Topologizing filters on rings of fractions RS^{-1} and congruence relations on FilR

Nega Arega¹ and John van den Berg²,

- Department of Mathematics, Addis Ababa University, Addis Ababa, Ethiopia
- 2. Department of Mathematics and Applied Mathematics, University of Pretoria, South Africa.

Topology, Algebra, Categories in Logic (TACL 2017) International Conference, Charles University, Prague, June 26-30, 2017

Outline

Congruence relations on the lattice ordered monoids

Change of rings

Topologizing filters on the ring of fractions RS⁻¹

•
$$\varphi(a \lor b) = \varphi(a) \lor \varphi(b)$$
 for all $a, b \in L$;

$$hickspace \varphi(\bigvee X) = \bigvee_{x \in X} \varphi(x)$$
 for all nonempty $X \subseteq L$;

We call a map φ satisfying the above a homomorphism of lattice ordered monoids.

Denote by \equiv_{φ} the congruence on *L* induced by φ . Thus

$$a \equiv_{\varphi} b \Leftrightarrow \varphi(a) = \varphi(b)$$
 for all $a, b \in L$.

$$[a]_{\equiv_{\varphi}} = \{b \in L : \varphi(a) = \varphi(b)\}.$$

- $\varphi(a \lor b) = \varphi(a) \lor \varphi(b)$ for all $a, b \in L$;
- $\varphi(\bigvee X) = \bigvee_{x \in X} \varphi(x)$ for all nonempty $X \subseteq L$;

We call a map φ satisfying the above a homomorphism of lattice ordered monoids.

Denote by \equiv_{φ} the congruence on *L* induced by φ . Thus

$$a \equiv_{\varphi} b \Leftrightarrow \varphi(a) = \varphi(b)$$
 for all $a, b \in L$.

$$[a]_{\equiv_{\varphi}} = \{b \in L : \varphi(a) = \varphi(b)\}.$$

- $\varphi(a \lor b) = \varphi(a) \lor \varphi(b)$ for all $a, b \in L$;
- $\varphi(\bigvee X) = \bigvee_{x \in X} \varphi(x)$ for all nonempty $X \subseteq L$;
- $\varphi(\mathbf{a} \cdot \mathbf{b}) = \varphi(\mathbf{a}) \cdot \varphi(\mathbf{b}).$

We call a map φ satisfying the above a homomorphism of lattice ordered monoids.

Denote by \equiv_{φ} the congruence on L induced by φ . Thus

$$a \equiv_{\varphi} b \Leftrightarrow \varphi(a) = \varphi(b)$$
 for all $a, b \in L$.

$$[a]_{\equiv_{\varphi}}=\{b\in L: \varphi(a)=\varphi(b)\}.$$

- $\varphi(a \lor b) = \varphi(a) \lor \varphi(b)$ for all $a, b \in L$;
- $\varphi(\bigvee X) = \bigvee_{x \in X} \varphi(x)$ for all nonempty $X \subseteq L$;
- $\varphi(\mathbf{a} \cdot \mathbf{b}) = \varphi(\mathbf{a}) \cdot \varphi(\mathbf{b}).$

We call a map φ satisfying the above a homomorphism of lattice ordered monoids.

Denote by \equiv_{φ} the congruence on *L* induced by φ . Thus

$$a \equiv_{\varphi} b \Leftrightarrow \varphi(a) = \varphi(b)$$
 for all $a, b \in L$.

$$[a]_{\equiv_{\varphi}} = \{b \in L : \varphi(a) = \varphi(b)\}.$$

- $\varphi(a \lor b) = \varphi(a) \lor \varphi(b)$ for all $a, b \in L$;
- $\varphi(\bigvee X) = \bigvee_{x \in X} \varphi(x)$ for all nonempty $X \subseteq L$;
- $\varphi(\mathbf{a} \cdot \mathbf{b}) = \varphi(\mathbf{a}) \cdot \varphi(\mathbf{b}).$

We call a map φ satisfying the above a homomorphism of lattice ordered monoids.

Denote by \equiv_{φ} the congruence on *L* induced by φ . Thus

$$\mathbf{a} \equiv_{\varphi} \mathbf{b} \Leftrightarrow \varphi(\mathbf{a}) = \varphi(\mathbf{b}) \text{ for all } \mathbf{a}, \mathbf{b} \in L.$$

$$[a]_{\equiv_{\varphi}} = \{b \in L : \varphi(a) = \varphi(b)\}.$$

- $\varphi(a \lor b) = \varphi(a) \lor \varphi(b)$ for all $a, b \in L$;
- $\varphi(\bigvee X) = \bigvee_{x \in X} \varphi(x)$ for all nonempty $X \subseteq L$;
- $\varphi(\mathbf{a} \cdot \mathbf{b}) = \varphi(\mathbf{a}) \cdot \varphi(\mathbf{b}).$

We call a map φ satisfying the above a homomorphism of lattice ordered monoids.

Denote by \equiv_{φ} the congruence on *L* induced by φ . Thus

$$a \equiv_{\varphi} b \Leftrightarrow \varphi(a) = \varphi(b)$$
 for all $a, b \in L$.

$$[a]_{\equiv_{\varphi}} = \{b \in L : \varphi(a) = \varphi(b)\}.$$

$$L/\equiv_{\varphi}=\{[a]_{\equiv_{\varphi}}:a\in L\}.$$

- ▶ The equivalence class $[a]_{\equiv_{\varphi}}$ contains a largest element, namely $\bigvee [a]_{\equiv_{\varphi}}$.
- ▶ If $\{\equiv_{\delta} : \delta \in \Delta\}$ is a family of congruences on L, then $\bigcap \equiv_{\delta}$ is a congruence on L and we have a canonical embedding of lattice ordered monoids given by:

$$L/\bigcap_{\delta\in\Delta}\equiv_{\delta}\hookrightarrow\prod_{\delta\in\Delta}(L/\equiv_{\delta})$$
$$[a]_{\bigcap_{\delta\in\Delta}\equiv_{\delta}}\mapsto\{[a]_{\equiv_{\delta}}\}_{\delta\in\Delta}.$$

$$L/\equiv_{\varphi}=\{[a]_{\equiv_{\varphi}}:a\in L\}.$$

- The equivalence class [a]_{≡φ} contains a largest element, namely √[a]_{≡φ}.
- ▶ If $\{\equiv_{\delta} : \delta \in \Delta\}$ is a family of congruences on L, then $\bigcap \equiv_{\delta}$ is a congruence on L and we have a canonical embedding of lattice ordered monoids given by:

$$L/\bigcap_{\delta\in\Delta}\equiv_{\delta}\hookrightarrow\prod_{\delta\in\Delta}(L/\equiv_{\delta})$$
$$[a]_{\bigcap_{\delta\in\Delta}\equiv_{\delta}}\mapsto\{[a]_{\equiv_{\delta}}\}_{\delta\in\Delta}.$$

$$L/\equiv_{\varphi}=\{[a]_{\equiv_{\varphi}}:a\in L\}.$$

- The equivalence class [a]_{≡φ} contains a largest element, namely √[a]_{≡φ}.
- If {≡_δ : δ ∈ Δ} is a family of congruences on L, then ⋂ ≡_δ is a congruence on L and we have a canonical embedding of lattice ordered monoids given by:

$$L/\bigcap_{\delta\in\Delta}\equiv_{\delta}\hookrightarrow\prod_{\delta\in\Delta}(L/\equiv_{\delta})$$
$$[a]_{\bigcap_{\delta\in\Delta}\equiv_{\delta}}\hookrightarrow\{[a]_{\equiv_{\delta}}\}_{\delta\in\Delta}.$$

$$L/\equiv_{\varphi}=\{[a]_{\equiv_{\varphi}}:a\in L\}.$$

- The equivalence class [a]_{≡φ} contains a largest element, namely √[a]_{≡φ}.
- If {≡_δ : δ ∈ Δ} is a family of congruences on L, then ⋂ ≡_δ is a congruence on L and we have a canonical embedding of lattice ordered monoids given by:

$$L/\bigcap_{\delta\in\Delta}\equiv_{\delta}\hookrightarrow\prod_{\delta\in\Delta}(L/\equiv_{\delta})$$
$$[a]_{\bigcap_{\delta\in\Delta}\equiv_{\delta}}\mapsto\{[a]_{\equiv_{\delta}}\}_{\delta\in\Delta}.$$

