An Ordering Condition for Groups

Almudena Colacito
Joint work with George Metcalfe

Mathematical Institute
Universität Bern
Topology, Algebra, and Categories in Logic TACL 2017 Prague, June 27, 2017

Ordering Conditions

What do we mean by ordering condition for groups?
Given a class \mathcal{G} of groups, it determines when a partial order of $\mathbf{G} \in \mathcal{G}$ can be extended to a (total) order of \mathbf{G}.

Examples

(Fuchs 1963)
Every partial order of a torsion-free abelian group G extends to an order of \mathbf{G}.
(Fuchs 1963)
A partial order of a group \mathbf{G} extends to an order of \mathbf{G} if, and only if, there is a way to extend it with any set of finitely many elements of G.

Ordering Conditions

What do we mean by ordering condition for groups?
Given a class \mathcal{G} of groups, it determines when a partial order of $\mathbf{G} \in \mathcal{G}$ can be extended to a (total) order of \mathbf{G}.

```
Examples
    Every partial order of a torsion-free abelian group G
extends to an order of G.
A partial order of a group G extends to an order of G if,
and only if, there is a way to extend it with any set of
finitely many elements of G.
```


Ordering Conditions

What do we mean by ordering condition for groups?

Given a class \mathcal{G} of groups, it determines when a partial order of $\mathbf{G} \in \mathcal{G}$ can be extended to a (total) order of \mathbf{G}.

Examples

(Fuchs 1963)
Every partial order of a torsion-free abelian group G extends to an order of \mathbf{G}.

A partial order of a group \mathbf{G} extends to an order of \mathbf{G} if,
and only if, there is a way to extend it with any set of
finitely many elements of G.

Ordering Conditions

What do we mean by ordering condition for groups?

Given a class \mathcal{G} of groups, it determines when a partial order of $\mathbf{G} \in \mathcal{G}$ can be extended to a (total) order of \mathbf{G}.

Examples

(Fuchs 1963)
Every partial order of a torsion-free abelian group G extends to an order of \mathbf{G}.
(Fuchs 1963)
A partial order of a group \mathbf{G} extends to an order of \mathbf{G} if, and only if, there is a way to extend it with any set of finitely many elements of G.

Ordering Free Groups

Theorem (1)
Every free group can be totally ordered.

- Proved by Shimbireva (1947), Neumann (1948), Vinogradov (1949), and Bergman (1986).
\square Non-trivial proofs that don't make use of Fuchs' ordering condition.

Ordering Free Groups

Theorem (1)
Every free group can be totally ordered.

- Proved by Shimbireva (1947), Neumann (1948), Vinogradov (1949), and Bergman (1986).
- Non-trivial proofs that don't make use of Fuchs' ordering condition.

Ordering Free Groups

Theorem (1)
Every free group can be totally ordered.

- Proved by Shimbireva (1947), Neumann (1948), Vinogradov (1949), and Bergman (1986).
- Non-trivial proofs that don't make use of Fuchs' ordering condition.

Ordering Free Groups

Theorem (1)
Every free group can be totally ordered.

- Proved by Shimbireva (1947), Neumann (1948), Vinogradov (1949), and Bergman (1986).

■ Non-trivial proofs that don't make use of Fuchs' ordering

Ordering Free Groups

Theorem (1)
Every free group can be totally ordered.

- Proved by Shimbireva (1947), Neumann (1948), Vinogradov (1949), and Bergman (1986).
- Non-trivial proofs that don't make use of Fuchs' ordering condition.

This Work

We provide a new algorithmic ordering condition for groups.
Results
We establish a correspondence between the extension of
partial orders on free groups and validity of equations in
totally ordered groups.
We give a new proof of Theorem (1) which makes use of Fuchs' ordering condition.

```
Proof Theory and Ordered Groups.
A. Colacito and G. Metcalfe.
Proceedings of WoLLIC 2017. To appear.
```


This Work

We provide a new algorithmic ordering condition for groups.

Results

- We establish a correspondence between the extension of partial orders on free groups and validity of equations in totally ordered groups.

- We give a new proof of Theorem (1) which makes use of Fuchs' ordering condition.

> Proof Theory and Ordered Groups.
> A. Colacito and G. Metcalfe.
> Proceedings of WoLLIC 2017. To appear.

This Work

We provide a new algorithmic ordering condition for groups.

Results

- We establish a correspondence between the extension of partial orders on free groups and validity of equations in totally ordered groups.
- We give a new proof of Theorem (1) which makes use of Fuchs' ordering condition.

> Proof Theory and Ordered Groups.
> A. Colacito and G. Metcalfe.
> Proceedings of WoLLIC 2017. To appear.

This Work

We provide a new algorithmic ordering condition for groups.

Results

- We establish a correspondence between the extension of partial orders on free groups and validity of equations in totally ordered groups.
- We give a new proof of Theorem (1) which makes use of Fuchs' ordering condition.

Proof Theory and Ordered Groups.
A. Colacito and G. Metcalfe.

Proceedings of WoLLIC 2017. To appear.

Invariant Orderings

Given a group $\mathbf{G}=\left\langle G, \cdot \cdot{ }^{-1}, e\right\rangle$, a partial order \leq of \mathbf{G} is a partial order of G such that, for all $a, b, c, d \in G$,

$$
a \leq b \Longrightarrow c a d \leq c b d
$$

■ A partial order uniquely determines the set of its strictly positive elements, which is a normal subsemigroup that does not contain e.
■ Normality follows from the fact that, for all $a, b \in G$:

$$
e<a \Longrightarrow b e b^{-1}<b a b^{-1} \Longrightarrow e<b a b^{-1}
$$

Invariant Orderings

Given a group $\mathbf{G}=\left\langle\boldsymbol{G}, \cdot \cdot{ }^{-1}, \boldsymbol{e}\right\rangle$, a partial order \leq of G is a partial order of G such that, for all $a, b, c, d \in G$,

$$
a \leq b \Longrightarrow c a d \leq c b d
$$

- A partial order uniquely determines the set of its strictly positive elements, which is a normal subsemigroup that does not contain e.
■ Normality follows from the fact that, for all $a, b \in G$:

$$
e<a \Longrightarrow b e b^{-1}<b a b^{-1} \Longrightarrow e<b a b^{-1}
$$

Invariant Orderings

Given a group $\mathbf{G}=\left\langle G, \cdot{ }^{-1}, e\right\rangle$, a partial order \leq of \mathbf{G} is a partial order of G such that, for all $a, b, c, d \in G$,

$$
a \leq b \Longrightarrow c a d \leq c b d
$$

■ A partial order uniquely determines the set of its positive elements, which is a normal

- Normality follows from the fact that, for all $a, b \in G$:

Invariant Orderings

Given a group $\mathbf{G}=\left\langle\boldsymbol{G}, \cdot \cdot{ }^{-1}, \boldsymbol{e}\right\rangle$, a partial order \leq of \mathbf{G} is a partial order of G such that, for all $a, b, c, d \in G$,

$$
a \leq b \Longrightarrow c a d \leq c b d
$$

- A partial order uniquely determines the set of its strictly positive elements, which is a normal subsemigroup that does not contain e.
- Normality follows from the fact that, for all $a, b \in G$:

