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Boolean contact algebras

A (extensional) Boolean contact algebra (BCA) is a Boolean
algebra B endowed with a binary relation C s.t.

C0 a ⊥ 0

C1 a 6= 0⇒ a C a (reflexivity)

C2 a C b ⇒ b C a (symmetry)

C3 a C b ≤ c ⇒ a C c
C4 a C (b ∨ c)⇒ a C b or a C c
C5 a � b ⇒ ∃c a C c and c ⊥ b (extensionality)



Boolean contact algebras

Example
If (X , τ) is a semiregular topological space, then RC(X ) is a
complete non-extensional BCA.

• F ∨ G = F ∪ G

• F ∧ G = (F ∩ G )◦−

• ¬F = F c−

• F C G ⇔ F ∩ G 6= ∅
It satisfies C5 iff (X , τ) is weakly regular.

Theorem (Düntsch-Winter, 2005)
Every BCA can be densely embedded into the BCA RC(X ) for
some T1 weakly regular topological space X .
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The Representation Theorem

A subset Γ of B is a clan if

• a ∈ Γ, a ≤ b ⇒ b ∈ Γ

• a ∨ b ∈ Γ⇒ a ∈ Γ or b ∈ Γ

• 1 ∈ Γ

• a, b ∈ Γ⇒ a C b.

A maximal clan is called a cluster.

• Every clan is contained in a cluster.

• If a C b, there exists a clan Γ s.t. a, b ∈ Γ.

• Every ultrafilter is a clan.

• Every clan is a union of ultrafilters.
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The Representation Theorem

We define on the set clu(B) of clusters of B the topology
having the sets

�b = {Γ ∈ clu(B) : ¬b /∈ Γ}

as a basis.
Then clu(B) is T1 and weakly regular, and

ηB : B → RC(clu(B)) : b 7→ ♦b = {Γ ∈ clu(B) : b ∈ Γ}

is a dense embedding.
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de Vries duality

A de Vries algebra is a complete Boolean algebra endowed
with a binary relation ≺ satisfying

DV0 0 ≺ a ≺ 1

DV1 a ≺ b ⇒ a ≤ b (reflexivity)

DV2 a ≺ b ⇒ ¬b ≺ ¬a (symmetry)

DV3 a ≤ b ≺ c ≤ d ⇒ a ≺ d

DV4 a ≺ b, c ⇒ a ≺ b ∧ c

DV5 b 6= 0⇒ ∃a 6= 0 a ≺ b (extensionality)

DV6 a ≺ b ⇒ ∃c a ≺ c ≺ b (transitivity)

If a C b ⇔ a 6≺ ¬b, then DV0-DV5 correspond to C0-C5.
The axiom DV6 correspond to

C6 a ⊥ b ⇒ ∃c a ⊥ c and ¬c ⊥ b
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de Vries duality

A filter F is round if b ∈ F ⇒ ∃a ∈ F a ≺ b. An end is a
maximal round filter. The set end(B) of ends is endowed with
the topology having the sets

rB(b) = {F ∈ end b : b ∈ F}

as a basis. This space is compact Hausdorff.
If X is a compact Hausdorff space, then the set RO(X ) of
regular open sets of X , endowed with the relation ≺ defined
by U ≺ V ⇒ Ū ⊆ V , is a de Vries algebra.
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de Vries duality
A map α : B → B ′ is a de Vries morphism if it satisfies

DVM1 α(0) = 0

DVM2 α(a ∧ b) = α(a) ∧ α(b)

DVM3 a ≺ b ⇒ ¬α(¬a) ≺ α(b)

DVM4 α(b) =
∨
{α(a) : a ≺ b}.

If α is a de Vries morphism, then the map

fα : end(B ′)→ end(B) : F ′ 7→ α−1(F ′) ⇑

is continuous.
If f : X ′ → X is a continuous map, then

αf : RO(X )→ RO(X ′) : U 7→ (f −1(U))−◦

is a de Vries morphism.
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de Vries duality

The composition of two de Vries morphisms is defined by

(α2 ? α1)(b) = (α2 ◦ α1)?(b) =
∨
{α2(α1(a)) : a ≺ b}.