Through out this section unless otherwise mentioned:

- R and T are arbitrary rings.
- ▶ I is two sided ideals denoted by $I \leq R$.

Proposition 2.1. Let $\varphi: R \to T$ a ring homo. Then the map $\varphi^*: \operatorname{Fil} T_T \to \operatorname{Fil} R_R$ given by

$$\varphi^*(\mathfrak{F}) = \{K \leq R_R : K \supseteq \varphi^{-1}[L] \text{ for some } L \in \mathfrak{F}\}$$

•
$$\varphi^*(\mathfrak{F}:\mathfrak{G})\subseteq\varphi^*(\mathfrak{F}):\varphi^*(\mathfrak{G})$$
 for all $\mathfrak{FG}\in\mathrm{Fil}\,T_T$.

Through out this section unless otherwise mentioned:

- R and T are arbitrary rings.
- ▶ I is two sided ideals denoted by $I \subseteq R$.

Proposition 2.1. Let $\varphi: R \to T$ a ring homo. Then the map $\varphi^*: \operatorname{Fil} T_T \to \operatorname{Fil} R_R$ given by

$$\varphi^*(\mathfrak{F}) = \{ K \le R_R : K \supseteq \varphi^{-1}[L] \text{ for some } L \in \mathfrak{F} \}$$

$$ho \varphi^*(\mathfrak{F}:\mathfrak{G}) \subseteq \varphi^*(\mathfrak{F}): \varphi^*(\mathfrak{G}) \text{ for all } \mathfrak{FG} \in \operatorname{Fil} T_T.$$

Through out this section unless otherwise mentioned:

- R and T are arbitrary rings.
- ▶ I is two sided ideals denoted by $I \subseteq R$.

Proposition 2.1. Let $\varphi:R\to T$ a ring homo. Then the map $\varphi^*:\operatorname{Fil} T_T\to\operatorname{Fil} R_R$ given by

$$\varphi^*(\mathfrak{F}) = \{K \leq R_R : K \supseteq \varphi^{-1}[L] \text{ for some } L \in \mathfrak{F}\}$$

$$ho \varphi^*(\mathfrak{F}:\mathfrak{G}) \subseteq \varphi^*(\mathfrak{F}): \varphi^*(\mathfrak{G}) \text{ for all } \mathfrak{FG} \in \text{Fil } T_T.$$

Through out this section unless otherwise mentioned:

- R and T are arbitrary rings.
- ▶ I is two sided ideals denoted by $I \subseteq R$.

Proposition 2.1. Let $\varphi:R\to T$ a ring homo. Then the map $\varphi^*:\operatorname{Fil} T_T\to\operatorname{Fil} R_R$ given by

$$\varphi^*(\mathfrak{F}) = \{ K \le R_R : K \supseteq \varphi^{-1}[L] \text{ for some } L \in \mathfrak{F} \}$$

$$ho \varphi^*(\mathfrak{F}:\mathfrak{G}) \subseteq \varphi^*(\mathfrak{F}): \varphi^*(\mathfrak{G}) \text{ for all } \mathfrak{FG} \in \operatorname{Fil} T_T.$$

Through out this section unless otherwise mentioned:

- R and T are arbitrary rings.
- ▶ I is two sided ideals denoted by $I \subseteq R$.

Proposition 2.1. Let $\varphi:R\to T$ a ring homo. Then the map $\varphi^*:\operatorname{Fil} T_T\to\operatorname{Fil} R_R$ given by

$$\varphi^*(\mathfrak{F}) = \{ K \le R_R : K \supseteq \varphi^{-1}[L] \text{ for some } L \in \mathfrak{F} \}$$

is a complete lattice homomorphism.

• $\varphi^*(\mathfrak{F}:\mathfrak{G}) \subseteq \varphi^*(\mathfrak{F}): \varphi^*(\mathfrak{G})$ for all $\mathfrak{FG} \in \operatorname{Fil} T_T$.

Proposition 2.2. Let $I \subseteq R$ and $\pi : R \xrightarrow{can.ring\ epi.} R/I$ the canonical ring epimorphism. Then

$$\pi^*(\mathfrak{F}:\mathfrak{G})=[\pi^*(\mathfrak{F}):\pi^*(\mathfrak{G})]\cap\eta(I)$$

for all $\mathfrak{F},\mathfrak{G}\in \mathrm{Fil}\,(R/I)_{R/I}.$

$$\pi^*(\mathcal{F}) = \{ K \le R_R : K \supseteq \pi^{-1}[L] \text{ for some } L \in \mathcal{F} \}$$
$$= \{ K \le R_R : K \supseteq I \text{ and } K/I \in \mathcal{F} \}. \tag{1}$$

Proposition 2.2. Let $I \subseteq R$ and $\pi : R \xrightarrow{can.ring\ epi.} R/I$ the canonical ring epimorphism. Then

$$\pi^*(\mathfrak{F}:\mathfrak{G})=[\pi^*(\mathfrak{F}):\pi^*(\mathfrak{G})]\cap\eta(I)$$

for all $\mathfrak{F},\mathfrak{G}\in\mathrm{Fil}\,(R/I)_{R/I}$.

$$\pi^*(\mathcal{F}) = \{ K \le R_R : K \supseteq \pi^{-1}[L] \text{ for some } L \in \mathcal{F} \}$$
$$= \{ K \le R_R : K \supseteq I \text{ and } K/I \in \mathcal{F} \}. \tag{1}$$

Proposition 2.2. Let $I \subseteq R$ and $\pi : R \xrightarrow{can.ring\ epi.} R/I$ the canonical ring epimorphism. Then

$$\pi^*(\mathfrak{F}:\mathfrak{G})=[\pi^*(\mathfrak{F}):\pi^*(\mathfrak{G})]\cap\eta(I)$$

for all $\mathfrak{F},\mathfrak{G}\in\mathrm{Fil}\,(R/I)_{R/I}$.

$$\pi^*(\mathcal{F}) = \{ K \le R_R : K \supseteq \pi^{-1}[L] \text{ for some } L \in \mathcal{F} \}$$
$$= \{ K \le R_R : K \supseteq I \text{ and } K/I \in \mathcal{F} \}. \tag{1}$$

