An Ordering Condition for Groups

Almudena Colacito Joint work with George Metcalfe

> Mathematical Institute Universität Bern

Topology, Algebra, and Categories in Logic TACL 2017 Prague, June 27, 2017

Given a class \mathcal{G} of groups, it determines when a partial order of $\mathbf{G} \in \mathcal{G}$ can be extended to a (total) order of \mathbf{G} .

Examples

(Fuchs 1963)

Every partial order of a torsion-free abelian group **G** extends to an order of **G**.

(Fuchs 1963)

Given a class \mathcal{G} of groups, it determines when a partial order of $\mathbf{G} \in \mathcal{G}$ can be extended to a (total) order of \mathbf{G} .

Examples

(Fuchs 1963)

Every partial order of a torsion-free abelian group **G** extends to an order of **G**.

(Fuchs 1963)

Given a class \mathcal{G} of groups, it determines when a partial order of $\mathbf{G} \in \mathcal{G}$ can be extended to a (total) order of \mathbf{G} .

Examples

(Fuchs 1963)

Every partial order of a torsion-free abelian group **G** extends to an order of **G**.

(Fuchs 1963)

Given a class \mathcal{G} of groups, it determines when a partial order of $\mathbf{G} \in \mathcal{G}$ can be extended to a (total) order of \mathbf{G} .

Examples

(Fuchs 1963)

Every partial order of a torsion-free abelian group **G** extends to an order of **G**.

(Fuchs 1963)

- Proved by Shimbireva (1947), Neumann (1948), Vinogradov (1949), and Bergman (1986).
- Non-trivial proofs that don't make use of Fuchs' ordering condition.

- Proved by Shimbireva (1947), Neumann (1948), Vinogradov (1949), and Bergman (1986).
- Non-trivial proofs that don't make use of Fuchs' ordering condition.

- Proved by Shimbireva (1947), Neumann (1948), Vinogradov (1949), and Bergman (1986).
- Non-trivial proofs that don't make use of Fuchs' ordering condition.

- Proved by Shimbireva (1947), Neumann (1948), Vinogradov (1949), and Bergman (1986).
- Non-trivial proofs that don't make use of Fuchs' ordering condition.

- Proved by Shimbireva (1947), Neumann (1948), Vinogradov (1949), and Bergman (1986).
- Non-trivial proofs that don't make use of Fuchs' ordering condition.

This Work

We provide a new **algorithmic** ordering condition for groups.

Results

- We establish a correspondence between the extension of partial orders on free groups and validity of equations in totally ordered groups.
- We give a new proof of Theorem (1) which makes use of Fuchs' ordering condition.

Proof Theory and Ordered Groups. A. Colacito and G. Metcalfe. *Proceedings of WoLLIC 2017.* To appear

We provide a new **algorithmic** ordering condition for groups.

Results

- We establish a correspondence between the extension of partial orders on free groups and validity of equations in totally ordered groups.
- We give a new proof of Theorem (1) which makes use of Fuchs' ordering condition.

Proof Theory and Ordered Groups. A. Colacito and G. Metcalfe. *Proceedings of WoLLIC 2017.* To appear

We provide a new **algorithmic** ordering condition for groups.

Results

- We establish a correspondence between the extension of partial orders on free groups and validity of equations in totally ordered groups.
- We give a new proof of Theorem (1) which makes use of Fuchs' ordering condition.

Proof Theory and Ordered Groups. A. Colacito and G. Metcalfe. *Proceedings of WoLLIC 2017.* To appear

We provide a new **algorithmic** ordering condition for groups.

Results

- We establish a correspondence between the extension of partial orders on free groups and validity of equations in totally ordered groups.
- We give a new proof of Theorem (1) which makes use of Fuchs' ordering condition.

Proof Theory and Ordered Groups. A. Colacito and G. Metcalfe. *Proceedings of WoLLIC 2017.* To appear.

 $a \leq b \Longrightarrow cad \leq cbd.$

- A partial order uniquely determines the set of its strictly positive elements, which is a normal subsemigroup that does not contain e.
- Normality follows from the fact that, for all $a, b \in G$:

 $a \leq b \Longrightarrow cad \leq cbd.$

- A partial order uniquely determines the set of its strictly positive elements, which is a normal subsemigroup that does not contain e.
- Normality follows from the fact that, for all $a, b \in G$:

 $a \leq b \Longrightarrow cad \leq cbd.$

- A partial order uniquely determines the set of its strictly positive elements, which is a normal subsemigroup that does not contain e.
- Normality follows from the fact that, for all $a, b \in G$:

 $a \leq b \Longrightarrow cad \leq cbd$.

- A partial order uniquely determines the set of its strictly positive elements, which is a normal subsemigroup that does not contain e.
- Normality follows from the fact that, for all *a*, *b* ∈ *G*:

 $a \leq b \Longrightarrow cad \leq cbd.$

- A partial order uniquely determines the set of its strictly positive elements, which is a normal subsemigroup that does not contain e.
- Normality follows from the fact that, for all $a, b \in G$:

$$e < a \Longrightarrow beb^{-1} < bab^{-1} \Longrightarrow e < bab^{-1}$$
.

 $a \leq b \Longrightarrow cad \leq cbd.$

- A normal subsemigroup of G, omitting e, uniquely determines a partial order as the set of its strictly positive elements.
- Normality follows from the fact that, for all $a, b \in G$:

$$e < a \Longrightarrow beb^{-1} < bab^{-1} \Longrightarrow e < bab^{-1}$$
.

Given a group $\mathbf{G} = \langle G, \cdot, {}^{-1}, e \rangle$, a partial order \leq of \mathbf{G} can be identified with a normal subsemigroup P of \mathbf{G} omitting e:

$a\leq b\iff ba^{-1}\in P\cup\{e\}.$

- A normal subsemigroup of G, omitting e, uniquely determines a partial order as the set of its strictly positive elements.
- Normality follows from the fact that, for all $a, b \in G$:

Given a group $\mathbf{G} = \langle G, \cdot, ^{-1}, e \rangle$, a (total) order \leq of \mathbf{G} can be identified with a normal subsemigroup P of \mathbf{G} which does not contain e, and such that $P \cup P^{-1} \cup \{e\} = G$.