Invariant Orderings

Given a group $\mathbf{G}=\left\langle\boldsymbol{G}, \cdot \cdot{ }^{-1}, \boldsymbol{e}\right\rangle$, a partial order \leq of \mathbf{G} is a partial order of G such that, for all $a, b, c, d \in G$,

$$
a \leq b \Longrightarrow c a d \leq c b d
$$

■ A partial order uniquely determines the set of its strictly positive elements, which is a normal subsemigroup that does not contain e.
■ Normality follows from the fact that, for all $a, b \in G$:

$$
e<a \Longrightarrow b e b^{-1}<b a b^{-1} \Longrightarrow e<b a b^{-1}
$$

Invariant Orderings

Given a group $\mathbf{G}=\left\langle\boldsymbol{G}, \cdot \cdot{ }^{-1}, \boldsymbol{e}\right\rangle$, a partial order \leq of \mathbf{G} is a partial order of G such that, for all $a, b, c, d \in G$,

$$
a \leq b \Longrightarrow c a d \leq c b d
$$

■ A normal subsemigroup of G, omitting e, uniquely determines a partial order as the set of its strictly positive elements.
■ Normality follows from the fact that, for all $a, b \in G$:

$$
e<a \Longrightarrow b e b^{-1}<b a b^{-1} \Longrightarrow e<b a b^{-1}
$$

Invariant Orderings

Given a group $\mathbf{G}=\left\langle G, \cdot,^{-1}, e\right\rangle$, a partial order \leq of \mathbf{G} can be identified with a normal subsemigroup P of \mathbf{G} omitting e :

$$
a \leq b \Longleftrightarrow b a^{-1} \in P \cup\{e\}
$$

Invariant Orderings

Given a group $\mathbf{G}=\left\langle\boldsymbol{G}, \cdot,^{-1}, e\right\rangle$, a (total) order \leq of \mathbf{G} can be identified with a normal subsemigroup P of \mathbf{G} which does not contain e, and such that $P \cup P^{-1} \cup\{e\}=G$.

Ordering Theorem

Let $\langle\langle S\rangle\rangle$ be the normal subsemigroup generated by $S \subseteq G$.
Theorem (Fuchs 1963)
The following are equivalent for a subset S of a group G:
(1) S extends to an order of \mathbf{G}.
(2) For all $a_{1}, \ldots, a_{m} \in G \backslash\{e\}$, there exist $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$ such that

$$
e \notin\left\langle\left\langle S \cup\left\{a_{1}^{\delta_{1}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle .
$$

Ordering Theorem

Let $\langle\langle S\rangle\rangle$ be the normal subsemigroup generated by $S \subseteq G$.

The following are equivalent for a subset S of a group G:
S extends to an order of \mathbf{G}.
For all $a_{1}, \ldots, a_{m} \in G \backslash\{e\}$, there exist $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$ such that

$$
e \notin\left\langle\left\langle S \cup\left\{a_{1}^{\delta_{1}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle .
$$

Ordering Theorem

Let $\langle\langle S\rangle\rangle$ be the normal subsemigroup generated by $S \subseteq G$.
Theorem (Fuchs 1963)
The following are equivalent for a subset S of a group \mathbf{G} :
(1) S extends to an order of \mathbf{G}.

For all $a_{1}, \ldots, a_{m} \in G \backslash\{e\}$, there exist $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$
such that

$$
e \notin\left\langle\left\langle S \cup\left\{a_{1}^{\delta_{1}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle
$$

Ordering Theorem

Let $\langle\langle S\rangle\rangle$ be the normal subsemigroup generated by $S \subseteq G$.
Theorem (Fuchs 1963)
The following are equivalent for a subset S of a group G:
(1) S extends to an order of \mathbf{G}.
(2) For all $a_{1}, \ldots, a_{m} \in G \backslash\{e\}$, there exist $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$ such that

$$
e \notin\left\langle\left\langle S \cup\left\{a_{1}^{\delta_{1}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle
$$

Ordering Theorem

Let $\langle\langle S\rangle\rangle$ be the normal subsemigroup generated by $S \subseteq G$.
Theorem (Fuchs 1963)
The following are equivalent for a subset S of a group \mathbf{G} :
(1) S extends to an order of \mathbf{G}.
(2) For all $a_{1}, \ldots, a_{m} \in G \backslash\{e\}$, there exist $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$ such that

$$
e \notin\left\langle\left\langle S \cup\left\{a_{1}^{\delta_{1}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle
$$

An Algorithmic Condition

Given a finite subset $S \subseteq G$ of a group \mathbf{G}, inductively by

$$
\begin{aligned}
& \mathbf{-}_{\mathbf{G}} T \cup\left\{a, a^{-1}\right\}, \\
& \mathbf{G}_{\mathbf{G}} T \cup\{a b\}, \text { if } \vdash_{\mathbf{G}} T \cup\{a\} \text { and } \vdash_{\mathbf{G}} T \cup\{b\}, \\
& \mathbf{G}_{\mathbf{G}} T \cup\{a b\}, \text { if } \vdash_{\mathbf{G}} T \cup\{b a\} .
\end{aligned}
$$

An Algorithmic Condition

Given a finite subset $S \subseteq G$ of a group \mathbf{G}, we define $\vdash_{\mathbf{G}} S$ inductively by
(i) $\vdash_{\mathbf{G}} T \cup\left\{a, a^{-1}\right\}$,
${ }_{\mathrm{G}} T \cup\{a b\}$, if $\vdash_{\mathrm{G}} T \cup\{a\}$ and $\vdash_{\mathrm{G}} T \cup\{b\}$, $\vdash_{\mathbf{G}} T \cup\{a b\}$, if $\vdash_{\mathbf{G}} T \cup\{b a\}$.

An Algorithmic Condition

Given a finite subset $S \subseteq G$ of a group \mathbf{G}, we define $\vdash_{\mathbf{G}} S$ inductively by
(i) $\vdash_{\mathbf{G}} T \cup\left\{a, a^{-1}\right\}$,
(ii) $\vdash_{\mathbf{G}} T \cup\{a b\}$, if $\vdash_{\mathbf{G}} T \cup\{a\}$ and $\vdash_{\mathbf{G}} T \cup\{b\}$,
${ }_{G} T \cup\{a b\}$, if $\vdash_{G} T \cup\{b a\}$.

An Algorithmic Condition

Given a finite subset $S \subseteq G$ of a group \mathbf{G}, we define $\vdash_{\mathbf{G}} S$ inductively by
(i) $\vdash_{\mathbf{G}} T \cup\left\{a, a^{-1}\right\}$,
(ii) $\vdash_{\mathbf{G}} T \cup\{a b\}$, if $\vdash_{\mathbf{G}} T \cup\{a\}$ and $\vdash_{\mathbf{G}} T \cup\{b\}$,
(iii) $\vdash_{\mathbf{G}} T \cup\{a b\}$, if $\vdash_{\mathbf{G}} T \cup\{b a\}$.

Main Result

Theorem
The following are equivalent for a finite subset S of a group \mathbf{G} :
(1) $\vdash_{\boldsymbol{G}} S$.
(2) There exist $a_{1}, \ldots, a_{m} \in G \backslash\{e\}$ such that $e \in\left\langle\left\langle S \cup\left\{a_{1}^{\delta_{1}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$, for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$. S does not extend to an order of \mathbf{G}.

Main Result

Theorem

The following are equivalent for a finite subset S of a group \mathbf{G} :
(1) $\vdash_{\mathbf{G}}$ S.
(2) There exist $a_{1}, \ldots, a_{m} \in G \backslash\{e\}$ such that $e \in\left\langle\left\langle S \cup\left\{a_{1}^{\delta_{1}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$, for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$.
§ Fuchs' condition
(3) S does not extend to an order of \mathbf{G}.