Proposition 2.2. Let $I \subseteq R$ and $\pi : R \xrightarrow{can.ring\ epi.} R/I$ the canonical ring epimorphism. Then

$$\pi^*(\mathfrak{F}:\mathfrak{G})=[\pi^*(\mathfrak{F}):\pi^*(\mathfrak{G})]\cap\eta(I)$$

for all $\mathfrak{F},\mathfrak{G}\in\mathrm{Fil}\,(R/I)_{R/I}$.

$$\pi^*(\mathcal{F}) = \{ K \le R_R : K \supseteq \pi^{-1}[L] \text{ for some } L \in \mathcal{F} \}$$
$$= \{ K \le R_R : K \supseteq I \text{ and } K/I \in \mathcal{F} \}. \tag{1}$$

- If $I \subseteq R$, then, in general, the interval $[0, \eta(I)] \stackrel{\text{def}}{=} \{\mathfrak{F} \in \operatorname{Fil} R_R : \mathfrak{F} \subseteq \eta(I)\}$ of $\operatorname{Fil} R_R$ is not closed under :, for $\eta(I) : \eta(I) = \eta(I \cdot I) = \eta(I^2)$ and $\eta(I^2) \notin [0, \eta(I)]$ unless $I^2 = I$.
- ▶ Let $I \leq R$. We define operation : I on $[0, \eta(I)]$ by

$$\mathfrak{F}:_{I}\mathfrak{G}\stackrel{\mathrm{def}}{=}(\mathfrak{F}:\mathfrak{G})\cap\eta(I)$$

for $\mathfrak{F},\mathfrak{G}\in [0,\eta(\mathit{I})].$

In light of the previous definition and Proposition 2, we see that

$$\pi^*(\mathfrak{F}:\mathfrak{G}) = \pi^*(\mathfrak{F}):_I \pi^*(\mathfrak{G}) \tag{2}$$

- If $I \subseteq R$, then, in general, the interval $[0, \eta(I)] \stackrel{\text{def}}{=} \{\mathfrak{F} \in \operatorname{Fil} R_R : \mathfrak{F} \subseteq \eta(I)\}$ of $\operatorname{Fil} R_R$ is not closed under :, for $\eta(I) : \eta(I) = \eta(I \cdot I) = \eta(I^2)$ and $\eta(I^2) \notin [0, \eta(I)]$ unless $I^2 = I$.
- ▶ Let $I \subseteq R$. We define operation : I on $[0, \eta(I)]$ by

$$\mathfrak{F}:_{I}\mathfrak{G}\stackrel{\mathrm{def}}{=}(\mathfrak{F}:\mathfrak{G})\cap\eta(I)$$

for $\mathfrak{F},\mathfrak{G}\in [0,\eta(\mathit{I})]$

In light of the previous definition and Proposition 2, we see that

$$\pi^*(\mathfrak{F}:\mathfrak{G}) = \pi^*(\mathfrak{F}):_I \pi^*(\mathfrak{G}) \tag{2}$$

- ▶ If $I ext{ } ext$
- ▶ Let $I \subseteq R$. We define operation : I on $[0, \eta(I)]$ by

$$\mathfrak{F}:_{I}\mathfrak{G}\stackrel{\mathrm{def}}{=}(\mathfrak{F}:\mathfrak{G})\cap\eta(I)$$

for $\mathfrak{F},\mathfrak{G}\in[0,\eta(I)]$.

In light of the previous definition and Proposition 2, we see that

$$\pi^*(\mathfrak{F}:\mathfrak{G}) = \pi^*(\mathfrak{F}):_I \pi^*(\mathfrak{G}) \tag{2}$$

- ▶ If $I ext{ } ext$
- ▶ Let $I \subseteq R$. We define operation : I on $[0, \eta(I)]$ by

$$\mathfrak{F}:_{I}\mathfrak{G}\stackrel{\mathrm{def}}{=}(\mathfrak{F}:\mathfrak{G})\cap\eta(I)$$

for $\mathfrak{F},\mathfrak{G}\in[0,\eta(I)]$.

In light of the previous definition and Proposition 2, we see that

$$\pi^*(\mathfrak{F}:\mathfrak{G}) = \pi^*(\mathfrak{F}):_I \pi^*(\mathfrak{G}) \tag{2}$$

- ▶ If $I ext{ } ext$
- ▶ Let $I \subseteq R$. We define operation : I on $[0, \eta(I)]$ by

$$\mathfrak{F}:_{I}\mathfrak{G}\stackrel{\mathrm{def}}{=}(\mathfrak{F}:\mathfrak{G})\cap\eta(I)$$

for $\mathfrak{F},\mathfrak{G}\in[0,\eta(I)]$.

In light of the previous definition and Proposition 2, we see that

$$\pi^*(\mathfrak{F}:\mathfrak{G}) = \pi^*(\mathfrak{F}) :_{I} \pi^*(\mathfrak{G}) \tag{2}$$

- ▶ If $I \subseteq R$, then, in general, the interval $[0, \eta(I)] \stackrel{\text{def}}{=} \{\mathfrak{F} \in \operatorname{Fil} R_R : \mathfrak{F} \subseteq \eta(I)\} \text{ of Fil } R_R \text{ is not closed under :, for } \eta(I) : \eta(I) = \eta(I \cdot I) = \eta(I^2) \text{ and } \eta(I^2) \notin [0, \eta(I)] \text{ unless } I^2 = I.$
- ▶ Let $I \subseteq R$. We define operation : I on $[0, \eta(I)]$ by

$$\mathfrak{F}:_{I}\mathfrak{G}\stackrel{\mathrm{def}}{=}(\mathfrak{F}:\mathfrak{G})\cap\eta(I)$$

for $\mathfrak{F},\mathfrak{G}\in[0,\eta(I)]$.

In light of the previous definition and Proposition 2, we see that

$$\pi^*(\mathfrak{F}:\mathfrak{G}) = \pi^*(\mathfrak{F}) : \pi^*(\mathfrak{G})$$
 (2)

Let $I \subseteq R$ and $\pi : R \to R/I$ the canonical ring epimorphism.

Define map $\pi_*: [0, \eta(I)] \to \operatorname{Fil}(R/I)_{R/I}$ by

$$\pi_*(\mathfrak{F}) \stackrel{\mathrm{def}}{=} \{K/I : K \in \mathfrak{F}\}$$

for $\mathfrak{F} \in [0, \eta(I)]$.

It is easily checked that $\pi_*(\mathfrak{F}) \in \operatorname{Fil}(R/I)_{R/I}, \, \forall \, \mathfrak{F} \in [0, \eta(I)]$.

Theorem 2.3.(Correspondence Theorem)

Let $I \subseteq R$ and $\pi: R \to R/I$ the canonical ring epimorphism. Then π^* and π_* are mutually inverse complete lattice and monoid isomorphisms between $\operatorname{Fil}(R/I)_{R/I}$ and $\langle [0, \eta(I)]; :_I \rangle$. Hence, $[\operatorname{Fil}(R/I)_{R/I}]^{\operatorname{du}}$ and $\langle [0, \eta(I)]; :_I \rangle^{\operatorname{du}}$ are isomorphic

Let $I \subseteq R$ and $\pi : R \to R/I$ the canonical ring epimorphism.

Define map $\pi_*: [0, \eta(I)] \to \operatorname{Fil}(R/I)_{R/I}$ by

$$\pi_*(\mathfrak{F}) \stackrel{\mathrm{def}}{=} \{ K/I : K \in \mathfrak{F} \}$$

for $\mathfrak{F} \in [0, \eta(I)]$.