- A normal subsemigroup of G, omitting e, uniquely determines a partial order as the set of its strictly positive elements.
- Normality follows from the fact that, for all $a, b \in G$:

Let $\langle \langle S \rangle \rangle$ be the normal subsemigroup generated by $S \subseteq G$. Theorem (Fuchs 1963)

The following are equivalent for a subset S of a group **G**:

- $(1)\,$ S extends to an order of **G**.
- (2) For all $a_1, \ldots, a_m \in G \setminus \{e\}$, there exist $\delta_1, \ldots, \delta_m \in \{-1, 1\}$ such that

 $e \notin \langle \langle S \cup \{a_1^{\delta_1}, \ldots, a_m^{\delta_m}\} \rangle \rangle.$

Let $\langle \langle S \rangle \rangle$ be the normal subsemigroup generated by $S \subseteq G$. Theorem (Fuchs 1963)

The following are equivalent for a subset S of a group **G**:

- $(1)\,$ S extends to an order of **G**.
- (2) For all $a_1, \ldots, a_m \in G \setminus \{e\}$, there exist $\delta_1, \ldots, \delta_m \in \{-1, 1\}$ such that

 $e \notin \langle \langle S \cup \{a_1^{\delta_1}, \ldots, a_m^{\delta_m}\} \rangle \rangle.$

Let $\langle \langle S \rangle \rangle$ be the normal subsemigroup generated by $S \subseteq G$. Theorem (Fuchs 1963) The following are equivalent for a subset S of a group **G**:

- (1) S extends to an order of **G**.
- (2) For all $a_1, \ldots, a_m \in G \setminus \{e\}$, there exist $\delta_1, \ldots, \delta_m \in \{-1, 1\}$ such that

 $e \notin \langle \langle \mathsf{S} \cup \{a_1^{\delta_1}, \ldots, a_m^{\delta_m}\} \rangle \rangle.$

Let $\langle \langle S \rangle \rangle$ be the normal subsemigroup generated by $S \subseteq G$. Theorem (Fuchs 1963) The following are equivalent for a subset S of a group **G**:

- (1) S extends to an order of **G**.
- (2) For all $a_1, \ldots, a_m \in G \setminus \{e\}$, there exist $\delta_1, \ldots, \delta_m \in \{-1, 1\}$ such that

 $e \not\in \langle \langle \mathsf{S} \cup \{a_1^{\delta_1}, \ldots, a_m^{\delta_m}\} \rangle \rangle.$

Let $\langle \langle S \rangle \rangle$ be the normal subsemigroup generated by $S \subseteq G$. Theorem (Fuchs 1963)

The following are equivalent for a subset S of a group **G**:

- (1) S extends to an order of **G**.
- (2) For all $a_1, \ldots, a_m \in G \setminus \{e\}$, there exist $\delta_1, \ldots, \delta_m \in \{-1, 1\}$ such that

 $e \notin \langle \langle \mathsf{S} \cup \{a_1^{\delta_1}, \ldots, a_m^{\delta_m}\} \rangle \rangle.$

Given a finite subset $S \subseteq G$ of a group **G**, we define $\vdash_{\mathbf{G}} S$ inductively by

(i) $\vdash_{\mathbf{G}} T \cup \{a, a^{-1}\},\$

(ii) $\vdash_{\mathbf{G}} T \cup \{ab\}$, if $\vdash_{\mathbf{G}} T \cup \{a\}$ and $\vdash_{\mathbf{G}} T \cup \{b\}$,

(iii) $\vdash_{\mathbf{G}} T \cup \{ab\}, \text{ if } \vdash_{\mathbf{G}} T \cup \{ba\}.$

Given a finite subset $S \subseteq G$ of a group $\boldsymbol{G},$ we define $\vdash_{\boldsymbol{G}} S$ inductively by

(i) $\vdash_{\mathbf{G}} T \cup \{a, a^{-1}\},\$

(ii) $\vdash_{\mathbf{G}} T \cup \{ab\}$, if $\vdash_{\mathbf{G}} T \cup \{a\}$ and $\vdash_{\mathbf{G}} T \cup \{b\}$, (iii) $\vdash_{\mathbf{G}} T \cup \{ab\}$, if $\vdash_{\mathbf{G}} T \cup \{ba\}$.

Given a finite subset $S \subseteq G$ of a group **G**, we define $\vdash_{\mathbf{G}} S$ inductively by

(i) $\vdash_{\mathbf{G}} T \cup \{a, a^{-1}\},$ (ii) $\vdash_{\mathbf{G}} T \cup \{ab\}, \text{ if } \vdash_{\mathbf{G}} T \cup \{a\} \text{ and } \vdash_{\mathbf{G}} T \cup \{b\},$ (iii) $\vdash_{\mathbf{G}} T \cup \{ab\}, \text{ if } \vdash_{\mathbf{G}} T \cup \{ba\}.$ Given a finite subset $S \subseteq G$ of a group **G**, we define $\vdash_{\mathbf{G}} S$ inductively by

(i)
$$\vdash_{\mathbf{G}} T \cup \{a, a^{-1}\}$$
,
(ii) $\vdash_{\mathbf{G}} T \cup \{ab\}$, if $\vdash_{\mathbf{G}} T \cup \{a\}$ and $\vdash_{\mathbf{G}} T \cup \{b\}$,
(iii) $\vdash_{\mathbf{G}} T \cup \{ab\}$, if $\vdash_{\mathbf{G}} T \cup \{ba\}$.

Theorem

The following are equivalent for a finite subset S of a group **G**:

- (1) ⊢_G S.
- (2) There exist $a_1, \ldots, a_m \in G \setminus \{e\}$ such that $e \in \langle \langle S \cup \{a_1^{\delta_1}, \ldots, a_m^{\delta_m}\} \rangle \rangle$, for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$.

\bigoplus Fuchs' condition

(3) S does not extend to an order of **G**.

Theorem

The following are equivalent for a finite subset S of a group **G**:

- (1) ⊢_G S.
- (2) There exist $a_1, \ldots, a_m \in G \setminus \{e\}$ such that $e \in \langle \langle S \cup \{a_1^{\delta_1}, \ldots, a_m^{\delta_m}\} \rangle \rangle$, for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$.

(Fuchs' condition

(3) S does not extend to an order of **G**.

