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Ordering Conditions

What do we mean by ordering condition for groups?

Given a class G of groups, it determines when a partial
order of G ∈ G can be extended to a (total) order of G.

Examples

(Fuchs 1963)
Every partial order of a torsion-free abelian group G
extends to an order of G.
(Fuchs 1963)
A partial order of a group G extends to an order of G if,
and only if, there is a way to extend it with any set of
finitely many elements of G.
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Ordering Free Groups

Theorem (1)
Every free group can be totally ordered.

Proved by Shimbireva (1947), Neumann (1948), Vinogradov
(1949), and Bergman (1986).
Non-trivial proofs that don’t make use of Fuchs’ ordering
condition.
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This Work

We provide a new algorithmic ordering condition for groups.

Results
We establish a correspondence between the extension of
partial orders on free groups and validity of equations in
totally ordered groups.
We give a new proof of Theorem (1) which makes use of
Fuchs’ ordering condition.
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Invariant Orderings

Given a group G = 〈G, ·,−1 , e〉, a partial order ≤ of G is a
partial order of G such that, for all a,b, c,d ∈ G,

a ≤ b =⇒ cad ≤ cbd.

A partial order uniquely determines the set of its strictly
positive elements, which is a normal subsemigroup that
does not contain e.
Normality follows from the fact that, for all a,b ∈ G:

e < a =⇒ beb−1 < bab−1 =⇒ e < bab−1.
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Given a group G = 〈G, ·,−1 , e〉, a partial order ≤ of G can be
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Invariant Orderings

Given a group G = 〈G, ·,−1 , e〉, a (total) order ≤ of G can be
identified with a normal subsemigroup P of G which does not
contain e, and such that P ∪ P−1 ∪ {e} = G.

A normal subsemigroup of G, omitting e, uniquely
determines a partial order as the set of its strictly
positive elements.
Normality follows from the fact that, for all a,b ∈ G:
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Ordering Theorem

Let 〈〈S〉〉 be the normal subsemigroup generated by S ⊆ G.

Theorem (Fuchs 1963)
The following are equivalent for a subset S of a group G:

(1) S extends to an order of G.
(2) For all a1, . . . ,am ∈ G \{e}, there exist δ1, . . . , δm ∈ {−1, 1}

such that
e 6∈ 〈〈S ∪ {aδ11 , . . . ,aδmm }〉〉.
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inductively by
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1 We prove that `G S ∪ {c} if, and only if, `rG 〈c, S〉.

2 To conclude, we prove that `rG 〈c, S〉 and `rG 〈c−1, S′〉
implies `G S ∪ S′, by induction on the height of `rG 〈c, S〉.
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Main Result

Theorem
The following are equivalent for a finite subset S of a group G:

(1) `G S.
(2) There exist a1, . . . ,am ∈ G \{e} such that

e ∈ 〈〈S ∪ {aδ11 , . . . ,aδmm }〉〉, for all δ1, . . . , δm ∈ {−1, 1}.

(3) S does not extend to an order of G.



This Work

We provide a new algorithmic ordering condition for groups.

Results
We establish a correspondence between the extension of
partial orders on free groups and validity of equations in
totally ordered groups.
We give a new proof of Theorem (1) which makes use of
Fuchs’ ordering condition.

Proof Theory and Ordered Groups.
A. Colacito and G. Metcalfe.
Proceedings of WoLLIC 2017. To appear.
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An `-group L = 〈L,∧,∨, ·,−1 , e〉 is an algebraic structure
such that:

〈L, ·,−1 , e〉 is a group;
〈L,∧,∨〉 is a lattice, where the order

a ≤ b⇐⇒ a ∧ b = a

is a partial order of the group 〈L, ·,−1 , e〉.
When ≤ is total, L is called a totally ordered group.
OG denotes the class of totally ordered groups, which
generates the variety RG of representable `-groups.
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Remark

By means of the strong distributivity properties of `-groups,
checking validity of equations in RG amounts to checking

RG |= e ≤ t1 ∨ . . . ∨ tn,

where t1, . . . , tn are group terms, i.e., they are built from
variables by using only group operations ·,−1, and e.
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(2) There exist s1, . . . , sm ∈ F \{e} such that
e ∈ 〈〈{t1, . . . , tn, sδ11 , . . . , sδmm }〉〉, for all δ1, . . . , δm ∈ {−1, 1}.

(3) {t1, . . . , tn} does not extend to an order of F.
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Can this approach provide new insights into the problem
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group varieties of representable `-groups). How far can
we get? (e.g., normal-valued `-groups)
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