$(1) \Rightarrow(2)$

By induction on the height of a G-derivation $\vdash_{\mathbf{G}} \mathrm{S}$.

```
- It is clear that if S =T\cup{a, a-1}, we have e }\in\langle\langleS\rangle
If S =T\cup{ab}, from }\mp@subsup{\vdash}{\mathbf{G}}{}T\cup{a}\mathrm{ and }\mp@subsup{\vdash}{\mathbf{G}}{}T\cup{b}\mathrm{ , there are
c
e\in\langle\langleT\cup{a}\cup{c,\mp@subsup{\delta}{1}{\mp@subsup{\delta}{1}{}},\ldots,\mp@subsup{c}{m}{\mp@subsup{\delta}{m}{\prime}}}\rangle\rangle\mathrm{ and }e\in\langle\langleT\cup{b}\cup{\mp@subsup{d}{1}{\mp@subsup{\lambda}{1}{}},\ldots,\mp@subsup{d}{n}{\mp@subsup{\lambda}{n}{}}}\rangle\rangle
for all }\mp@subsup{\delta}{1}{},\ldots,\mp@subsup{\delta}{m}{},\mp@subsup{\lambda}{1}{},\ldots,\mp@subsup{\lambda}{n}{}\in{-1,1}. But then
```

$$
e \in\left\langle\left\langle T \cup\{a b\} \cup\left\{a^{\delta}, c_{1}^{\delta_{1}}, \ldots, c_{m}^{\delta_{m}}, d_{1}^{\lambda_{1}}, \ldots, d_{n}^{\lambda_{n}}\right\}\right\rangle\right\rangle
$$

for all $\delta, \delta_{1}, \ldots, \delta_{m}, \lambda_{1}, \ldots, \lambda_{n} \in\{-1,1\}$.

$(1) \Rightarrow(2)$

By induction on the height of a G-derivation $\vdash_{\mathbf{G}} \mathrm{S}$.
■ It is clear that if $S=T \cup\left\{a, a^{-1}\right\}$, we have $e \in\langle\langle S\rangle\rangle$.

$e \in\left\langle\left\langle T \cup\{a\} \cup\left\{c_{1}^{\delta_{1}}, \ldots, c_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$ and $e \in\left\{\left\langle T \cup\{b\} \cup\left\{d_{1}^{\lambda_{1}}\right.\right.\right.$
for all $\delta_{1}, \ldots, \delta_{m}, \lambda_{1}, \ldots, \lambda_{n} \in\{-1,1\}$. But then,

$$
e \in\left\langle\left\langleT \cup \{ a b \} \cup \left\{ a^{\delta}, c_{1}^{\delta_{1}}, \ldots, c_{m}^{\delta_{m}}, d_{1}^{\lambda_{1}}\right.\right.\right.
$$

for all $\delta, \delta_{1}, \ldots, \delta_{m}, \lambda_{1}, \ldots, \lambda_{n} \in\{-1,1\}$.

$(1) \Rightarrow(2)$

By induction on the height of a G-derivation $\vdash_{\mathbf{G}} \mathrm{S}$.

- It is clear that if $S=T \cup\left\{a, a^{-1}\right\}$, we have $e \in\langle\langle S\rangle\rangle . \checkmark$

If $S=T \cup\{a b\}$, from $\vdash_{\mathrm{G}} T \cup\{a\}$ and $\vdash_{\mathrm{G}} T \cup\{b\}$, there are $c_{1}, \ldots, c_{m}, d_{1}, \ldots, d_{n} \in G \backslash\{e\}$ such that
$e \in\left\langle\left\langle T \cup\{a\} \cup\left\{c_{1}^{\delta_{1}}, \ldots, c_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$ and $e \in\left\{\left\langle T \cup\{b\} \cup\left\{d_{1}^{\lambda_{1}}\right.\right.\right.$
for all $\delta_{1}, \ldots, \delta_{m}, \lambda_{1}, \ldots, \lambda_{n} \in\{-1,1\}$. But then,

$$
e \in\left\langle\left\langleT \cup \{ a b \} \cup \left\{ a^{\delta}, c_{1}^{\delta_{1}}, \ldots, c_{m}^{\delta_{m}}, d_{1}^{\lambda_{1}}\right.\right.\right.
$$

for all $\delta, \delta_{1}, \ldots, \delta_{m}, \lambda_{1}, \ldots, \lambda_{n} \in\{-1,1\}$.

$(1) \Rightarrow(2)$

By induction on the height of a G-derivation $\vdash_{\mathbf{G}} \mathrm{S}$.

- It is clear that if $S=T \cup\left\{a, a^{-1}\right\}$, we have $e \in\langle\langle S\rangle\rangle . \checkmark$

■ If $S=T \cup\{a b\}$, from $\vdash_{\mathbf{G}} T \cup\{a\}$ and $\vdash_{\mathbf{G}} T \cup\{b\}$, there are
$e \in\left\langle\left\langle T \cup\{a\} \cup\left\{c_{1}^{\delta_{1}}, \ldots, c_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$ and $e \in\left\langle\left\langle T \cup\{b\} \cup\left\{d_{1}^{\lambda_{1}}\right.\right.\right.$
for all $\delta_{1}, \ldots, \delta_{m}, \lambda_{1}, \ldots, \lambda_{n} \in\{-1,1\}$. But then,

$$
e \in\left\langle\left\langleT \cup \{ a b \} \cup \left\{ a^{\delta}, c_{1}^{\delta_{1}}, \ldots, c_{m}^{\delta_{m}}, d_{1}^{\lambda_{1}}\right.\right.\right.
$$

for all $\delta, \delta_{1}, \ldots, \delta_{m}, \lambda_{1}, \ldots, \lambda_{n} \in\{-1,1\}$.

$(1) \Rightarrow(2)$

By induction on the height of a G-derivation $\vdash_{\mathbf{G}} S$.

- It is clear that if $S=T \cup\left\{a, a^{-1}\right\}$, we have $e \in\langle\langle S\rangle\rangle$.

■ If $S=T \cup\{a b\}$, from $\vdash_{\mathbf{G}} T \cup\{a\}$ and $\vdash_{\mathbf{G}} T \cup\{b\}$, there are $c_{1}, \ldots, c_{m}, d_{1}, \ldots, d_{n} \in G \backslash\{e\}$ such that $e \in\left\langle\left\langle T \cup\{a\} \cup\left\{c_{1}^{\delta_{1}}, \ldots, c_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$ and $e \in\left\langle\left\langle T \cup\{b\} \cup\left\{d_{1}^{\lambda_{1}}, \ldots, d_{n}^{\lambda_{n}}\right\}\right\rangle\right\rangle$, for all $\delta_{1}, \ldots, \delta_{m}, \lambda_{1}, \ldots, \lambda_{n} \in\{-1,1\}$. But then,

$$
e \in\left\langle\left\langleT \cup \{ a b \} \cup \left\{ a^{\delta}, c_{1}^{\delta_{1}}, \ldots, c_{m}^{\delta_{m}}, d_{1}^{\lambda_{1}}\right.\right.\right.
$$

for all $\delta, \delta_{1}, \ldots, \delta_{m}, \lambda_{1}, \ldots, \lambda_{n} \in\{-1,1\}$.

$(1) \Rightarrow(2)$

By induction on the height of a G-derivation $\vdash_{\mathbf{G}} S$.

- It is clear that if $S=T \cup\left\{a, a^{-1}\right\}$, we have $e \in\langle\langle S\rangle\rangle$.