$(1) \Rightarrow (2)$

By induction on the height of a **G**-derivation $\vdash_{\mathbf{G}} S$.

It is clear that if $S = T \cup \{a, a^{-1}\}$, we have $e \in \langle \langle S \rangle \rangle$. \checkmark If $S = T \cup \{ab\}$, from $\vdash_{\mathbf{G}} T \cup \{a\}$ and $\vdash_{\mathbf{G}} T \cup \{b\}$, there are $c_1, \ldots, c_m, d_1, \ldots, d_n \in G \setminus \{e\}$ such that

 $e \in \langle \langle T \cup \{a\} \cup \{c_1^{\delta_1}, \dots, c_m^{\delta_m}\} \rangle \rangle$ and $e \in \langle \langle T \cup \{b\} \cup \{d_1^{\lambda_1}, \dots, d_n^{\lambda_n}\} \rangle \rangle$,

for all $\delta_1, \ldots, \delta_m, \lambda_1, \ldots, \lambda_n \in \{-1, 1\}$. But then,

 $e \in \langle \langle T \cup \{ab\} \cup \{a^{\delta}, c_1^{\delta_1}, \dots, c_m^{\delta_m}, d_1^{\lambda_1}, \dots, d_n^{\lambda_n}\} \rangle \rangle,$ for all $\delta, \delta_1, \dots, \delta_m, \lambda_1, \dots, \lambda_n \in \{-1, 1\}.$

$(1) \Rightarrow (2)$

By induction on the height of a **G**-derivation $\vdash_{\mathbf{G}} S$.

■ It is clear that if $S = T \cup \{a, a^{-1}\}$, we have $e \in \langle \langle S \rangle \rangle$. ✓ If $S = T \cup \{ab\}$, from $\vdash_{\mathbf{G}} T \cup \{a\}$ and $\vdash_{\mathbf{G}} T \cup \{b\}$, there are

 $c_1, \ldots, c_m, d_1, \ldots, d_n \in G \setminus \{e\}$ such that

 $e \in \langle \langle T \cup \{a\} \cup \{c_1^{\delta_1}, \dots, c_m^{\delta_m}\} \rangle \rangle \text{ and } e \in \langle \langle T \cup \{b\} \cup \{d_1^{\lambda_1}, \dots, d_n^{\lambda_n}\} \rangle \rangle,$

for all $\delta_1, \ldots, \delta_m, \lambda_1, \ldots, \lambda_n \in \{-1, 1\}$. But then,

 $e \in \langle \langle T \cup \{ab\} \cup \{a^{\delta}, c_1^{\delta_1}, \dots, c_m^{\delta_m}, d_1^{\lambda_1}, \dots, d_n^{\lambda_n}\} \rangle \rangle,$ for all $\delta, \delta_1, \dots, \delta_m, \lambda_1, \dots, \lambda_n \in \{-1, 1\}.$

$(1) \Rightarrow (2)$

By induction on the height of a **G**-derivation $\vdash_{\mathbf{G}} S$.

■ It is clear that if $S = T \cup \{a, a^{-1}\}$, we have $e \in \langle \langle S \rangle \rangle$. • If $S = T \cup \{ab\}$, from $\vdash_{\mathbf{G}} T \cup \{a\}$ and $\vdash_{\mathbf{G}} T \cup \{b\}$, there are

 $c_1,\ldots,c_m,d_1,\ldots,d_n\in G\setminus\{e\}$ such that

 $e \in \langle \langle T \cup \{a\} \cup \{c_1^{\delta_1}, \dots, c_m^{\delta_m}\} \rangle \rangle \text{ and } e \in \langle \langle T \cup \{b\} \cup \{d_1^{\lambda_1}, \dots, d_n^{\lambda_n}\} \rangle \rangle,$

for all $\delta_1, \ldots, \delta_m, \lambda_1, \ldots, \lambda_n \in \{-1, 1\}$. But then,

 $e \in \langle \langle T \cup \{ab\} \cup \{a^{\delta}, c_1^{\delta_1}, \dots, c_m^{\delta_m}, d_1^{\lambda_1}, \dots, d_n^{\lambda_n}\} \rangle \rangle,$ for all $\delta, \delta_1, \dots, \delta_m, \lambda_1, \dots, \lambda_n \in \{-1, 1\}.$

By induction on the height of a **G**-derivation $\vdash_{\mathbf{G}} S$.

- It is clear that if $S = T \cup \{a, a^{-1}\}$, we have $e \in \langle \langle S \rangle \rangle$.
- If $S = T \cup \{ab\}$, from $\vdash_{\mathbf{G}} T \cup \{a\}$ and $\vdash_{\mathbf{G}} T \cup \{b\}$, there are $c_1, \ldots, c_m, d_1, \ldots, d_n \in G \setminus \{e\}$ such that

 $e \in \langle \langle T \cup \{a\} \cup \{c_1^{\delta_1}, \ldots, c_m^{\delta_m}\} \rangle \rangle$ and $e \in \langle \langle T \cup \{b\} \cup \{d_1^{\lambda_1}, \ldots, d_n^{\lambda_n}\} \rangle \rangle$,

for all $\delta_1, \ldots, \delta_m, \lambda_1, \ldots, \lambda_n \in \{-1, 1\}$. But then,

 $e \in \langle \langle T \cup \{ab\} \cup \{a^{\delta}, c_1^{\delta_1}, \dots, c_m^{\delta_m}, d_1^{\lambda_1}, \dots, d_n^{\lambda_n}\} \rangle \rangle,$ for all $\delta, \delta_1, \dots, \delta_m, \lambda_1, \dots, \lambda_n \in \{-1, 1\}.$

By induction on the height of a **G**-derivation $\vdash_{\mathbf{G}} S$.

