological space is called a *clan space* if it is semiregular, sober and if its clans are full. If Z is a clan space, then $RC(Z)$ is a BCA.
Duality through clans

A map between two clan spaces is a clan space morphism if the inverse image of a regular closed set is regular closed. If \(\beta : B \to B' \) is a contact morphism, then

\[
\begin{align*}
h_\beta : \text{clan}(B') & \to \text{clan}(B) : \Gamma' \mapsto \beta^{-1}(\Gamma')
\end{align*}
\]

is a clan space morphism. If \(h : Y' \to Y \) is a clan space morphism, then

\[
\begin{align*}
\beta_h : \text{RC}(Y) & \to \text{RC}(Y') : F \mapsto h^{-1}(F)
\end{align*}
\]

is a contact morphism.
Duality through clans

A map between two clan spaces is a clan space morphism if the inverse image of a regular closed set is regular closed. If \(\beta : B \to B' \) is a contact morphism, then

\[
h_{\beta} : \text{clan}(B') \to \text{clan}(B) : \Gamma' \mapsto \beta^{-1}(\Gamma')
\]

is a clan space morphism.

If \(h : Y' \to Y \) is a clan space morphism, then

\[
\beta_h : \text{RC}(Y) \to \text{RC}(Y') : F \mapsto h^{-1}(F)
\]

is a contact morphism.
Duality through clans

A map between two clan spaces is a clan space morphism if the inverse image of a regular closed set is regular closed. If \(\beta : B \to B' \) is a contact morphism, then

\[
h_\beta : \text{clan}(B') \to \text{clan}(B) : \Gamma' \mapsto \beta^{-1}(\Gamma')
\]

is a clan space morphism.

If \(h : Y' \to Y \) is a clan space morphism, then

\[
\beta_h : \text{RC}(Y) \to \text{RC}(Y') : F \mapsto h^{-1}(F)
\]

is a contact morphism.
Duality through clans

If B is a BCA, the map

$$\eta_B : B \to \text{RC}(\text{clan}(B)) : b \mapsto \{\Gamma \in \text{clan}(B) : b \in \Gamma\}$$

is a isomorphism.

If Z is a clan space, the map

$$\varepsilon_Z : Z \to \text{clan}(\text{RC}(Z)) : z \mapsto \{F \in \text{RC}(Z) : z \in F\}$$

is a homeomorphism.
Duality through clans

If B is a BCA, the map

$$\eta_B : B \to \text{RC}(\text{clan}(B)) : b \mapsto \{\Gamma \in \text{clan}(B) : b \in \Gamma\}$$

is a isomorphism.

If Z is a clan space, the map

$$\varepsilon_Z : Z \to \text{clan}(\text{RC}(Z)) : z \mapsto \{F \in \text{RC}(Z) : z \in F\}$$

is a homeomorphism.
Duality through clans

- **BCA**: category of complete BCAs with contact morphisms
- **ClanSp**: category of clan spaces with clan space morphisms

The categories **BCA** and **ClanSp** are dually equivalent.
Duality through clans

- **BCA**: category of complete BCAs with contact morphisms
- **ClanSp**: category of clan spaces with clan space morphisms

The categories **BCA** and **ClanSp** are dually equivalent.
Duality through clans

- **BCA**: category of complete BCAs with contact morphisms
- **ClanSp**: category of clan spaces with clan space morphisms

The categories **BCA** and **ClanSp** are dually equivalent.
Thank you for your attention!