It is easily checked that $\pi_*(\mathfrak{F}) \in \operatorname{Fil}(R/I)_{R/I}, \, \forall \, \mathfrak{F} \in [0, \eta(I)].$

Theorem 2.3.(Correspondence Theorem)

Let $I \subseteq R$ and $\pi: R \to R/I$ the canonical ring epimorphism. Then π^* and π_* are mutually inverse complete lattice and monoid isomorphisms between $\operatorname{Fil}(R/I)_{R/I}$ and $\langle [0, \eta(I)]; :_I \rangle$. Hence, $[\operatorname{Fil}(R/I)_{R/I}]^{\operatorname{du}}$ and $\langle [0, \eta(I)]; :_I \rangle^{\operatorname{du}}$ are isomorphic

Let $I \subseteq R$ and $\pi : R \to R/I$ the canonical ring epimorphism.

Define map $\pi_*: [0, \eta(I)] \to \operatorname{Fil}(R/I)_{R/I}$ by

$$\pi_*(\mathfrak{F}) \stackrel{\mathrm{def}}{=} \{ K/I : K \in \mathfrak{F} \}$$

for $\mathfrak{F} \in [0, \eta(I)]$.

It is easily checked that $\pi_*(\mathfrak{F}) \in \operatorname{Fil}(R/I)_{R/I}, \, \forall \, \mathfrak{F} \in [0, \eta(I)].$

Theorem 2.3.(Correspondence Theorem)

Let $I \subseteq R$ and $\pi: R \to R/I$ the canonical ring epimorphism. Then π^* and π_* are mutually inverse complete lattice and monoid isomorphisms between $\operatorname{Fil}(R/I)_{R/I}$ and $\langle [0, \eta(I)]; :_I \rangle$. Hence, $[\operatorname{Fil}(R/I)_{R/I}]^{\operatorname{du}}$ and $\langle [0, \eta(I)]; :_I \rangle^{\operatorname{du}}$ are isomorphic

Let $I \subseteq R$ and $\pi : R \to R/I$ the canonical ring epimorphism.

Define map $\pi_*: [0, \eta(I)] \to \operatorname{Fil}(R/I)_{R/I}$ by

$$\pi_*(\mathfrak{F}) \stackrel{\mathrm{def}}{=} \{ K/I : K \in \mathfrak{F} \}$$

for $\mathfrak{F} \in [0, \eta(I)]$.

It is easily checked that $\pi_*(\mathfrak{F}) \in \operatorname{Fil}(R/I)_{R/I}, \, \forall \, \mathfrak{F} \in [0, \eta(I)].$

Theorem 2.3.(Correspondence Theorem)

Let $I \subseteq R$ and $\pi : R \to R/I$ the canonical ring epimorphism. Then π^* and π_* are mutually inverse complete lattice and monoid isomorphisms between Fil $(R/I)_{R/I}$ and $\langle [0, \eta(I)]; :_I \rangle$.

Hence, $[\operatorname{Fil}(R/I)_{R/I}]^{\operatorname{du}}$ and $\langle [0, \eta(I)]; :_I \rangle^{\operatorname{du}}$ are isomorphic

Let $I \triangleleft R$ and $\pi : R \rightarrow R/I$ the canonical ring epimorphism.

Define map $\pi_*: [0, \eta(I)] \to \operatorname{Fil}(R/I)_{R/I}$ by

$$\pi_*(\mathfrak{F}) \stackrel{\mathrm{def}}{=} \{ K/I : K \in \mathfrak{F} \}$$

for $\mathfrak{F} \in [0, \eta(I)]$.

It is easily checked that $\pi_*(\mathfrak{F}) \in \mathrm{Fil}(R/I)_{R/I}, \, \forall \, \mathfrak{F} \in [0, \eta(I)].$

Theorem 2.3.(Correspondence Theorem)

Let $I \subseteq R$ and $\pi : R \to R/I$ the canonical ring epimorphism. Then π^* and π_* are mutually inverse complete lattice and monoid isomorphisms between Fil $(R/I)_{R/I}$ and $\langle [0, \eta(I)]; :_I \rangle$. Hence, $[\operatorname{Fil}(R/I)_{R/I}]^{\operatorname{du}}$ and $\langle [0, \eta(I)]; :_I \rangle^{\operatorname{du}}$ are isomorphic

Theorem 2.4. (Preservation Theorem) Let $I \subseteq R$.

- (a) If the monoid operation : on Fil R_R is commutative, then so is the corresponding monoid operation on Fil $(R/I)_{R/I}$.
- (b) If every $\mathfrak{F} \in \operatorname{Fil} R_R$ is idempotent, that is to say, $\mathfrak{F} : \mathfrak{F} = \mathfrak{F}$, then the same is true of every member of $\operatorname{Fil} (R/I)_{R/I}$.
- (c) If $[\operatorname{Fil} R_R]^{\operatorname{du}}$ is right residuated, then so is $[\operatorname{Fil} (R/I)_{R/I}]^{\operatorname{du}}$.

Theorem 2.4. (Preservation Theorem) Let $I \subseteq R$.

- (a) If the monoid operation : on Fil R_R is commutative, then so is the corresponding monoid operation on Fil $(R/I)_{R/I}$.
- (b) If every $\mathfrak{F} \in \operatorname{Fil} R_R$ is idempotent, that is to say, $\mathfrak{F} : \mathfrak{F} = \mathfrak{F}$, then the same is true of every member of $\operatorname{Fil} (R/I)_{R/I}$.
- (c) If $[Fil R_B]^{du}$ is right residuated, then so is $[Fil (R/I)_{B/I}]^{du}$.

Theorem 2.4. (Preservation Theorem) Let $I \subseteq R$.

- (a) If the monoid operation : on Fil R_R is commutative, then so is the corresponding monoid operation on Fil $(R/I)_{R/I}$.
- (b) If every $\mathfrak{F} \in \operatorname{Fil} R_R$ is idempotent, that is to say, $\mathfrak{F} : \mathfrak{F} = \mathfrak{F}$, then the same is true of every member of $\operatorname{Fil} (R/I)_{R/I}$.
- (c) If $[\operatorname{Fil} R_R]^{du}$ is right residuated, then so is $[\operatorname{Fil} (R/I)_{R/I}]^{du}$.

Topologizing filters on the ring of fractions RS^{-1}

► Throughout this section *S* is a multiplicative subset of a commutative ring *R*.

The mapping from Id R to Id RS^{-1} given by $I \mapsto IS^{-1}$ induces in turn a map from Fil R to Fil RS^{-1} .

For each $\mathfrak{F} \in \operatorname{Fil} R$ define

$$\hat{\varphi}_{\mathcal{S}}(\mathfrak{F}) \stackrel{\text{def}}{=} \{AS^{-1} : A \in \mathfrak{F}\}. \tag{3}$$

Topologizing filters on the ring of fractions RS^{-1}

► Throughout this section *S* is a multiplicative subset of a commutative ring *R*.

The mapping from Id R to Id RS^{-1} given by $I \mapsto IS^{-1}$ induces in turn a map from Fil R to Fil RS^{-1} .

For each $\mathfrak{F} \in \operatorname{Fil} R$ define

$$\hat{\varphi}_{S}(\mathfrak{F}) \stackrel{\text{def}}{=} \{AS^{-1} : A \in \mathfrak{F}\}. \tag{3}$$

Topologizing filters on the ring of fractions RS^{-1}

► Throughout this section *S* is a multiplicative subset of a commutative ring *R*.