- It is clear that if $S = T \cup \{a, a^{-1}\}$, we have $e \in \langle \langle S \rangle \rangle$.
- If $S = T \cup \{ab\}$, from $\vdash_{\mathbf{G}} T \cup \{a\}$ and $\vdash_{\mathbf{G}} T \cup \{b\}$, there are $c_1, \ldots, c_m, d_1, \ldots, d_n \in G \setminus \{e\}$ such that

 $e \in \langle \langle T \cup \{a\} \cup \{c_1^{\delta_1}, \dots, c_m^{\delta_m}\} \rangle \rangle$ and $e \in \langle \langle T \cup \{b\} \cup \{d_1^{\lambda_1}, \dots, d_n^{\lambda_n}\} \rangle \rangle$,

for all $\delta_1, \ldots, \delta_m, \lambda_1, \ldots, \lambda_n \in \{-1, 1\}$. But then,

 $e \in \langle \langle T \cup \{ab\} \cup \{a^{\delta}, c_1^{\delta_1}, \dots, c_m^{\delta_m}, d_1^{\lambda_1}, \dots, d_n^{\lambda_n}\} \rangle \rangle,$ for all $\delta, \delta_1, \dots, \delta_m, \lambda_1, \dots, \lambda_n \in \{-1, 1\}.$

By induction on the height of a **G**-derivation $\vdash_{\mathbf{G}} S$.

- It is clear that if $S = T \cup \{a, a^{-1}\}$, we have $e \in \langle \langle S \rangle \rangle$.
- If $S = T \cup \{ab\}$, from $\vdash_{\mathbf{G}} T \cup \{a\}$ and $\vdash_{\mathbf{G}} T \cup \{b\}$, there are $c_1, \ldots, c_m, d_1, \ldots, d_n \in G \setminus \{e\}$ such that

 $e \in \langle \langle T \cup \{a\} \cup \{c_1^{\delta_1}, \dots, c_m^{\delta_m}\} \rangle \rangle$ and $e \in \langle \langle T \cup \{b\} \cup \{d_1^{\lambda_1}, \dots, d_n^{\lambda_n}\} \rangle \rangle$,

for all $\delta_1, \ldots, \delta_m, \lambda_1, \ldots, \lambda_n \in \{-1, 1\}$. But then,

 $e \in \langle \langle T \cup \{ab\} \cup \{a^{\delta}, c_1^{\delta_1}, \dots, c_m^{\delta_m}, d_1^{\lambda_1}, \dots, d_n^{\lambda_n}\} \rangle \rangle,$ for all $\delta, \delta_1, \dots, \delta_m, \lambda_1, \dots, \lambda_n \in \{-1, 1\}.$

By induction on the height of a **G**-derivation $\vdash_{\mathbf{G}} S$.

- It is clear that if $S = T \cup \{a, a^{-1}\}$, we have $e \in \langle \langle S \rangle \rangle$.
- If $S = T \cup \{ab\}$, from $\vdash_{\mathbf{G}} T \cup \{a\}$ and $\vdash_{\mathbf{G}} T \cup \{b\}$, there are $c_1, \ldots, c_m, d_1, \ldots, d_n \in \mathbf{G} \setminus \{e\}$ such that

 $e \in \langle \langle T \cup \{a\} \cup \{c_1^{\delta_1}, \dots, c_m^{\delta_m}\} \rangle \rangle$ and $e \in \langle \langle T \cup \{b\} \cup \{d_1^{\lambda_1}, \dots, d_n^{\lambda_n}\} \rangle \rangle$,

for all $\delta_1, \ldots, \delta_m, \lambda_1, \ldots, \lambda_n \in \{-1, 1\}$. But then,

 $e \in \langle \langle \mathsf{T} \cup \{ab\} \cup \{a, c_1^{\delta_1}, \dots, c_m^{\delta_m}, d_1^{\lambda_1}, \dots, d_n^{\lambda_n}\} \rangle \rangle,$ for all $\delta, \delta_1, \dots, \delta_m, \lambda_1, \dots, \lambda_n \in \{-1, 1\}.$

By induction on the height of a **G**-derivation $\vdash_{\mathbf{G}} S$.

- It is clear that if $S = T \cup \{a, a^{-1}\}$, we have $e \in \langle \langle S \rangle \rangle$.
- If $S = T \cup \{ab\}$, from $\vdash_{\mathbf{G}} T \cup \{a\}$ and $\vdash_{\mathbf{G}} T \cup \{b\}$, there are $c_1, \ldots, c_m, d_1, \ldots, d_n \in G \setminus \{e\}$ such that

 $e \in \langle \langle T \cup \{a\} \cup \{c_1^{\delta_1}, \dots, c_m^{\delta_m}\} \rangle \rangle$ and $e \in \langle \langle T \cup \{b\} \cup \{d_1^{\lambda_1}, \dots, d_n^{\lambda_n}\} \rangle \rangle$,

for all $\delta_1, \ldots, \delta_m, \lambda_1, \ldots, \lambda_n \in \{-1, 1\}$. But then,

 $e \in \langle \langle T \cup \{ab\} \cup \{a^{-1}, c_1^{\delta_1}, \dots, c_m^{\delta_m}, d_1^{\lambda_1}, \dots, d_n^{\lambda_n}\} \rangle \rangle,$ for all $\delta, \delta_1, \dots, \delta_m, \lambda_1, \dots, \lambda_n \in \{-1, 1\}$.

By induction on the height of a **G**-derivation $\vdash_{\mathbf{G}} S$.

- It is clear that if $S = T \cup \{a, a^{-1}\}$, we have $e \in \langle \langle S \rangle \rangle$.
- If $S = T \cup \{ab\}$, from $\vdash_{\mathbf{G}} T \cup \{a\}$ and $\vdash_{\mathbf{G}} T \cup \{b\}$, there are $c_1, \ldots, c_m, d_1, \ldots, d_n \in G \setminus \{e\}$ such that

 $e \in \langle \langle T \cup \{a\} \cup \{c_1^{\delta_1}, \dots, c_m^{\delta_m}\} \rangle \rangle$ and $e \in \langle \langle T \cup \{b\} \cup \{d_1^{\lambda_1}, \dots, d_n^{\lambda_n}\} \rangle \rangle$,

for all $\delta_1, \ldots, \delta_m, \lambda_1, \ldots, \lambda_n \in \{-1, 1\}$. But then,

 $e \in \langle \langle T \cup \{ab\} \cup \{a^{-1}, c_1^{\delta_1}, \dots, c_m^{\delta_m}, d_1^{\lambda_1}, \dots, d_n^{\lambda_n}\} \rangle \rangle,$ for all $\delta, \delta_1, \dots, \delta_m, \lambda_1, \dots, \lambda_n \in \{-1, 1\}$.

By induction on the height of a **G**-derivation $\vdash_{\mathbf{G}} S$.