■ If $S=T \cup\{a b\}$, from $\vdash_{\mathbf{G}} T \cup\{a\}$ and $\vdash_{\mathbf{G}} T \cup\{b\}$, there are $c_{1}, \ldots, c_{m}, d_{1}, \ldots, d_{n} \in G \backslash\{e\}$ such that $e \in\left\langle\left\langle T \cup\{a\} \cup\left\{c_{1}^{\delta_{1}}, \ldots, c_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$ and $e \in\left\langle\left\langle T \cup\{b\} \cup\left\{d_{1}^{\lambda_{1}}, \ldots, d_{n}^{\lambda_{n}}\right\}\right\rangle\right\rangle$, for all $\delta_{1}, \ldots, \delta_{m}, \lambda_{1}, \ldots, \lambda_{n} \in\{-1,1\}$. But then,

$$
e \in\left\langle\left\langle T \cup\{a b\} \cup\left\{a^{\delta}, c_{1}^{\delta_{1}}, \ldots, c_{m}^{\delta_{m}}, d_{1}^{\lambda_{1}}, \ldots, d_{n}^{\lambda_{n}}\right\}\right\rangle\right\rangle
$$

for all $\delta, \delta_{1}, \ldots, \delta_{m}, \lambda_{1}, \ldots, \lambda_{n} \in\{-1,1\}$.

$(1) \Rightarrow(2)$

By induction on the height of a G-derivation $\vdash_{\mathbf{G}} S$.

- It is clear that if $S=T \cup\left\{a, a^{-1}\right\}$, we have $e \in\langle\langle S\rangle\rangle$.
- If $S=T \cup\{a b\}$, from $\vdash_{\mathbf{G}} T \cup\{a\}$ and $\vdash_{\mathbf{G}} T \cup\{b\}$, there are $c_{1}, \ldots, c_{m}, d_{1}, \ldots, d_{n} \in G \backslash\{e\}$ such that $e \in\left\langle\left\langle T \cup\{a\} \cup\left\{c_{1}^{\delta_{1}}, \ldots, c_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$ and $e \in\left\langle\left\langle T \cup\{b\} \cup\left\{d_{1}^{\lambda_{1}}, \ldots, d_{n}^{\lambda_{n}}\right\}\right\rangle\right\rangle$, for all $\delta_{1}, \ldots, \delta_{m}, \lambda_{1}, \ldots, \lambda_{n} \in\{-1,1\}$. But then,

$$
e \in\left\langle\left\langle T \cup\{a b\} \cup\left\{a, c_{1}^{\delta_{1}}, \ldots, c_{m}^{\delta_{m}}, d_{1}^{\lambda_{1}}, \ldots, d_{n}^{\lambda_{n}}\right\}\right\rangle\right\rangle,
$$

for all $\delta, \delta_{1}, \ldots, \delta_{m}, \lambda_{1}, \ldots, \lambda_{n} \in\{-1,1\}$.

$(1) \Rightarrow(2)$

By induction on the height of a G-derivation $\vdash_{\mathbf{G}} S$.

- It is clear that if $S=T \cup\left\{a, a^{-1}\right\}$, we have $e \in\langle\langle S\rangle\rangle$.
- If $S=T \cup\{a b\}$, from $\vdash_{\mathbf{G}} T \cup\{a\}$ and $\vdash_{\mathbf{G}} T \cup\{b\}$, there are $c_{1}, \ldots, c_{m}, d_{1}, \ldots, d_{n} \in G \backslash\{e\}$ such that $e \in\left\langle\left\langle T \cup\{a\} \cup\left\{c_{1}^{\delta_{1}}, \ldots, c_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$ and $e \in\left\langle\left\langle T \cup\{b\} \cup\left\{d_{1}^{\lambda_{1}}, \ldots, d_{n}^{\lambda_{n}}\right\}\right\rangle\right\rangle$, for all $\delta_{1}, \ldots, \delta_{m}, \lambda_{1}, \ldots, \lambda_{n} \in\{-1,1\}$. But then,

$$
e \in\left\langle\left\langle T \cup\{a b\} \cup\left\{a^{-1}, c_{1}^{\delta_{1}}, \ldots, c_{m}^{\delta_{m}}, d_{1}^{\lambda_{1}}, \ldots, d_{n}^{\lambda_{n}}\right\}\right\rangle\right\rangle,
$$

for all $\delta, \delta_{1}, \ldots, \delta_{m}, \lambda_{1}, \ldots, \lambda_{n} \in\{-1,1\}$.

$(1) \Rightarrow(2)$

By induction on the height of a G-derivation $\vdash_{\mathbf{G}} S$.

- It is clear that if $S=T \cup\left\{a, a^{-1}\right\}$, we have $e \in\langle\langle S\rangle\rangle$.
- If $S=T \cup\{a b\}$, from $\vdash_{\mathbf{G}} T \cup\{a\}$ and $\vdash_{\mathbf{G}} T \cup\{b\}$, there are $c_{1}, \ldots, c_{m}, d_{1}, \ldots, d_{n} \in G \backslash\{e\}$ such that $e \in\left\langle\left\langle T \cup\{a\} \cup\left\{c_{1}^{\delta_{1}}, \ldots, c_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$ and $e \in\left\langle\left\langle T \cup\{b\} \cup\left\{d_{1}^{\lambda_{1}}, \ldots, d_{n}^{\lambda_{n}}\right\}\right\rangle\right\rangle$, for all $\delta_{1}, \ldots, \delta_{m}, \lambda_{1}, \ldots, \lambda_{n} \in\{-1,1\}$. But then,

$$
e \in\left\langle\left\langle T \cup\{a b\} \cup\left\{a^{-1}, c_{1}^{\delta_{1}}, \ldots, c_{m}^{\delta_{m}}, d_{1}^{\lambda_{1}}, \ldots, d_{n}^{\lambda_{n}}\right\}\right\rangle\right\rangle,
$$

for all $\delta, \delta_{1}, \ldots, \delta_{m}, \lambda_{1}, \ldots, \lambda_{n} \in\{-1,1\}$.

$(1) \Rightarrow(2)$

By induction on the height of a G-derivation $\vdash_{\mathbf{G}} \mathrm{S}$.

- It is clear that if $S=T \cup\left\{a, a^{-1}\right\}$, we have $e \in\langle\langle S\rangle\rangle$.

■ If $S=T \cup\{a b\}$, from $\vdash_{\mathbf{G}} T \cup\{a\}$ and $\vdash_{\mathbf{G}} T \cup\{b\}$. \checkmark
■ If $S=T \cup\{a b\}$, from $\vdash_{\mathbf{G}} T \cup\{b a\}$, we get c_{1}
such that

for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$. But then,

$$
e \in\left\langle\left\langleT \cup \{ a b \} \cup \left\{ c_{1}^{\delta_{1}},\right.\right.\right.
$$

for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$

$(1) \Rightarrow(2)$

By induction on the height of a G-derivation $\vdash_{\mathbf{G}} S$.
■ It is clear that if $S=T \cup\left\{a, a^{-1}\right\}$, we have $e \in\langle\langle S\rangle\rangle$.
■ If $S=T \cup\{a b\}$, from $\vdash_{\mathbf{G}} T \cup\{a\}$ and $\vdash_{\mathbf{G}} T \cup\{b\}$. \checkmark
\square If $S=T \cup\{a b\}$, from $\vdash_{\mathbf{G}} T \cup\{b a\}$, we get $c_{1}, \ldots, c_{m} \in G \backslash\{e\}$ such that

$$
e \in\left\langle\left\langle T \cup\{b a\} \cup\left\{c_{1}^{\delta_{1}}, \ldots, c_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle
$$

for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$.

$$
e \in\left\langle\left\langleT \cup \{ a b \} \cup \left\{ c_{1}^{\delta_{1}},\right.\right.\right.
$$

for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$.