The mapping from Id R to Id RS^{-1} given by $I \mapsto IS^{-1}$ induces in turn a map from Fil R to Fil RS^{-1} .

For each $\mathfrak{F} \in \operatorname{Fil} R$ define

$$\hat{\varphi}_{\mathcal{S}}(\mathfrak{F}) \stackrel{\text{def}}{=} \{AS^{-1} : A \in \mathfrak{F}\}. \tag{3}$$

- (a) $\hat{\varphi}_{S}(\mathfrak{F})$ is a topologizing filter on RS^{-1} for all $\mathfrak{F} \in \operatorname{Fil} R$, so that $\hat{\varphi}_{S}$ is a mapping from $\operatorname{Fil} R$ to $\operatorname{Fil} RS^{-1}$.
- (b) The mapping \hat{arphi}_{S} : Fil R o Fil RS^{-1} is onto.
- (c) $\hat{\varphi}_S$ preserves infinite meets
- (d) $\hat{\varphi}_S$ preserves finite joins.

- (a) $\hat{\varphi}_S(\mathfrak{F})$ is a topologizing filter on RS^{-1} for all $\mathfrak{F} \in \operatorname{Fil} R$, so that $\hat{\varphi}_S$ is a mapping from Fil R to Fil RS^{-1} .
- (b) The mapping $\hat{\varphi}_S$: Fil $R \to \text{Fil } RS^{-1}$ is onto.
- (c) $\,\,\hat{arphi}_{S}\,$ preserves infinite meets
- (d) $\hat{\varphi}_{S}$ preserves finite joins.

- (a) $\hat{\varphi}_S(\mathfrak{F})$ is a topologizing filter on RS^{-1} for all $\mathfrak{F} \in \operatorname{Fil} R$, so that $\hat{\varphi}_S$ is a mapping from Fil R to Fil RS^{-1} .
- (b) The mapping $\hat{\varphi}_{S}$: Fil $R \to \text{Fil } RS^{-1}$ is onto.
- (c) $\hat{\varphi}_S$ preserves infinite meets.
- (d) $\hat{\varphi}_{S}$ preserves finite joins

- (a) $\hat{\varphi}_{S}(\mathfrak{F})$ is a topologizing filter on RS^{-1} for all $\mathfrak{F} \in \operatorname{Fil} R$, so that $\hat{\varphi}_{S}$ is a mapping from Fil R to Fil RS^{-1} .
- (b) The mapping $\hat{\varphi}_{\mathcal{S}}$: Fil $R \to \text{Fil } R\mathcal{S}^{-1}$ is onto.
- (c) $\hat{\varphi}_{\mathcal{S}}$ preserves infinite meets.
- (d) $\hat{\varphi}_{\mathcal{S}}$ preserves finite joins.

We define

$$\mathfrak{F}_{\mathcal{S}} \stackrel{\text{def}}{=} \{ A \le R : A \cap S \ne \emptyset \}. \tag{4}$$

Proposition 3.2. If S is a multiplicative subset of a commutative ring R, then

$$\mathfrak{F}_{\mathcal{S}}:\mathfrak{G}\subseteq\mathfrak{G}:\mathfrak{F}_{\mathcal{S}}$$

for all $\mathfrak{G} \in \operatorname{Fil} R$.

Corollary 3.3. The following statement hold.

$$\mathfrak{F}_S:\mathfrak{G}:\mathfrak{F}_S=\mathfrak{G}:\mathfrak{F}_S$$

for all $\mathfrak{G} \in \operatorname{Fil} R$.

We define

$$\mathfrak{F}_{\mathcal{S}} \stackrel{\text{def}}{=} \{ A \le R : A \cap S \ne \emptyset \}. \tag{4}$$

Proposition 3.2. If *S* is a multiplicative subset of a commutative ring *R*, then

$$\mathfrak{F}_{\mathcal{S}}:\mathfrak{G}\subseteq\mathfrak{G}:\mathfrak{F}_{\mathcal{S}}$$

for all $\mathfrak{G} \in \operatorname{Fil} R$.

Corollary 3.3. The following statement hold.

$$\mathfrak{F}_S:\mathfrak{G}:\mathfrak{F}_S=\mathfrak{G}:\mathfrak{F}_S$$

We define

$$\mathfrak{F}_{\mathcal{S}} \stackrel{\text{def}}{=} \{ A \le R : A \cap S \ne \emptyset \}. \tag{4}$$

Proposition 3.2. If *S* is a multiplicative subset of a commutative ring *R*, then

$$\mathfrak{F}_{\mathcal{S}}:\mathfrak{G}\subseteq\mathfrak{G}:\mathfrak{F}_{\mathcal{S}}$$

for all $\mathfrak{G} \in \operatorname{Fil} R$.

Corollary 3.3. The following statement hold.

$$\mathfrak{F}_{\mathcal{S}}:\mathfrak{G}:\mathfrak{F}_{\mathcal{S}}=\mathfrak{G}:\mathfrak{F}_{\mathcal{S}}$$

for all $\mathfrak{G} \in \operatorname{Fil} R$.

Theorem 3.4. (Preservation Theorem) Then the following statements hold.

- (a) If Fil R is commutative then so is Fil RS^{-1} .
- (b) If every member of Fil R is idempotent then the same is true of every member of Fil RS⁻¹.

Theorem 3.5.

The map $\hat{\varphi}_S$: $[\operatorname{Fil} R]^{\operatorname{du}} \to [\operatorname{Fil} RS^{-1}]^{\operatorname{du}}$ is an onto homomorphism of lattice ordered monoids.

$$\mathfrak{F} \equiv_{\hat{\varphi}_S} \mathfrak{G} \Leftrightarrow \hat{\varphi}_S(\mathfrak{F}) = \hat{\varphi}_S(\mathfrak{G}). \tag{5}$$

Theorem 3.4. (Preservation Theorem) Then the following statements hold.

- (a) If Fil R is commutative then so is Fil RS^{-1} .
- (b) If every member of Fil R is idempotent then the same is true of every member of Fil RS^{-1} .

Theorem 3.5.

The map $\hat{\varphi}_S$: [Fil R]^{du} \to [Fil RS^{-1}]^{du} is an onto homomorphism of lattice ordered monoids.

$$\mathfrak{F} \equiv_{\hat{\varphi}_S} \mathfrak{G} \Leftrightarrow \hat{\varphi}_S(\mathfrak{F}) = \hat{\varphi}_S(\mathfrak{G}). \tag{5}$$

Theorem 3.4. (Preservation Theorem) Then the following statements hold.

- (a) If Fil R is commutative then so is Fil RS^{-1} .
- (b) If every member of Fil R is idempotent then the same is true of every member of Fil RS^{-1} .

Theorem 3.5.

The map $\hat{\varphi}_{\mathcal{S}} : [\operatorname{Fil} R]^{\operatorname{du}} \to [\operatorname{Fil} R\mathcal{S}^{-1}]^{\operatorname{du}}$ is an onto homomorphism of lattice ordered monoids.

$$\mathfrak{F} \equiv_{\hat{\varphi}_S} \mathfrak{G} \Leftrightarrow \hat{\varphi}_S(\mathfrak{F}) = \hat{\varphi}_S(\mathfrak{G}). \tag{5}$$

Theorem 3.4. (Preservation Theorem) Then the following statements hold.