Then, the category DeV of de Vries algebras is dually
equivalent to the category KHaus of compact Hausdorff
spaces.
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de Vries duality

The map

θB : clu(B)→ end(B) : Γ 7→ {b ∈ B : ¬b /∈ Γ}

is a homeomorphism.



A little digression
Modal-like duality

A subordination ≺ on B yields a closed relation on the Stone
dual of B .
If (B ,≺) is a de Vries algebra, then R is an equivalence
relation. There is a 1-1 correspondence between the
equivalence classes and the clusters.
Bezhanishvili et al. established (2016) a duality for Boolean
algebras with subordinations.
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Towards a duality
Goal

Theorem (Düntsch-Winter, 2005)
Every BCA can be densely embedded into RC(X ) for some T1

weakly regular topological space X .

Corollary
Every complete BCA is isomorphic to RC(X ) for some T1

weakly regular topological space X .

Our aim is to turn this representation theorem into a duality.
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Towards a duality
Characterizing the dual spaces

If B is complete, then the clans of clu(B) are fixed: if γ is a
clan of RC(clu(B)), then

⋂
γ 6= ∅.

A topological space Y is a cluster space if it is T1, weakly
regular and if its clans are fixed.
If Y is a cluster space, the map

εY : Y → clu(RC(Y )) : y 7→ {F ∈ RC(Y ) : y ∈ F}

is a homeomorphism.
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Towards a duality
Morphisms

A map β : B → B ′ between two BCAs is a contact morphism
if

CM1 β(1) = 1

CM2 β(a ∨ b) = β(a) ∨ β(b)

CM3 a ⊥ b ⇒ β(a) ⊥ β(b).

The inverse image of a clan under a contact morphism is a
clan.
Dual: Nβ : clu(B ′)→ clu(B)?
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Towards a duality
Morphisms

Nβ : clu(B ′)→ clan(RC(clu(B)))

: Γ′ 7→ {F ∈ RC(clu(B)) : β(η−1B (F )) ∈ Γ′}

We define on clan(RC(Y )) the topology which has the family
{{γ ∈ clan(RC (Y )) : F ∈ γ} : F ∈ RC(Y )} as a basis for
closed sets.
The inverse image of a regular closed set under Nβ is regular
closed.
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Towards a duality
Morphisms

If Y ,Y ′ are cluster spaces, a morphism from Y ′ to Y is a map

N : Y ′ → clan(RC(Y ))

s.t. the inverse image of a regular closed set is regular closed.
Then

βN : RCY → RCY ′ : F 7→ N−1({γ : F ∈ γ})

is a contact morphism.
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Towards a duality
Morphisms

The composition of N : Y ′ → clan(RC(Y )) and
N ′ : Y ′′ → clan(RC(Y ′)) is defined by

(N ? N ′)(y ′′) = β−1N (N ′(y ′′)).



Towards a duality
The duality

• EBCA: category of complete extensional BCAs with
contact morphisms (and normal composition)

• CluSp: category of cluster spaces with cluster spaces
morphisms and composition ?

The categories EBCA and CluSp are dually equivalent.
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α = ¬β(¬ ·) de Vries morphism between B and B ′:
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fα : clu(B ′)→ clu(B)

Then,
Nβ(Γ′) ⊆ εclu(B)(fα(Γ′)).
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Generalizing de Vries duality

• Not the same composition!

• β : B → B ′ satisfying CM1-4

• β′ ? β defined as in de Vries duality

• Corresponding cluster space morphisms with
corresponding composition

• Dual equivalence between the two modified categories
extending de Vries duality
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Duality through clans

From now, we will consider complete BCAs satisfying C0-C4.
Let’s equip clan(B) with the topology having {�b : b ∈ B} as
a basis, where �b = {Γ ∈ clan(B) : ¬b /∈ Γ}.

Theorem
The space clan(B) is semiregular, sober, and its clans are full.

The clans of Z are full if

∀γ ∈ clan(RC(Z )) ∀F ∈ RC(Z )
(⋂

γ ⊆ F ⇒ F ∈ γ
)
.
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Thank you for your attention!
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