$(1) \Rightarrow(2)$

By induction on the height of a G-derivation $\vdash_{\mathbf{G}} S$.
■ It is clear that if $S=T \cup\left\{a, a^{-1}\right\}$, we have $e \in\langle\langle S\rangle\rangle$.

- If $S=T \cup\{a b\}$, from $\vdash_{\mathbf{G}} T \cup\{a\}$ and $\vdash_{\mathbf{G}} T \cup\{b\}$.
\square If $S=T \cup\{a b\}$, from $\vdash_{\mathbf{G}} T \cup\{b a\}$, we get $c_{1}, \ldots, c_{m} \in G \backslash\{e\}$ such that

$$
e \in\left\langle\left\langle T \cup\{b a\} \cup\left\{c_{1}^{\delta_{1}}, \ldots, c_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle
$$

for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$. But then, by normality,

$$
e \in\left\langle\left\langle T \cup\{a b\} \cup\left\{c_{1}^{\delta_{1}}, \ldots, c_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle
$$

for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$.

$(1) \Rightarrow(2)$

By induction on the height of a G-derivation $\vdash_{\mathbf{G}} S$.
■ It is clear that if $S=T \cup\left\{a, a^{-1}\right\}$, we have $e \in\langle\langle S\rangle\rangle$.

- If $S=T \cup\{a b\}$, from $\vdash_{\mathbf{G}} T \cup\{a\}$ and $\vdash_{\mathbf{G}} T \cup\{b\}$.
\square If $S=T \cup\{a b\}$, from $\vdash_{\mathbf{G}} T \cup\{b a\}$, we get $c_{1}, \ldots, c_{m} \in G \backslash\{e\}$ such that

$$
e \in\left\langle\left\langle T \cup\{b a\} \cup\left\{c_{1}^{\delta_{1}}, \ldots, c_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle
$$

for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$. But then, by normality,

$$
e \in\left\langle\left\langle T \cup\{a b\} \cup\left\{c_{1}^{\delta_{1}}, \ldots, c_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle
$$

for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$.

$(2) \Rightarrow(1)$

By induction on $m \in \mathbb{N}$ for which there are $a_{1}, \ldots, a_{m} \in G \backslash\{e\}$ such that $e \in\left\langle\left\langle S \cup\left\{a_{1}^{\delta_{1}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$, for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$.

- Base case.

■ Induction step $(m>0)$: if there are $a_{1}, \ldots, a_{m} \in G \backslash\{e\}$ such that $e \in\left\langle\left\langle S \cup\left\{a_{1}^{\delta_{1}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$, for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$, by the induction hypothesis twice on $e \in\left\langle\left\langle S \cup\left\{a_{1}, a_{2}^{\delta_{2}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$ and $e \in\left\langle\left\langle S \cup\left\{a_{1}{ }^{-1}, a_{2}^{\delta_{2}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$,

we get

$$
\vdash_{\mathbf{G}} S \cup\left\{a_{1}\right\} \text { and } \vdash_{\mathbf{G}} S \cup\left\{a_{1}^{-1}\right\} .
$$

$(2) \Rightarrow(1)$

By induction on $m \in \mathbb{N}$ for which there are $a_{1}, \ldots, a_{m} \in G \backslash\{e\}$ such that $e \in\left\langle\left\langle S \cup\left\{a_{1}^{\delta_{1}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$, for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$.

- Base case.

we get

$$
-\mathbf{G} S \cup\left\{a_{1}\right\} \text { and } \vdash_{\mathbf{G}} S \cup\left\{a_{1}{ }^{-1}\right\} .
$$

$(2) \Rightarrow(1)$

By induction on $m \in \mathbb{N}$ for which there are $a_{1}, \ldots, a_{m} \in G \backslash\{e\}$ such that $e \in\left\langle\left\langle S \cup\left\{a_{1}^{\delta_{1}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$, for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$.

- Base case.

we get

$$
-\mathbf{G} S \cup\left\{a_{1}\right\} \text { and } \vdash_{\mathbf{G}} S \cup\left\{a_{1}{ }^{-1}\right\} .
$$

$(2) \Rightarrow(1)$

By induction on $m \in \mathbb{N}$ for which there are $a_{1}, \ldots, a_{m} \in G \backslash\{e\}$ such that $e \in\left\langle\left\langle S \cup\left\{a_{1}^{\delta_{1}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$, for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$.

- Base case.

■ Induction step ($m>0$):
by the induction hypothesis twice on

we get

$$
\vdash_{\mathbf{G}} S \cup\left\{a_{1}\right\} \text { and } \vdash_{\mathbf{G}} S \cup\left\{a_{1}^{-1}\right\} .
$$

$(2) \Rightarrow(1)$

By induction on $m \in \mathbb{N}$ for which there are $a_{1}, \ldots, a_{m} \in G \backslash\{e\}$ such that $e \in\left\langle\left\langle S \cup\left\{a_{1}^{\delta_{1}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$, for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$.

- Base case.

■ Induction step $(m>0)$: if there are $a_{1}, \ldots, a_{m} \in G \backslash\{e\}$ such that $e \in\left\langle\left\langle S \cup\left\{a_{1}^{\delta_{1}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$, for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$, $e \in\left\langle\left\langle S \cup\left\{a_{1}, a_{2}^{\delta_{2}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$ and $e \in\left\langle\left\langle S \cup\left\{a_{1}^{-1}, a_{2}^{\delta_{2}}\right.\right.\right.$ we get

$$
\vdash_{\mathbf{G}} S \cup\left\{a_{1}\right\} \text { and } \vdash_{\mathbf{G}} S \cup\left\{a_{1}^{-1}\right\} .
$$

$(2) \Rightarrow(1)$

By induction on $m \in \mathbb{N}$ for which there are $a_{1}, \ldots, a_{m} \in G \backslash\{e\}$ such that $e \in\left\langle\left\langle S \cup\left\{a_{1}^{\delta_{1}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$, for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$.

- Base case.

■ Induction step $(m>0)$: if there are $a_{1}, \ldots, a_{m} \in G \backslash\{e\}$ such that $e \in\left\langle\left\langle S \cup\left\{a_{1}^{\delta_{1}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$, for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$, by the induction hypothesis twice on

$$
e \in\left\langle\left\langle S \cup\left\{a_{1}, a_{2}^{\delta_{2}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle \text { and } e \in\left\langle\left\langle S \cup\left\{a_{1}^{-1}, a_{2}^{\delta_{2}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle,
$$

we get

$$
\vdash_{\mathbf{G}} S \cup\left\{a_{1}\right\} \text { and } \vdash_{\mathbf{G}} S \cup\left\{a_{1}^{-1}\right\} .
$$

$(2) \Rightarrow(1)$

By induction on $m \in \mathbb{N}$ for which there are $a_{1}, \ldots, a_{m} \in G \backslash\{e\}$ such that $e \in\left\langle\left\langle S \cup\left\{a_{1}^{\delta_{1}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$, for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$.

- Base case.

■ Induction step $(m>0)$: if there are $a_{1}, \ldots, a_{m} \in G \backslash\{e\}$ such that $e \in\left\langle\left\langle S \cup\left\{a_{1}^{\delta_{1}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$, for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$, by the induction hypothesis twice on

$$
e \in\left\langle\left\langle S \cup\left\{a_{1}, a_{2}^{\delta_{2}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle \text { and } e \in\left\langle\left\langle S \cup\left\{a_{1}^{-1}, a_{2}^{\delta_{2}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle,
$$

we get

$$
\vdash_{\mathbf{G}} S \cup\left\{a_{1}\right\} \text { and } \vdash_{\mathbf{G}} S \cup\left\{a_{1}^{-1}\right\} .
$$

Can we conclude $\vdash_{\mathrm{G}} \mathrm{S}$?