- (a) If Fil R is commutative then so is Fil RS^{-1} .
- (b) If every member of Fil R is idempotent then the same is true of every member of Fil RS^{-1} .

Theorem 3.5.

The map $\hat{\varphi}_S$: $[\operatorname{Fil} R]^{\operatorname{du}} \to [\operatorname{Fil} RS^{-1}]^{\operatorname{du}}$ is an onto homomorphism of lattice ordered monoids.

$$\mathfrak{F} \equiv_{\hat{\varphi}_S} \mathfrak{G} \Leftrightarrow \hat{\varphi}_S(\mathfrak{F}) = \hat{\varphi}_S(\mathfrak{G}). \tag{5}$$

Theorem 3.4. (Preservation Theorem) Then the following statements hold.

- (a) If Fil R is commutative then so is Fil RS^{-1} .
- (b) If every member of Fil R is idempotent then the same is true of every member of Fil RS^{-1} .

Theorem 3.5.

The map $\hat{\varphi}_{\mathcal{S}} : [\operatorname{Fil} R]^{\operatorname{du}} \to [\operatorname{Fil} RS^{-1}]^{\operatorname{du}}$ is an onto homomorphism of lattice ordered monoids.

$$\mathfrak{F} \equiv_{\hat{\varphi}_S} \mathfrak{G} \Leftrightarrow \hat{\varphi}_S(\mathfrak{F}) = \hat{\varphi}_S(\mathfrak{G}). \tag{5}$$

Theorem 3.4. (Preservation Theorem) Then the following statements hold.

- (a) If Fil R is commutative then so is Fil RS^{-1} .
- (b) If every member of Fil R is idempotent then the same is true of every member of Fil RS^{-1} .

Theorem 3.5.

The map $\hat{\varphi}_S$: $[\operatorname{Fil} R]^{\operatorname{du}} \to [\operatorname{Fil} RS^{-1}]^{\operatorname{du}}$ is an onto homomorphism of lattice ordered monoids.

$$\mathfrak{F} \equiv_{\hat{\varphi}_{S}} \mathfrak{G} \Leftrightarrow \hat{\varphi}_{S}(\mathfrak{F}) = \hat{\varphi}_{S}(\mathfrak{G}). \tag{5}$$

▶ If *R* is a commutative ring, we shall denote by Spec_m *R* the set of all maximal (proper) ideals of *R*.

For each $P \in \operatorname{Spec}_{\mathrm{m}} R$, define multiplicative subset S_P of R by

$$S_P \stackrel{\mathrm{def}}{=} R \backslash P$$
.

Lemma 3.6. If *R* is any commutative ring, then

 $\bigcap \{\mathfrak{F}_{S_P} : P \in \operatorname{Spec}_{\mathrm{m}} R\} = \{R\}, \text{ the identity of Fil } R \text{ w.r.t. the monoid operation.}$

commutative. Then $\bigcap \{ \equiv_{\hat{\varphi}_{S_p}} : P \in \operatorname{Spec_m} R \}$ is the identity congruence on Fil R, that is, for all \mathfrak{F} , $\mathfrak{G} \in \operatorname{Fil} R$,

If R is a commutative ring, we shall denote by Spec_m R the set of all maximal (proper) ideals of R.

For each $P \in \operatorname{Spec}_{\mathrm{m}} R$, define multiplicative subset S_P of R by

$$S_P \stackrel{\mathrm{def}}{=} R \backslash P$$
.

Lemma 3.6. If *R* is any commutative ring, then

 $\bigcap \{\mathfrak{F}_{S_P} : P \in \operatorname{Spec}_{\mathrm{m}} R\} = \{R\}$, the identity of Fil R w.r.t. the monoid operation.

Proposition 3.7. Let H be a commutative ring for which $Fil\ R$ is commutative. Then $\bigcap \{ \equiv_{\hat{\varphi}_{Sp}} : P \in \operatorname{Spec}_m R \}$ is the identity congruence on $Fil\ R$, that is, for all \mathfrak{F} , $\mathfrak{G} \in \operatorname{Fil}_R$,

If R is a commutative ring, we shall denote by Spec_m R the set of all maximal (proper) ideals of R.

For each $P \in \operatorname{Spec}_{\mathrm{m}} R$, define multiplicative subset S_P of R by

$$S_P \stackrel{\mathrm{def}}{=} R \backslash P$$
.

Lemma 3.6. If *R* is any commutative ring, then

 $\bigcap \{\mathfrak{F}_{S_P} : P \in \operatorname{Spec}_{\mathrm{m}} R\} = \{R\}, \text{ the identity of Fil } R \text{ w.r.t. the monoid operation.}$

Proposition 3.7. Let R be a commutative ring for which Fil R is commutative. Then $\bigcap \{ \equiv_{\hat{\varphi}_{S_P}} : P \in \operatorname{Spec}_m R \}$ is the identity congruence on Fil R, that is, for all \mathfrak{F} , $\mathfrak{G} \in \operatorname{Fil} R$,

If R is a commutative ring for which Fil R is commutative, then Proposition 3.7 yields the following subdirect decomposition:

$$[\operatorname{Fil} R]^{\operatorname{du}} \cong [\operatorname{Fil} R]^{\operatorname{du}} / \left(\bigcap_{P \in \operatorname{Spec}_{\operatorname{m}} R} \equiv_{\widehat{\varphi}_{S_P}} \right) \hookrightarrow \prod_{P \in \operatorname{Spec}_{\operatorname{m}} R} [\operatorname{Fil} R]^{\operatorname{du}} / \equiv_{\widehat{\varphi}_{S_P}}) \cong \prod_{P \in \operatorname{Spec}_{\operatorname{m}} R} [\operatorname{Fil} R_P]^{\operatorname{du}}.$$

With reference to the above sequence of mappings, recall that by Theorem 3.5, the mapping

$$\hat{arphi}_{\mathcal{S}_{P}}: [\operatorname{Fil} R]^{\operatorname{du}}
ightarrow [\operatorname{Fil} R_{P}]^{\operatorname{du}} \ \mathfrak{F} \mapsto \hat{arphi}_{\mathcal{S}_{P}}(\mathfrak{F})$$

defines an onto homomorphism of lattice ordered monoids with $\equiv_{\hat{\varphi}_{S_P}}$ the congruence on Fil R induced by $\hat{\varphi}_{S_P}$.

► If R is a commutative ring for which Fil R is commutative, then Proposition 3.7 yields the following subdirect decomposition:

$$\begin{aligned} [\operatorname{Fil} R]^{\operatorname{du}} &\cong [\operatorname{Fil} R]^{\operatorname{du}} / \left(\bigcap_{P \in \operatorname{Spec_m} R} \equiv_{\hat{\varphi}_{S_P}} \right) \hookrightarrow \\ \prod_{P \in \operatorname{Spec_m} R} ([\operatorname{Fil} R]^{\operatorname{du}} / \equiv_{\hat{\varphi}_{S_P}}) &\cong \prod_{P \in \operatorname{Spec_m} R} [\operatorname{Fil} R_P]^{\operatorname{du}}. \end{aligned}$$

With reference to the above sequence of mappings, recall that by Theorem 3.5, the mapping

$$\hat{arphi}_{\mathcal{S}_{P}}: [\operatorname{Fil} R]^{\operatorname{du}}
ightarrow [\operatorname{Fil} R_{P}]^{\operatorname{du}} \ \widetilde{\mathfrak{F}} \mapsto \hat{arphi}_{\mathcal{S}_{P}}(\mathfrak{F})$$

defines an onto homomorphism of lattice ordered monoids with $\equiv_{\hat{\varphi}_{S_D}}$ the congruence on Fil R induced by $\hat{\varphi}_{S_D}$.