- It is clear that if $S = T \cup \{a, a^{-1}\}$, we have $e \in \langle \langle S \rangle \rangle$.
- If $S = T \cup \{ab\}$, from $\vdash_{\mathbf{G}} T \cup \{a\}$ and $\vdash_{\mathbf{G}} T \cup \{b\}$.
- If $S = T \cup \{ab\}$, from $\vdash_{\mathbf{G}} T \cup \{ba\}$, we get $c_1, \ldots, c_m \in G \setminus \{e\}$ such that

$$e \in \langle \langle T \cup \{ba\} \cup \{c_1^{\delta_1}, \dots, c_m^{\delta_m}\} \rangle
angle$$

$$e \in \langle \langle T \cup \{ab\} \cup \{c_1^{\delta_1}, \dots, c_m^{\delta_m}\} \rangle \rangle$$

for all $\delta_1, \dots, \delta_m \in \{-1, 1\}$.

By induction on the height of a **G**-derivation $\vdash_{\mathbf{G}} S$.

- It is clear that if $S = T \cup \{a, a^{-1}\}$, we have $e \in \langle \langle S \rangle \rangle$.
- If $S = T \cup \{ab\}$, from $\vdash_{\mathbf{G}} T \cup \{a\}$ and $\vdash_{\mathbf{G}} T \cup \{b\}$.
- If $S = T \cup \{ab\}$, from $\vdash_{\mathbf{G}} T \cup \{ba\}$, we get $c_1, \ldots, c_m \in G \setminus \{e\}$ such that

$$e \in \langle \langle T \cup \{ba\} \cup \{c_1^{\delta_1}, \dots, c_m^{\delta_m}\}
angle
angle$$

$$e \in \langle \langle T \cup \{ab\} \cup \{c_1^{\delta_1}, \dots, c_m^{\delta_m}\} \rangle
angle$$
 for all $\delta_1, \dots, \delta_m \in \{-1, 1\}$.

By induction on the height of a **G**-derivation $\vdash_{\mathbf{G}} S$.

- It is clear that if $S = T \cup \{a, a^{-1}\}$, we have $e \in \langle \langle S \rangle \rangle$.
- If $S = T \cup \{ab\}$, from $\vdash_{\mathbf{G}} T \cup \{a\}$ and $\vdash_{\mathbf{G}} T \cup \{b\}$.
- If $S = T \cup \{ab\}$, from $\vdash_{\mathbf{G}} T \cup \{ba\}$, we get $c_1, \ldots, c_m \in G \setminus \{e\}$ such that

$$e \in \langle \langle \mathsf{T} \cup \{ ba \} \cup \{ c_1^{\delta_1}, \dots, c_m^{\delta_m} \}
angle
angle$$

$$e \in \langle \langle T \cup \{ab\} \cup \{c_1^{\delta_1}, \dots, c_m^{\delta_m}\} \rangle
angle$$
 for all $\delta_1, \dots, \delta_m \in \{-1, 1\}$.

By induction on the height of a **G**-derivation $\vdash_{\mathbf{G}} S$.

- It is clear that if $S = T \cup \{a, a^{-1}\}$, we have $e \in \langle \langle S \rangle \rangle$.
- If $S = T \cup \{ab\}$, from $\vdash_{\mathbf{G}} T \cup \{a\}$ and $\vdash_{\mathbf{G}} T \cup \{b\}$.
- If $S = T \cup \{ab\}$, from $\vdash_{\mathbf{G}} T \cup \{ba\}$, we get $c_1, \ldots, c_m \in G \setminus \{e\}$ such that

$$e \in \langle \langle \mathsf{T} \cup \{ ba \} \cup \{ c_1^{\delta_1}, \dots, c_m^{\delta_m} \}
angle
angle$$

$$e \in \langle \langle T \cup \{ab\} \cup \{c_1^{\delta_1}, \dots, c_m^{\delta_m}\} \rangle
angle$$
 for all $\delta_1, \dots, \delta_m \in \{-1, 1\}$.

By induction on $m \in \mathbb{N}$ for which there are $a_1, \ldots, a_m \in G \setminus \{e\}$ such that $e \in \langle \langle S \cup \{a_1^{\delta_1}, \ldots, a_m^{\delta_m}\} \rangle \rangle$, for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$.

- 🛛 Base case. 🗸
- Induction step (m > 0): if there are $a_1, \ldots, a_m \in G \setminus \{e\}$ such that $e \in \langle \langle S \cup \{a_1^{\delta_1}, \ldots, a_m^{\delta_m}\} \rangle \rangle$, for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$, by the induction hypothesis twice on

$$e \in \langle \langle S \cup \{a_1, a_2^{\delta_2}, \dots, a_m^{\delta_m}\} \rangle \rangle$$
 and $e \in \langle \langle S \cup \{a_1^{-1}, a_2^{\delta_2}, \dots, a_m^{\delta_m}\} \rangle \rangle$,

we get

```
\vdash_{\mathbf{G}} \mathsf{S} \cup \{a_1\} \text{ and } \vdash_{\mathbf{G}} \mathsf{S} \cup \{a_1^{-1}\}.
```

By induction on $m \in \mathbb{N}$ for which there are $a_1, \ldots, a_m \in G \setminus \{e\}$ such that $e \in \langle \langle S \cup \{a_1^{\delta_1}, \ldots, a_m^{\delta_m}\} \rangle \rangle$, for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$.

🛛 Base case. 🗸

■ Induction step (m > 0): if there are $a_1, \ldots, a_m \in G \setminus \{e\}$ such that $e \in \langle \langle S \cup \{a_1^{\delta_1}, \ldots, a_m^{\delta_m}\} \rangle \rangle$, for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$, by the induction hypothesis twice on

$$e \in \langle \langle S \cup \{a_1, a_2^{\delta_2}, \dots, a_m^{\delta_m}\} \rangle \rangle$$
 and $e \in \langle \langle S \cup \{a_1^{-1}, a_2^{\delta_2}, \dots, a_m^{\delta_m}\} \rangle \rangle$,

we get

```
\vdash_{\mathbf{G}} \mathsf{S} \cup \{a_1\} \text{ and } \vdash_{\mathbf{G}} \mathsf{S} \cup \{a_1^{-1}\}.
```

By induction on $m \in \mathbb{N}$ for which there are $a_1, \ldots, a_m \in G \setminus \{e\}$ such that $e \in \langle \langle S \cup \{a_1^{\delta_1}, \ldots, a_m^{\delta_m}\} \rangle \rangle$, for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$.