$(2) \Rightarrow(1):$ Key Lemma

Given a finite subset $S \cup\{c\} \subseteq G$ of a group \mathbf{G}, we call $\langle c, S\rangle$ a finite pointed subset of G.
inductively by

$$
\begin{aligned}
& \vdash_{\mathbf{G}}^{r}\left\langle c, T \cup\left\{a, a^{-1}\right\}\right\rangle \text { and }\left\langle c, T \cup\left\{c^{-1}\right\}\right\rangle, \\
& \vdash_{\mathbf{G}}^{r}\langle c, T \cup\{a b\}\rangle, \text { if } \vdash_{\mathbf{G}}^{r}\langle c, T \cup\{a\}\rangle \text { and } \vdash_{\mathbf{G}}^{r}\langle c, T \cup\{b\}\rangle, \\
& \vdash_{\mathbf{G}}^{r}\langle c, T \cup\{a b\}\rangle, \text { if } \vdash_{\mathbf{G}}^{r}\langle c, T \cup\{b a\}\rangle .
\end{aligned}
$$

1 We prove that $\vdash_{G} S \cup\{c\}$ if, and only if, $\vdash_{G}^{r}\langle c, S\rangle$.
(2 To conclude, we prove that $\vdash_{G}^{r}\langle c, S\rangle$ and $\vdash_{G}^{r}\left\langle c^{-1}, S^{\prime}\right\rangle$ implies $\vdash_{\mathrm{G}} S \cup S^{\prime}$, by induction on the height of $\vdash_{\mathrm{G}}^{r}\langle c, S\rangle$.

$(2) \Rightarrow$ (1): Key Lemma

Given a finite subset $S \cup\{c\} \subseteq G$ of a group \mathbf{G}, we call $\langle c, S\rangle$ a finite pointed subset of G. We define $\vdash_{\mathbf{G}}^{r}\langle c, S\rangle$, we define $\vdash_{\mathbf{G}} S$ inductively by
(i) $\vdash_{\boldsymbol{G}}^{r}\left\langle c, T \cup\left\{a, a^{-1}\right\}\right\rangle$ and $\left\langle c, T \cup\left\{c^{-1}\right\}\right\rangle$,
(ii) $\vdash_{\mathbf{G}}^{r}\langle c, T \cup\{a b\}\rangle$, if $\vdash_{\mathbf{G}}^{r}\langle c, T \cup\{a\}\rangle$ and $\vdash_{\mathbf{G}}^{r}\langle c, T \cup\{b\}\rangle$,
(iii) $\vdash_{\mathbf{G}}^{r}\langle c, T \cup\{a b\}\rangle$, if $\vdash_{\mathbf{G}}^{r}\langle c, T \cup\{b a\}\rangle$.

1 We prove that $\vdash_{\mathrm{G}} S \cup\{c\}$ if, and only if, $\vdash_{\mathrm{G}}^{r}\langle c, S\rangle$.
2. To conclude, we prove that $\vdash_{G}^{r}\langle c, S\rangle$ and $\vdash_{G}^{r}\left\langle c^{-1}, S^{\prime}\right\rangle$
implies $\vdash_{G} S \cup S^{\prime}$, by induction on the height of $\vdash_{\mathbf{G}}^{r}\langle c, S\rangle$.

$(2) \Rightarrow(1):$ Key Lemma

Given a finite subset $S \cup\{c\} \subseteq G$ of a group \mathbf{G}, we call $\langle c, S\rangle$ a finite pointed subset of G. We define $\vdash_{\mathbf{G}}^{r}\langle c, S\rangle$, we define $\vdash_{\mathbf{G}} S$ inductively by
(i) $\vdash_{\boldsymbol{G}}^{r}\left\langle c, T \cup\left\{a, a^{-1}\right\}\right\rangle$ and $\left\langle c, T \cup\left\{c^{-1}\right\}\right\rangle$,
(ii) $\vdash_{\mathbf{G}}^{r}\langle c, T \cup\{a b\}\rangle$, if $\vdash_{\mathbf{G}}^{r}\langle c, T \cup\{a\}\rangle$ and $\vdash_{\mathbf{G}}^{r}\langle c, T \cup\{b\}\rangle$,
(iii) $\vdash_{\mathbf{G}}^{r}\langle c, T \cup\{a b\}\rangle$, if $\vdash_{\mathbf{G}}^{r}\langle c, T \cup\{b a\}\rangle$.

1 We prove that $\vdash_{\mathbf{G}} S \cup\{c\}$ if, and only if, $\vdash_{\mathbf{G}}^{r}\langle c, S\rangle$.
2. To conclude, we prove that $\vdash_{G}^{r}\langle c, S\rangle$ and $\vdash_{G}^{r}\left\langle c^{-1}, S^{\prime}\right\rangle$
implies $\vdash_{G} S \cup S^{\prime}$, by induction on the height of $\vdash_{G}^{r}\langle c, S\rangle$.

$(2) \Rightarrow(1):$ Key Lemma

Given a finite subset $S \cup\{c\} \subseteq G$ of a group \mathbf{G}, we call $\langle c, S\rangle$ a finite pointed subset of G. We define $\vdash_{\mathbf{G}}^{r}\langle c, S\rangle$, we define $\vdash_{\mathbf{G}} S$ inductively by
(i) $\vdash_{\mathbf{G}}^{r}\left\langle c, T \cup\left\{a, a^{-1}\right\}\right\rangle$ and $\left\langle c, T \cup\left\{c^{-1}\right\}\right\rangle$,
(ii) $\vdash_{\mathbf{G}}^{r}\langle c, T \cup\{a b\}\rangle$, if $\vdash_{\mathbf{G}}^{r}\langle c, T \cup\{a\}\rangle$ and $\vdash_{\mathbf{G}}^{r}\langle c, T \cup\{b\}\rangle$,
(iii) $\vdash_{\mathbf{G}}^{r}\langle c, T \cup\{a b\}\rangle$, if $\vdash_{\mathbf{G}}^{r}\langle c, T \cup\{b a\}\rangle$.

1 We prove that $\vdash_{\mathbf{G}} S \cup\{c\}$ if, and only if, $\vdash_{\mathbf{G}}^{r}\langle c, S\rangle$.
2 To conclude, we prove that $\vdash_{\mathbf{G}}^{r}\langle c, S\rangle$ and $\vdash_{\mathbf{G}}^{r}\left\langle c^{-1}, S^{\prime}\right\rangle$ implies $\vdash_{\mathbf{G}} S \cup S^{\prime}$, by induction on the height of $\vdash_{\mathbf{G}}^{r}\langle c, S\rangle$.

$(2) \Rightarrow(1)$

By induction on $m \in \mathbb{N}$ for which there are $a_{1}, \ldots, a_{m} \in G \backslash\{e\}$ such that $e \in\left\langle\left\langle S \cup\left\{a_{1}^{\delta_{1}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$, for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$.

- Base case.

■ Induction step ($m>0$): if there are $a_{1}, \ldots, a_{m} \in G \backslash\{e\}$ such that $e \in\left\langle\left\langle S \cup\left\{a_{1}^{\delta_{1}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$, for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$, by the induction hypothesis twice on

$$
e \in\left\langle\left\langle S \cup\left\{a_{1}\right\} \cup\left\{a_{2}^{\delta_{2}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle \text { and } e \in\left\langle\left\langle S \cup\left\{a_{1}^{-1}\right\} \cup\left\{a_{2}^{\delta_{2}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle,
$$

we get

$$
\vdash_{\mathbf{G}} S \cup\left\{a_{1}\right\} \text { and } \vdash_{\mathbf{G}} S \cup\left\{a_{1}^{-1}\right\} .
$$

We can conclude $\vdash_{\mathbf{G}} \mathrm{S}$.

