Constructive canonicity for lattice-based fixed point logics

Zhiguang Zhao Joint work with Willem Conradie, Andrew Craig and Alessandra Palmigiano

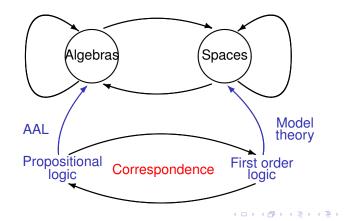
TACL 2017

イロト イポト イヨト イヨ

Zhiguang Zhao Joint work with Willem Conradie, Andrew Craig and A Constructive canonicity for lattice-based fixed point logics

Generalised Sahlqvist theory

From a model theoretic problem to an algebraic logic problem



Unified correspondence

- DLE-logics [CP12, CPS]
- substructural logics [CP]
- hybrid logics [CR15]
- many valued modal logics [CIRM]
- mu calculus [CFPS15, CGP14, CC15]
- regular modal logics [PSZ16]
- possibility semantics [YZ]
- Jónsson-style vs Sambin-style canonicity [PSZ15]
- constructive canonicity [CP]
- Sahlqvist via translation [CPZ]
- constructive canonicity for lattice-based fixed point logics [CCPZ]
- display calculi [GMPTZ16]
- sequent calculi [MZ16]
- finite lattices and monotone modal logic [FPS16]

Preservation of validity of inequalities under (constructive) canonical extensions:

$$\mathbb{A}\models\varphi\leq\psi \ \Rightarrow \ \mathbb{A}^{\delta}\models\varphi\leq\psi.$$

Constructive canonical extension of lattice \mathbb{A} (c.f. Gehrke-Harding 2001)

Complete lattice \mathbb{A}^{δ} containing \mathbb{A} as a dense and compact sublattice

In the presence of the Axiom of Choice, \mathbb{A}^{δ} is perfect:

- $J^{\infty}(\mathbb{A}^{\delta})$ is completely join-dense in \mathbb{A}^{δ} , and
- *M*[∞](A^δ) is completely meet-dense in A^δ.

In the constructive setting: not enough join/meet-irreducibles

イロト イポト イヨト イヨト

Our results

[Conradie Craig 2014]: canonicity for mu-calculus

- distributive-based, with fixed points, specific signature
- non-constructive metatheory

[Conradie Palmigiano]: constructive canonicity

- general lattice-based, no fixed points, arbitrary signature
- constructive metatheory

[CCPZ]: constructive canonicity for lattice-based fixed point logics

- general lattice-based, with fixed points, arbitrary signature
- constructive metatheory
- simpler ALBA! No specific rules for fixed points

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A general strategy of canonicity via ALBA

$$\begin{array}{ccc} \mathbb{A} \models \alpha \leq \beta & \mathbb{A}^{\delta} \models \alpha \leq \beta \\ & \updownarrow & & & & & \\ \mathbb{A}^{\delta} \models_{\mathbb{A}} \alpha \leq \beta & & & & \\ & \updownarrow & & & & \\ \mathbb{A}^{\delta} \models_{\mathbb{A}} \mathsf{ALBA}(\alpha \leq \beta) & \longleftrightarrow & \mathbb{A}^{\delta} \models \mathsf{ALBA}(\alpha \leq \beta) \end{array}$$

We apply this strategy to lattice-based logics with fixed points

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation: completeness

Problem: canonical extension changes the values of fixed point formulas

In the lattice expansion \mathbb{A} :

$$\mu x.t(x, a_1, \ldots, a_{n-1}) := \bigwedge \{ a \in A | t(a, a_1, \ldots, a_{n-1}) \le a \}$$

if this meet exists, otherwise $\mu x.t(x, a_1, \ldots, a_{n-1})$ is undefined.

In the canonical extension \mathbb{A}^{δ} of lattice expansion \mathbb{A} :

$$\mu^* x.t(x, a_1, \ldots, a_{n-1}) := \bigwedge \{ a \in A | t(a, a_1, \ldots, a_{n-1}) \le a \}$$

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Consequence: two definitions of canonicity

 $\varphi \leq \psi$ is canonical:

$$\mathbb{A}\models\varphi\leq\psi \ \Rightarrow \ \mathbb{A}^{\delta}\models\varphi\leq\psi.$$

 $\varphi \leq \psi$ is tame canonical:

$$\mathbb{A}\models\varphi\leq\psi \ \Rightarrow \ \mathbb{A}^{\delta}\models\varphi^*\leq\psi^*.$$

Zhiguang Zhao Joint work with Willem Conradie, Andrew Craig and A Constructive canonicity for lattice-based fixed point logics

イロト イヨト イヨト イヨ

Two Syntactic Characterizations

From the two notions of canonicity, two syntactic characterizations arise of formulas guaranteed to be canonical for each type:

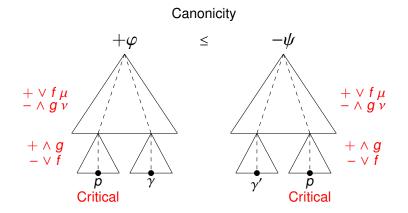
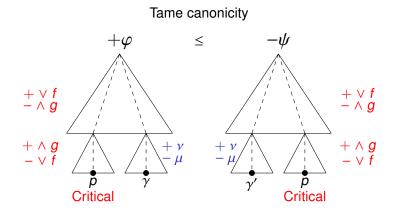


Image: A math a math

From the two notions of canonicity, two syntactic characterizations arise of formulas guaranteed to be canonical for each type:



- Fixed points modelling different forms of group knowledge in the context of the epistemic logic of categories
- Use canonicity to prove conservativity of proof systems

• □ ▶ • □ ▶ • □ ▶ • □ ▶

References

[Conradie Craig] Canonicity results for mu-calculi: an algorithmic approach, *JLC*, 2017.

[Conradie Fomatati Palmigiano Sourabh] Correspondence theory for intuitionistic modal mu-calculus, *TCS*, 564:30-62 (2015).

[Conradie Ghilardi Palmigiano] Unified Correspondence, in Johan van Benthem on Logic and Information Dynamics, Springer, 2014.

[Conradie Palmigiano 2012] Algorithmic Correspondence and Canonicity for Distributive Modal Logic, *APAL*, 163:338-376.

[Conradie Palmigiano 2015] Algorithmic correspondence and canonicity for non-distributive logics, submitted.

[Conradie Palmigiano 2015] Algorithmic correspondence and canonicity for non-distributive logics, submitted. [Conradie Palmigiano 2015] Constructive canonicity of inductive inequalities, submitted.

[Conradie Palmigiano Sourabh] Algebraic modal correspondence: Sahlqvist and beyond, JLAMP, 2016.

[Conradie Palmigiano Zhao] Sahlqvist via Translation, submitted, 2016.

[Conradie Robinson] On Sahlqvist Theory for Hybrid Logics, JLC, 2017.

[Frittella Palmigiano Santocanale] Dual characterizations for finite lattices via correspondence theory for monotone modal logic, *JLC*, 2017.

[Greco Ma Palmigiano Tzimoulis Zhao] Unified correspondence as a proof-theoretic tool, *JLC*, 2016.