If R is a commutative ring for which Fil R is commutative, then Proposition 3.7 yields the following subdirect decomposition:

$$\begin{split} [\operatorname{Fil} R]^{\operatorname{du}} &\cong [\operatorname{Fil} R]^{\operatorname{du}} / \left(\bigcap_{P \in \operatorname{Spec}_{\operatorname{m}} R} \equiv_{\hat{\varphi}_{S_{P}}} \right) \hookrightarrow \\ &\prod_{P \in \operatorname{Spec}_{\operatorname{m}} R} ([\operatorname{Fil} R]^{\operatorname{du}} / \equiv_{\hat{\varphi}_{S_{P}}}) \cong \prod_{P \in \operatorname{Spec}_{\operatorname{m}} R} [\operatorname{Fil} R_{P}]^{\operatorname{du}}. \end{split}$$

With reference to the above sequence of mappings, recall that by Theorem 3.5, the mapping

$$\hat{arphi}_{S_{P}}: [\operatorname{Fil} R]^{\operatorname{du}} o [\operatorname{Fil} R_{P}]^{\operatorname{du}} \ \widetilde{\mathfrak{F}} \mapsto \hat{arphi}_{S_{P}}(\mathfrak{F})$$

defines an onto homomorphism of lattice ordered monoids with $\equiv_{\hat{\varphi}_{S_p}}$ the congruence on Fil R induced by $\hat{\varphi}_{S_p}$.

If R is a commutative ring for which Fil R is commutative, then Proposition 3.7 yields the following subdirect decomposition:

$$\begin{split} [\operatorname{Fil} R]^{\operatorname{du}} &\cong [\operatorname{Fil} R]^{\operatorname{du}} / \left(\bigcap_{P \in \operatorname{Spec}_{\operatorname{m}} R} \equiv_{\hat{\varphi}_{S_{P}}} \right) \hookrightarrow \\ &\prod_{P \in \operatorname{Spec}_{\operatorname{m}} R} ([\operatorname{Fil} R]^{\operatorname{du}} / \equiv_{\hat{\varphi}_{S_{P}}}) \cong \prod_{P \in \operatorname{Spec}_{\operatorname{m}} R} [\operatorname{Fil} R_{P}]^{\operatorname{du}}. \end{split}$$

With reference to the above sequence of mappings, recall that by Theorem 3.5, the mapping

$$\hat{\varphi}_{\mathcal{S}_{\mathcal{P}}}: [\operatorname{Fil} \mathcal{R}]^{\operatorname{du}} \to [\operatorname{Fil} \mathcal{R}_{\mathcal{P}}]^{\operatorname{du}} \ \mathfrak{F} \mapsto \hat{\varphi}_{\mathcal{S}_{\mathcal{P}}}(\mathfrak{F})$$

defines an onto homomorphism of lattice ordered monoids with $\equiv_{\hat{\varphi}_{S_p}}$ the congruence on Fil R induced by $\hat{\varphi}_{S_p}$.

If R is a commutative ring for which Fil R is commutative, then Proposition 3.7 yields the following subdirect decomposition:

$$\begin{split} [\operatorname{Fil} R]^{\operatorname{du}} &\cong [\operatorname{Fil} R]^{\operatorname{du}} / \left(\bigcap_{P \in \operatorname{Spec}_{\operatorname{m}} R} \equiv_{\hat{\varphi}_{S_P}} \right) \hookrightarrow \\ &\prod_{P \in \operatorname{Spec}_{\operatorname{m}} R} ([\operatorname{Fil} R]^{\operatorname{du}} / \equiv_{\hat{\varphi}_{S_P}}) \cong \prod_{P \in \operatorname{Spec}_{\operatorname{m}} R} [\operatorname{Fil} R_P]^{\operatorname{du}}. \end{split}$$

With reference to the above sequence of mappings, recall that by Theorem 3.5, the mapping

$$\hat{\varphi}_{\mathcal{S}_{\mathcal{P}}}: [\operatorname{Fil} \mathcal{R}]^{\operatorname{du}} \to [\operatorname{Fil} \mathcal{R}_{\mathcal{P}}]^{\operatorname{du}} \ \mathfrak{F} \mapsto \hat{\varphi}_{\mathcal{S}_{\mathcal{P}}}(\mathfrak{F})$$

defines an onto homomorphism of lattice ordered monoids with $\equiv_{\hat{\varphi}_{S_P}}$ the congruence on Fil R induced by $\hat{\varphi}_{S_P}$.

It follows that

$$\operatorname{Fil} R/\equiv_{\hat{\varphi}_{\mathcal{S}_{P}}}\cong \operatorname{Fil} R_{P} \text{ for each } P\in \operatorname{Spec}_{\operatorname{m}} R.$$

The aforementioned subdirect decomposition thus takes $\mathfrak F$ in Fil R onto $\{\hat arphi_{S_P}(\mathfrak F)\}_{P\in\operatorname{Spec}_\mathfrak m R}$ in $\prod_{P\in\operatorname{Spec}_\mathfrak m R}\operatorname{Fil} R_P$.

Corollary 3.8 Let R be an arbitrary commutative ring. For all jansian $\mathfrak{F},\mathfrak{G}\in\operatorname{Fil} R$, we have

$$\mathfrak{F} = \mathfrak{G} \Leftrightarrow \mathfrak{F} \equiv_{\hat{\varphi}_{S_P}} \mathfrak{G} \ \forall P \in \operatorname{Spec}_{\operatorname{m}} R.$$

It follows that

$$\operatorname{Fil} R/\equiv_{\hat{\varphi}_{S_P}}\cong \operatorname{Fil} R_P \text{ for each } P\in\operatorname{Spec}_m R.$$

The aforementioned subdirect decomposition thus takes \mathfrak{F} in Fil R onto $\{\hat{\varphi}_{S_P}(\mathfrak{F})\}_{P\in\operatorname{Spec_m} R}$ in $\prod_{P\in\operatorname{Spec_m} R}\operatorname{Fil} R_P$.

Corollary 3.8 Let R be an arbitrary commutative ring. For all jansian $\mathfrak{F},\mathfrak{G}\in\operatorname{Fil} R$, we have

$$\mathfrak{F} = \mathfrak{G} \Leftrightarrow \mathfrak{F} \equiv_{\hat{\varphi}_{S_P}} \mathfrak{G} \ \forall P \in \operatorname{Spec}_{\operatorname{m}} R.$$

It follows that

$$\operatorname{Fil} R/\equiv_{\hat{\varphi}_{S_P}}\cong \operatorname{Fil} R_P \text{ for each } P\in\operatorname{Spec}_m R.$$

The aforementioned subdirect decomposition thus takes \mathfrak{F} in Fil R onto $\{\hat{\varphi}_{S_P}(\mathfrak{F})\}_{P\in\operatorname{Spec_m} R}$ in $\prod_{P\in\operatorname{Spec_m} R}\operatorname{Fil} R_P$.