$(2) \Rightarrow(1)$

By induction on $m \in \mathbb{N}$ for which there are $a_{1}, \ldots, a_{m} \in G \backslash\{e\}$ such that $e \in\left\langle\left\langle S \cup\left\{a_{1}^{\delta_{1}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$, for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$.

- Base case.

■ Induction step ($m>0$): if there are $a_{1}, \ldots, a_{m} \in G \backslash\{e\}$ such that $e \in\left\langle\left\langle S \cup\left\{a_{1}^{\delta_{1}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$, for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$, by the induction hypothesis twice on

$$
e \in\left\langle\left\langle S \cup\left\{a_{1}\right\} \cup\left\{a_{2}^{\delta_{2}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle \text { and } e \in\left\langle\left\langle S \cup\left\{a_{1}^{-1}\right\} \cup\left\{a_{2}^{\delta_{2}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle,
$$

we get

$$
\vdash_{\mathbf{G}} S \cup\left\{a_{1}\right\} \text { and } \vdash_{\mathbf{G}} S \cup\left\{a_{1}^{-1}\right\} .
$$

We can conclude $\vdash_{\mathbf{G}} \mathrm{S}$.

Main Result

Theorem

The following are equivalent for a finite subset S of a group \mathbf{G} :
(1) $\vdash_{\mathbf{G}} \mathbf{S}$.
(2) There exist $a_{1}, \ldots, a_{m} \in G \backslash\{e\}$ such that $e \in\left\langle\left\langle S \cup\left\{a_{1}^{\delta_{1}}, \ldots, a_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$, for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$.
(3) S does not extend to an order of \mathbf{G}.

This Work

Results

- We establish a correspondence between the extension of partial orders on free groups and validity of equations in totally ordered groups.
- We give a new proof of Theorem (1) which makes use of Fuchs' ordering condition.

Lattice-ordered Groups

An ℓ-group $\mathbf{L}=\left\langle L, \wedge, \vee, \cdot,{ }^{-1}, e\right\rangle$ is an algebraic structure such that:

- $\left\langle L, \cdot,^{-1}, e\right\rangle$ is a group;
- $\langle L, \wedge, V\rangle$ is a lattice, where the order

$$
a \leq b \Longleftrightarrow a \wedge b=a
$$

is a partial order of the group $\left\langle L, \cdot \cdot,{ }^{-1}, e\right\rangle$.
When \leq is total, \mathbf{L} is called a totally ordered group.
OG denotes the class of totally ordered groups, which generates the variety $\mathcal{R G}$ of representable ℓ-groups.

Lattice-ordered Groups

An ℓ-group $\mathbf{L}=\left\langle L, \wedge, \vee, \cdot,{ }^{-1}, e\right\rangle$ is an algebraic structure such that:

- $\left\langle L, \cdot,{ }^{-1}, e\right\rangle$ is a group;
- $\langle L, \wedge, V\rangle$ is a lattice, where the order

$$
a \leq b \Longleftrightarrow a \wedge b=a
$$

is a partial order of the group $\left\langle L, \cdot \cdot,{ }^{-1}, e\right\rangle$.
When $<$ is total, \mathbf{L} is called a totally ordered group.
OG denotes the class of totally ordered groups, which generates the variety $\mathcal{R G}$ of representable ℓ-groups.

Lattice-ordered Groups

An ℓ-group $\mathbf{L}=\left\langle L, \wedge, \vee, \cdot,{ }^{-1}, e\right\rangle$ is an algebraic structure such that:
$\square\left\langle L, \cdot,^{-1}, e\right\rangle$ is a group;

- $\langle L, \wedge, V\rangle$ is a lattice, where the order

$$
a \leq b \Longleftrightarrow a \wedge b=a
$$

is a partial order of the group $\left\langle L, \cdot \cdot,{ }^{-1}, e\right\rangle$.
When \leq is total, \mathbf{L} is called a totally ordered group.
OG denotes the class of totally ordered groups, which generates the variety $\mathcal{R G}$ of representable ℓ-groups.

Lattice-ordered Groups

An ℓ-group $\mathbf{L}=\left\langle L, \wedge, \vee, \cdot,{ }^{-1}, e\right\rangle$ is an algebraic structure such that:
$\square\left\langle L, \cdot,^{-1}, e\right\rangle$ is a group;

- $\langle L, \wedge, \vee\rangle$ is a lattice, where the order

$$
a \leq b \Longleftrightarrow a \wedge b=a
$$

is a partial order of the group $\left\langle L, \cdot,^{-1}, e\right\rangle$.
When \leq is total, L is called a totally ordered group.
$O \mathcal{O}$ denotes the class of totally ordered groups, which
generates the variety $\mathcal{R G}$ of representable ℓ-groups.

Lattice-ordered Groups

An ℓ-group $\mathbf{L}=\left\langle L, \wedge, \vee, \cdot,{ }^{-1}, e\right\rangle$ is an algebraic structure such that:
$\square\left\langle L, \cdot,^{-1}, e\right\rangle$ is a group;
$\square\langle L, \wedge, \vee\rangle$ is a lattice, where the order

$$
a \leq b \Longleftrightarrow a \wedge b=a
$$

is a partial order of the group $\left\langle L, \cdot,^{-1}, e\right\rangle$.
When \leq is total, \mathbf{L} is called a totally ordered group.
OG denotes the class of totally ordered groups, which
generates the variety $\mathcal{R G}$ of representable ℓ-groups.

Lattice-ordered Groups

An ℓ-group $\mathbf{L}=\left\langle L, \wedge, \vee, \cdot,{ }^{-1}, e\right\rangle$ is an algebraic structure such that:
$\square\left\langle L, \cdot,^{-1}, e\right\rangle$ is a group;
$\square\langle L, \wedge, \vee\rangle$ is a lattice, where the order

$$
a \leq b \Longleftrightarrow a \wedge b=a
$$

is a partial order of the group $\left\langle L, \cdot,^{-1}, e\right\rangle$.
When \leq is total, \mathbf{L} is called a totally ordered group.
$\mathcal{O G}$ denotes the class of totally ordered groups,
generates the variety $\mathcal{R G}$ of representable ℓ-groups.

Lattice-ordered Groups

An ℓ-group $\mathbf{L}=\left\langle L, \wedge, \vee, \cdot,{ }^{-1}, e\right\rangle$ is an algebraic structure such that:

■ $\left\langle L, \cdot,^{-1}, e\right\rangle$ is a group;

- $\langle L, \wedge, \vee\rangle$ is a lattice, where the order

$$
a \leq b \Longleftrightarrow a \wedge b=a
$$

is a partial order of the group $\left\langle L, \cdot,^{-1}, e\right\rangle$.
When \leq is total, \mathbf{L} is called a totally ordered group.
$\mathcal{O G}$ denotes the class of totally ordered groups, which generates the variety $\mathcal{R G}$ of representable ℓ-groups.

Remark

By means of the strong distributivity properties of ℓ-groups, checking validity of equations in $\mathcal{R} \mathcal{G}$ amounts to checking

$$
\mathcal{R} \mathcal{G} \models e \leq t_{1} \vee \ldots \vee t_{n}
$$

where t_{1}, \ldots, t_{n} are group terms, i.e., they are built from variables by using only group operations $\cdot{ }^{-1}$, and e.