📕 Base case. 🗸

Induction step (m > 0): if there are $a_1, \ldots, a_m \in G \setminus \{e\}$ such that $e \in \langle \langle S \cup \{a_1^{\delta_1}, \ldots, a_m^{\delta_m}\} \rangle \rangle$, for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$, by the induction hypothesis twice on

$$e \in \langle \langle S \cup \{a_1, a_2^{\delta_2}, \dots, a_m^{\delta_m}\} \rangle \rangle$$
 and $e \in \langle \langle S \cup \{a_1^{-1}, a_2^{\delta_2}, \dots, a_m^{\delta_m}\} \rangle \rangle$,

we get

```
\vdash_{\mathbf{G}} S \cup \{a_1\} \text{ and } \vdash_{\mathbf{G}} S \cup \{a_1^{-1}\}.
```

By induction on $m \in \mathbb{N}$ for which there are $a_1, \ldots, a_m \in G \setminus \{e\}$ such that $e \in \langle \langle S \cup \{a_1^{\delta_1}, \ldots, a_m^{\delta_m}\} \rangle \rangle$, for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$.

- 🛛 Base case. 🗸
- Induction step (m > 0): if there are $a_1, \ldots, a_m \in G \setminus \{e\}$ such that $e \in \langle \langle S \cup \{a_1^{\delta_1}, \ldots, a_m^{\delta_m}\} \rangle \rangle$, for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$, by the induction hypothesis twice on

 $e \in \langle \langle S \cup \{a_1, a_2^{\delta_2}, \dots, a_m^{\delta_m}\} \rangle \rangle$ and $e \in \langle \langle S \cup \{a_1^{-1}, a_2^{\delta_2}, \dots, a_m^{\delta_m}\} \rangle \rangle$,

we get

```
\vdash_{\mathbf{G}} S \cup \{a_1\} \text{ and } \vdash_{\mathbf{G}} S \cup \{a_1^{-1}\}.
```

By induction on $m \in \mathbb{N}$ for which there are $a_1, \ldots, a_m \in G \setminus \{e\}$ such that $e \in \langle \langle S \cup \{a_1^{\delta_1}, \ldots, a_m^{\delta_m}\} \rangle \rangle$, for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$.

- 📕 Base case. 🗸
- Induction step (m > 0): if there are $a_1, \ldots, a_m \in G \setminus \{e\}$ such that $e \in \langle \langle S \cup \{a_1^{\delta_1}, \ldots, a_m^{\delta_m}\} \rangle \rangle$, for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$, by the induction hypothesis twice on

 $e \in \langle \langle S \cup \{a_1, a_2^{\delta_2}, \dots, a_m^{\delta_m}\} \rangle \rangle$ and $e \in \langle \langle S \cup \{a_1^{-1}, a_2^{\delta_2}, \dots, a_m^{\delta_m}\} \rangle \rangle$,

we get

```
\vdash_{\mathbf{G}} S \cup \{a_1\} \text{ and } \vdash_{\mathbf{G}} S \cup \{a_1^{-1}\}.
```

By induction on $m \in \mathbb{N}$ for which there are $a_1, \ldots, a_m \in G \setminus \{e\}$ such that $e \in \langle \langle S \cup \{a_1^{\delta_1}, \ldots, a_m^{\delta_m}\} \rangle \rangle$, for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$.

- 📕 Base case. 🗸
- Induction step (m > 0): if there are $a_1, \ldots, a_m \in G \setminus \{e\}$ such that $e \in \langle \langle S \cup \{a_1^{\delta_1}, \ldots, a_m^{\delta_m}\} \rangle \rangle$, for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$, by the induction hypothesis twice on

$$e \in \langle \langle S \cup \{a_1, a_2^{\delta_2}, \dots, a_m^{\delta_m}\} \rangle \rangle$$
 and $e \in \langle \langle S \cup \{a_1^{-1}, a_2^{\delta_2}, \dots, a_m^{\delta_m}\} \rangle \rangle$,

we get

$$\vdash_{\mathbf{G}} S \cup \{a_1\} \text{ and } \vdash_{\mathbf{G}} S \cup \{a_1^{-1}\}.$$

By induction on $m \in \mathbb{N}$ for which there are $a_1, \ldots, a_m \in G \setminus \{e\}$ such that $e \in \langle \langle S \cup \{a_1^{\delta_1}, \ldots, a_m^{\delta_m}\} \rangle \rangle$, for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$.

- 📕 Base case. 🗸
- Induction step (m > 0): if there are $a_1, \ldots, a_m \in G \setminus \{e\}$ such that $e \in \langle \langle S \cup \{a_1^{\delta_1}, \ldots, a_m^{\delta_m}\} \rangle \rangle$, for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$, by the induction hypothesis twice on

$$e \in \langle \langle S \cup \{a_1, a_2^{\delta_2}, \dots, a_m^{\delta_m}\} \rangle \rangle$$
 and $e \in \langle \langle S \cup \{a_1^{-1}, a_2^{\delta_2}, \dots, a_m^{\delta_m}\} \rangle \rangle$,

we get

$$\vdash_{\mathbf{G}} \mathsf{S} \cup \{a_1\} \text{ and } \vdash_{\mathbf{G}} \mathsf{S} \cup \{a_1^{-1}\}.$$

- Given a finite subset $S \cup \{c\} \subseteq G$ of a group **G**, we call $\langle c, S \rangle$ a **finite pointed subset** of *G*. We define $\vdash_{\mathbf{G}} \langle c, S \rangle$, we define $\vdash_{\mathbf{G}} S$ inductively by
- (i) $\vdash^{r}_{\mathbf{G}} \langle c, T \cup \{a, a^{-1}\} \rangle$ and $\langle c, T \cup \{c^{-1}\} \rangle$, (ii) $\vdash^{r}_{\mathbf{G}} \langle c, T \cup \{ab\} \rangle$, if $\vdash^{r}_{\mathbf{G}} \langle c, T \cup \{a\} \rangle$ and $\vdash^{r}_{\mathbf{G}} \langle c, T \cup \{b\} \rangle$, (iii) $\vdash^{r}_{\mathbf{G}} \langle c, T \cup \{ab\} \rangle$, if $\vdash^{r}_{\mathbf{G}} \langle c, T \cup \{ba\} \rangle$.
 - We prove that $\vdash_{\mathbf{G}} S \cup \{c\}$ if, and only if, $\vdash_{\mathbf{G}}^{r} \langle c, S \rangle$.
 - 2 To conclude, we prove that $\vdash_{\mathbf{G}}^{r} \langle c, S \rangle$ and $\vdash_{\mathbf{G}}^{r} \langle c^{-1}, S' \rangle$ implies $\vdash_{\mathbf{G}} S \cup S'$, by induction on the height of $\vdash_{\mathbf{G}}^{r} \langle c, S \rangle$.