Corollary 3.8 Let R be an arbitrary commutative ring. For all jansian $\mathfrak{F}, \mathfrak{G} \in \operatorname{Fil} R$, we have

$$\mathfrak{F}=\mathfrak{G}\Leftrightarrow\mathfrak{F}\equiv_{\hat{\varphi}_{S_{P}}}\mathfrak{G}\ \forall P\in\operatorname{Spec}_{\operatorname{m}}R.$$

Proposition 3.9. Let *S* be a multiplicative subset of a commutative ring *R*. Then the following statements hold.

- (a) If $\mathfrak{F} \in \operatorname{Fil} R$ is jansian, then so is $\hat{\varphi}_{\mathcal{S}}(\mathfrak{F})$.
- (b) Every jansian $\mathfrak{G} \in \operatorname{Fil} RS^{-1}$ has the form $\hat{\varphi}_S(\mathfrak{F})$ for some jansian $\mathfrak{F} \in \operatorname{Fil} R$.

The above result tells us that the homomorphism $\hat{\varphi}_{S}: [\operatorname{Fil} R]^{\operatorname{du}} \to [\operatorname{Fil} RS^{-1}]^{\operatorname{du}}$ restricts to a homomorphism from $[\operatorname{Jans} R]^{\operatorname{du}}$ onto $[\operatorname{Jans} RS^{-1}]^{\operatorname{du}}$.

Proposition 3.9. Let *S* be a multiplicative subset of a commutative ring *R*. Then the following statements hold.

- (a) If $\mathfrak{F} \in \operatorname{Fil} R$ is jansian, then so is $\hat{\varphi}_{\mathcal{S}}(\mathfrak{F})$.
- (b) Every jansian $\mathfrak{G} \in \operatorname{Fil} RS^{-1}$ has the form $\hat{\varphi}_{S}(\mathfrak{F})$ for some jansian $\mathfrak{F} \in \operatorname{Fil} R$.

The above result tells us that the homomorphism $\hat{\varphi}_S : [\operatorname{Fil} R]^{\operatorname{du}} \to [\operatorname{Fil} RS^{-1}]^{\operatorname{du}}$ restricts to a homomorphism from $[\operatorname{Jans} R]^{\operatorname{du}}$ onto $[\operatorname{Jans} RS^{-1}]^{\operatorname{du}}$.

Proposition 3.9. Let *S* be a multiplicative subset of a commutative ring *R*. Then the following statements hold.

- (a) If $\mathfrak{F} \in \operatorname{Fil} R$ is jansian, then so is $\hat{\varphi}_{\mathcal{S}}(\mathfrak{F})$.
- (b) Every jansian $\mathfrak{G} \in \operatorname{Fil} RS^{-1}$ has the form $\hat{\varphi}_{\mathcal{S}}(\mathfrak{F})$ for some jansian $\mathfrak{F} \in \operatorname{Fil} R$.

The above result tells us that the homomorphism $\hat{\varphi}_S : [\operatorname{Fil} R]^{\operatorname{du}} o [\operatorname{Fil} RS^{-1}]^{\operatorname{du}}$ restricts to a homomorphism from $[\operatorname{Jans} R]^{\operatorname{du}}$ onto $[\operatorname{Jans} RS^{-1}]^{\operatorname{du}}$.

Proposition 3.9. Let *S* be a multiplicative subset of a commutative ring *R*. Then the following statements hold.

- (a) If $\mathfrak{F} \in \operatorname{Fil} R$ is jansian, then so is $\hat{\varphi}_{\mathcal{S}}(\mathfrak{F})$.
- (b) Every jansian $\mathfrak{G} \in \operatorname{Fil} RS^{-1}$ has the form $\hat{\varphi}_{\mathcal{S}}(\mathfrak{F})$ for some jansian $\mathfrak{F} \in \operatorname{Fil} R$.

The above result tells us that the homomorphism $\hat{\varphi}_{\mathcal{S}}: [\operatorname{Fil} R]^{\operatorname{du}} \to [\operatorname{Fil} RS^{-1}]^{\operatorname{du}}$ restricts to a homomorphism from $[\operatorname{Jans} R]^{\operatorname{du}}$ onto $[\operatorname{Jans} RS^{-1}]^{\operatorname{du}}$.

Proposition 3.9. Let *S* be a multiplicative subset of a commutative ring *R*. Then the following statements hold.

- (a) If $\mathfrak{F} \in \operatorname{Fil} R$ is jansian, then so is $\hat{\varphi}_{\mathcal{S}}(\mathfrak{F})$.
- (b) Every jansian $\mathfrak{G} \in \operatorname{Fil} RS^{-1}$ has the form $\hat{\varphi}_{S}(\mathfrak{F})$ for some jansian $\mathfrak{F} \in \operatorname{Fil} R$.

The above result tells us that the homomorphism $\hat{\varphi}_{\mathcal{S}}: [\operatorname{Fil} R]^{\operatorname{du}} \to [\operatorname{Fil} RS^{-1}]^{\operatorname{du}}$ restricts to a homomorphism from $[\operatorname{Jans} R]^{\operatorname{du}}$ onto $[\operatorname{Jans} RS^{-1}]^{\operatorname{du}}$.

Proposition 3.11. Let R be a Prüfer domain for which Fil R is commutative. Then R_P is a (noetherian) rank 1 discrete valuation domain for every maximal ideal P of R.

Proposition 3.12. Let R be a Prüfer domain for which Fil R is commutative. Then every nonzero prime ideal of R is maximal. **Theorem 3.13.** The following statements are equivalent for a

Prüfer domain R

- (a) R is noetherian and thus a Dedekind domain;
- (b) Fil R is commutative

Proposition 3.11. Let R be a Prüfer domain for which Fil R is commutative. Then R_P is a (noetherian) rank 1 discrete valuation domain for every maximal ideal P of R.

Proposition 3.12. Let R be a Prüfer domain for which Fil R is commutative. Then every nonzero prime ideal of R is maximal.

Theorem 3.13. The following statements are equivalent for a

Prüfer domain R:

- (a) R is noetherian and thus a Dedekind domain;
- (b) Fil R is commutative.

Proposition 3.11. Let R be a Prüfer domain for which Fil R is commutative. Then R_P is a (noetherian) rank 1 discrete valuation domain for every maximal ideal P of R.

Proposition 3.12. Let R be a Prüfer domain for which Fil R is commutative. Then every nonzero prime ideal of R is maximal. **Theorem 3.13.** The following statements are equivalent for a

Prüfer domain R:

- (a) R is noetherian and thus a Dedekind domain;
- (b) Fil R is commutative.

Proposition 3.11. Let R be a Prüfer domain for which Fil R is commutative. Then R_P is a (noetherian) rank 1 discrete valuation domain for every maximal ideal P of R.

Proposition 3.12. Let R be a Prüfer domain for which Fil R is commutative. Then every nonzero prime ideal of R is maximal. **Theorem 3.13.** The following statements are equivalent for a

Prüfer domain R:

- (a) R is noetherian and thus a Dedekind domain;
- (b) Fil R is commutative.

Acknowledgement

1. Department of Mathematics and Applied Mathematics, University of Pretoria, South Africa.

2. DST-NRF Cetner of Excellence in Mathematical and Statistical Sciences (CoE-MaSS).

Congruence relations on the lattice ordered monoids ${\it Change\ of\ rings}$ Topologizing filters on the ring of fractions RS^{-1}

Thank you!