Remark

By means of the strong distributivity properties of ℓ-groups, checking validity of equations in $\mathcal{R} \mathcal{G}$ amounts to checking

$$
\mathcal{R G} \models e \leq t_{1} \vee \ldots \vee t_{n}
$$

where t_{1}, \ldots, t_{n} are group terms, i.e., they are built from variables by using only group operations $\cdot,^{-1}$, and e.

Free Groups

Let \mathbf{F} be the free group over a non-empty set X of generators, its elements being reduced group terms obtained by cancelling occurrences of $e, x x^{-1}$, and $x^{-1} x$.

Free Groups

Let \mathbf{F} be the free group over a non-empty set X of generators, its elements being reduced group terms obtained by cancelling occurrences of $e, x x^{-1}$, and $x^{-1} x$.

Free Groups

Theorem
The following are equivalent for group terms t_{1}, \ldots, t_{n} :
(1) $\vdash_{F}\left\{t_{1}, \ldots, t_{n}\right\}$.
(2) There exist $s_{1}, \ldots, s_{m} \in F \backslash\{e\}$ such that $e \in\left\langle\left\langle\left\{t_{1}, \ldots, t_{n}, s_{1}^{\delta_{1}}, \ldots, s_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$, for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$.
(3) $\left\{t_{1}, \ldots, t_{n}\right\}$ does not extend to an order of \mathbf{F}.

Free Groups

Theorem
The following are equivalent for group terms t_{1}, \ldots, t_{n} :
(1) $\vdash_{F}\left\{t_{1}, \ldots, t_{n}\right\}$.
(2) There exist $s_{1}, \ldots, s_{m} \in F \backslash\{e\}$ such that $e \in\left\langle\left\langle\left\{t_{1}, \ldots, t_{n}, s_{1}^{\delta_{1}}, \ldots, s_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$, for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$.
(3) $\left\{t_{1}, \ldots, t_{n}\right\}$ does not extend to an order of \mathbf{F}.
(4) $\mathcal{R G} \vDash e \leq t_{1} \vee \ldots \vee t_{n}$.

Free Groups

Theorem
The following are equivalent for group terms t_{1}, \ldots, t_{n} :
(1) $\vdash_{F}\left\{t_{1}, \ldots, t_{n}\right\}$.
(2) There exist $s_{1}, \ldots, s_{m} \in F \backslash\{e\}$ such that $e \in\left\langle\left\langle\left\{t_{1}, \ldots, t_{n}, s_{1}^{\delta_{1}}, \ldots, s_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$, for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$.
(3) $\left\{t_{1}, \ldots, t_{n}\right\}$ does not extend to an order of \mathbf{F}.
\Uparrow Contrapositively
(4) $\mathcal{R G} \vDash e \leq t_{1} \vee \ldots \vee t_{n}$.

Free Groups

Theorem
The following are equivalent for group terms t_{1}, \ldots, t_{n} :
(2) There exist $s_{1}, \ldots, s_{m} \in F \backslash\{e\}$ such that $e \in\left\langle\left\langle\left\{t_{1}, \ldots, t_{n}, s_{1}^{\delta_{1}}, \ldots, s_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$, for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$.
(3) $\left\{t_{1}, \ldots, t_{n}\right\}$ does not extend to an order of \mathbf{F}.
(4) $\mathcal{R G} \vDash e \leq t_{1} \vee \ldots \vee t_{n}$.
\Uparrow By induction on the height of $\vdash_{F}\left\{t_{1}, \ldots, t_{n}\right\}$
(1) $\vdash_{F}\left\{t_{1}, \ldots, t_{n}\right\}$.

Ordering Free Groups

Theorem
The following are equivalent for group terms t_{1}, \ldots, t_{n} :
(1) $\vdash_{F}\left\{t_{1}, \ldots, t_{n}\right\}$.
(2) There exist $s_{1}, \ldots, s_{m} \in F \backslash\{e\}$ such that $e \in\left\langle\left\langle\left\{t_{1}, \ldots, t_{n}, s_{1}^{\delta_{1}}, \ldots, s_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$, for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$.
(3) $\left\{t_{1}, \ldots, t_{n}\right\}$ does not extend to an order of \mathbf{F}.
(4) $\mathcal{R G} \vDash e \leq t_{1} \vee \ldots \vee t_{n}$.

Ordering Free Groups

Theorem
The following are equivalent for group terms t_{1}, \ldots, t_{n} :
(1) $\vdash_{F}\left\{t_{1}, \ldots, t_{n}\right\}$.
(2) There exist $s_{1}, \ldots, s_{m} \in F \backslash\{e\}$ such that $e \in\left\langle\left\langle\left\{t_{1}, \ldots, t_{n}, s_{1}^{\delta_{1}}, \ldots, s_{m}^{\delta_{m}}\right\}\right\rangle\right\rangle$, for all $\delta_{1}, \ldots, \delta_{m} \in\{-1,1\}$.
(3) $\left\{t_{1}, \ldots, t_{n}\right\}$ does not extend to an order of \mathbf{F}.
(4) $\mathcal{R G} \vDash e \leq t_{1} \vee \ldots \vee t_{n}$.

Theorem (1)

Every free group can be totally ordered.

Ordering Free Groups

Theorem
The following are equivalent

(4) $\mathcal{R G} \neq e \leq x$.

Theorem (1)
Every free group can be totally ordered.

Ordering Free Groups

Theorem
The following are equivalent
(3) \boldsymbol{x} does extend to an order of \mathbf{F}.

Theorem (1)
Every free group can be totally ordered.

Concluding Remarks

- Can this approach provide new insights into the problem of deciding validity of equations in totally ordered groups?
- Can we use our conditions to prove ordering results for other groups (e.g., fundamental groups of surfaces)?
- This is not an isolated case (e.g., variety of ℓ-groups, group varieties of representable ℓ-groups). How far can we get? (e.g., normal-valued ℓ-groups)

Concluding Remarks

- Can this approach provide new insights into the problem of deciding validity of equations in totally ordered groups? Can we use our conditions to prove ordering results for
other groups (e.g., fundamental groups of surfaces)?
This is not an isolated case (e.g., variety of ℓ-groups,
group varieties of representable ℓ-groups). How far can
we get? (e.g., normal-valued ℓ-groups)

Concluding Remarks

- Can this approach provide new insights into the problem of deciding validity of equations in totally ordered groups?
■ Can we use our conditions to prove ordering results for other groups (e.g., fundamental groups of surfaces)?

Concluding Remarks

- Can this approach provide new insights into the problem of deciding validity of equations in totally ordered groups?
- Can we use our conditions to prove ordering results for other groups (e.g., fundamental groups of surfaces)?
■ This is not an isolated case (e.g., variety of ℓ-groups, group varieties of representable ℓ-groups).
we get? (e.g., normal-valued ℓ-groups)

Concluding Remarks

- Can this approach provide new insights into the problem of deciding validity of equations in totally ordered groups?
- Can we use our conditions to prove ordering results for other groups (e.g., fundamental groups of surfaces)?
- This is not an isolated case (e.g., variety of ℓ-groups, group varieties of representable ℓ-groups). How far can we get? (e.g., normal-valued ℓ-groups)

Concluding Remarks

- Can this approach provide new insights into the problem of deciding validity of equations in totally ordered groups?
- Can we use our conditions to prove ordering results for other groups (e.g., fundamental groups of surfaces)?
- This is not an isolated case (e.g., variety of ℓ-groups, group varieties of representable ℓ-groups). How far can we get? (e.g., normal-valued ℓ-groups)

Thank you!