Given a finite subset $S \cup \{c\} \subseteq G$ of a group **G**, we call $\langle c, S \rangle$ a **finite pointed subset** of *G*. We define $\vdash_{\mathbf{G}}^{r} \langle c, S \rangle$, we define $\vdash_{\mathbf{G}} S$ inductively by

(i)
$$\vdash^{r}_{\mathbf{G}} \langle c, T \cup \{a, a^{-1}\} \rangle$$
 and $\langle c, T \cup \{c^{-1}\} \rangle$,

- (ii) $\vdash^{r}_{\mathbf{G}} \langle c, T \cup \{ab\} \rangle$, if $\vdash^{r}_{\mathbf{G}} \langle c, T \cup \{a\} \rangle$ and $\vdash^{r}_{\mathbf{G}} \langle c, T \cup \{b\} \rangle$,
- (iii) $\vdash_{\mathbf{G}}^{r} \langle c, T \cup \{ab\} \rangle$, if $\vdash_{\mathbf{G}}^{r} \langle c, T \cup \{ba\} \rangle$.
 - We prove that $\vdash_{\mathbf{G}} S \cup \{c\}$ if, and only if, $\vdash_{\mathbf{G}}^{r} \langle c, S \rangle$.
 - 2 To conclude, we prove that $\vdash_{\mathbf{G}}^{r} \langle c, S \rangle$ and $\vdash_{\mathbf{G}}^{r} \langle c^{-1}, S' \rangle$ implies $\vdash_{\mathbf{G}} S \cup S'$, by induction on the height of $\vdash_{\mathbf{G}}^{r} \langle c, S \rangle$.

Given a finite subset $S \cup \{c\} \subseteq G$ of a group **G**, we call $\langle c, S \rangle$ a **finite pointed subset** of *G*. We define $\vdash_{\mathbf{G}}^{r} \langle c, S \rangle$, we define $\vdash_{\mathbf{G}} S$ inductively by

(i)
$$\vdash^{r}_{\mathbf{G}} \langle c, T \cup \{a, a^{-1}\} \rangle$$
 and $\langle c, T \cup \{c^{-1}\} \rangle$,

- (ii) $\vdash^{r}_{\mathbf{G}} \langle c, T \cup \{ab\} \rangle$, if $\vdash^{r}_{\mathbf{G}} \langle c, T \cup \{a\} \rangle$ and $\vdash^{r}_{\mathbf{G}} \langle c, T \cup \{b\} \rangle$,
- (iii) $\vdash_{\mathbf{G}}^{r} \langle c, T \cup \{ab\} \rangle$, if $\vdash_{\mathbf{G}}^{r} \langle c, T \cup \{ba\} \rangle$.
 - **1** We prove that $\vdash_{\mathbf{G}} S \cup \{c\}$ if, and only if, $\vdash_{\mathbf{G}}^{r} \langle c, S \rangle$.
 - 2 To conclude, we prove that $\vdash_{\mathbf{G}}^{r} \langle c, S \rangle$ and $\vdash_{\mathbf{G}}^{r} \langle c^{-1}, S' \rangle$ implies $\vdash_{\mathbf{G}} S \cup S'$, by induction on the height of $\vdash_{\mathbf{G}}^{r} \langle c, S \rangle$.

Given a finite subset $S \cup \{c\} \subseteq G$ of a group **G**, we call $\langle c, S \rangle$ a **finite pointed subset** of *G*. We define $\vdash_{\mathbf{G}}^{r} \langle c, S \rangle$, we define $\vdash_{\mathbf{G}} S$ inductively by

(i)
$$\vdash^{r}_{\mathbf{G}} \langle c, T \cup \{a, a^{-1}\} \rangle$$
 and $\langle c, T \cup \{c^{-1}\} \rangle$,

- (ii) $\vdash^{r}_{\mathbf{G}} \langle c, T \cup \{ab\} \rangle$, if $\vdash^{r}_{\mathbf{G}} \langle c, T \cup \{a\} \rangle$ and $\vdash^{r}_{\mathbf{G}} \langle c, T \cup \{b\} \rangle$,
- (iii) $\vdash_{\mathbf{G}}^{r} \langle c, T \cup \{ab\} \rangle$, if $\vdash_{\mathbf{G}}^{r} \langle c, T \cup \{ba\} \rangle$.
 - **1** We prove that $\vdash_{\mathbf{G}} S \cup \{c\}$ if, and only if, $\vdash_{\mathbf{G}}^{r} \langle c, S \rangle$.
 - **2** To conclude, we prove that $\vdash_{\mathbf{G}}^{r} \langle c, S \rangle$ and $\vdash_{\mathbf{G}}^{r} \langle c^{-1}, S' \rangle$ implies $\vdash_{\mathbf{G}} S \cup S'$, by induction on the height of $\vdash_{\mathbf{G}}^{r} \langle c, S \rangle$.

By induction on $m \in \mathbb{N}$ for which there are $a_1, \ldots, a_m \in G \setminus \{e\}$ such that $e \in \langle \langle S \cup \{a_1^{\delta_1}, \ldots, a_m^{\delta_m}\} \rangle \rangle$, for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$.

- 📕 Base case. 🗸
- Induction step (m > 0): if there are $a_1, \ldots, a_m \in G \setminus \{e\}$ such that $e \in \langle \langle S \cup \{a_1^{\delta_1}, \ldots, a_m^{\delta_m}\} \rangle \rangle$, for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$, by the induction hypothesis twice on

$$e \in \langle \langle S \cup \{a_1\} \cup \{a_2^{\delta_2}, \dots, a_m^{\delta_m}\} \rangle \rangle$$
 and $e \in \langle \langle S \cup \{a_1^{-1}\} \cup \{a_2^{\delta_2}, \dots, a_m^{\delta_m}\} \rangle \rangle$,

we get

$$\vdash_{\mathbf{G}} \mathsf{S} \cup \{a_1\} \text{ and } \vdash_{\mathbf{G}} \mathsf{S} \cup \{a_1^{-1}\}.$$

We can conclude $\vdash_{\mathbf{G}} S. \checkmark$

By induction on $m \in \mathbb{N}$ for which there are $a_1, \ldots, a_m \in G \setminus \{e\}$ such that $e \in \langle \langle S \cup \{a_1^{\delta_1}, \ldots, a_m^{\delta_m}\} \rangle \rangle$, for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$.

- 📕 Base case. 🗸
- Induction step (m > 0): if there are $a_1, \ldots, a_m \in G \setminus \{e\}$ such that $e \in \langle \langle S \cup \{a_1^{\delta_1}, \ldots, a_m^{\delta_m}\} \rangle \rangle$, for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$, by the induction hypothesis twice on

$$e \in \langle \langle S \cup \{a_1\} \cup \{a_2^{\delta_2}, \dots, a_m^{\delta_m}\} \rangle \rangle$$
 and $e \in \langle \langle S \cup \{a_1^{-1}\} \cup \{a_2^{\delta_2}, \dots, a_m^{\delta_m}\} \rangle \rangle$,

we get

$$\vdash_{\mathbf{G}} S \cup \{a_1\} \text{ and } \vdash_{\mathbf{G}} S \cup \{a_1^{-1}\}.$$

We can conclude ⊢_G S. ✓

Theorem

The following are equivalent for a finite subset S of a group **G**:

- (1) ⊢_G S.
- (2) There exist $a_1, \ldots, a_m \in G \setminus \{e\}$ such that $e \in \langle \langle S \cup \{a_1^{\delta_1}, \ldots, a_m^{\delta_m}\} \rangle \rangle$, for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$.
- (3) S does not extend to an order of \mathbf{G} .

This Work

Results

- We establish a correspondence between the extension of partial orders on free groups and validity of equations in totally ordered groups.
- We give a new proof of Theorem (1) which makes use of Fuchs' ordering condition.

Lattice-ordered Groups

An ℓ -group $\mathbf{L} = \langle L, \wedge, \vee, \cdot, ^{-1}, e \rangle$ is an algebraic structure such that:

⟨L, ·, ⁻¹, e⟩ is a group;
 ⟨L, ∧, ∨⟩ is a lattice, where the order

 $a \leq b \iff a \wedge b = a$

is a partial order of the group $\langle L, \cdot, -^1, e \rangle$. When \leq is total, **L** is called a totally ordered group. \mathcal{OG} denotes the class of totally ordered groups, which generates the variety \mathcal{RG} of representable ℓ -groups.

Lattice-ordered Groups

An ℓ -group $\mathbf{L} = \langle L, \wedge, \vee, \cdot, ^{-1}, e \rangle$ is an algebraic structure such that:

- $\blacksquare \langle L, \cdot, -^1, e \rangle \text{ is a group;}$
- ect $\langle L, \wedge, \vee
 angle$ is a lattice, where the order

 $a \leq b \iff a \wedge b = a$

is a partial order of the group $\langle L, \cdot, -^1, e \rangle$. When \leq is total, **L** is called a totally ordered group. OG denotes the class of totally ordered groups, which generates the variety $\mathcal{R}G$ of representable ℓ -groups.

Lattice-ordered Groups

An ℓ -group $\mathbf{L} = \langle L, \wedge, \vee, \cdot, ^{-1}, e \rangle$ is an algebraic structure such that:

⟨L, ·, ⁻¹, e⟩ is a group;
 ⟨L, ∧, ∨⟩ is a lattice, where the order

 $a \leq b \iff a \wedge b = a$

is a partial order of the group $\langle L, \cdot, -^1, e \rangle$. When \leq is total, **L** is called a totally ordered group. \mathcal{OG} denotes the class of totally ordered groups, which generates the variety \mathcal{RG} of representable ℓ -groups.

- $\blacksquare \langle L, \cdot, {}^{-1}, e \rangle \text{ is a group;}$
- $\langle L, \wedge, \vee \rangle$ is a lattice, where the order

$$a \leq b \iff a \wedge b = a$$

is a partial order of the group $\langle L, \cdot, -1, e \rangle$.

When \leq is total, **L** is called a totally ordered group.

 \mathcal{OG} denotes the class of totally ordered groups, which generates the variety \mathcal{RG} of representable ℓ -groups.

- $(L, \cdot, -^1, e)$ is a group;
- $\langle L, \wedge, \vee \rangle$ is a lattice, where the order

$$a \leq b \iff a \wedge b = a$$

is a partial order of the group $\langle L, \cdot, -^1, e \rangle$. When \leq is total, **L** is called a totally ordered group.

generates the variety \mathcal{RG} of representable ℓ -groups.

⟨L, ·, ⁻¹, e⟩ is a group;
 ⟨L, ∧, ∨⟩ is a lattice, where the order

$$a \leq b \iff a \wedge b = a$$

is a partial order of the group $\langle L, \cdot, -^1, e \rangle$. When \leq is total, **L** is called a totally ordered group. \mathcal{OG} denotes the class of totally ordered groups, which generates the variety \mathcal{RG} of representable ℓ -groups.

- $\langle L, \cdot, -1, e \rangle$ is a group;
- $\langle L, \wedge, \vee \rangle$ is a lattice, where the order

$$a \leq b \iff a \wedge b = a$$

is a partial order of the group $\langle L, \cdot, -^1, e \rangle$. When \leq is total, **L** is called a totally ordered group. \mathcal{OG} denotes the class of totally ordered groups, which generates the variety \mathcal{RG} of representable ℓ -groups.

By means of the strong distributivity properties of ℓ -groups, checking validity of equations in \mathcal{RG} amounts to checking

 $\mathcal{RG} \models e \leq t_1 \lor \ldots \lor t_n,$

where t_1, \ldots, t_n are group terms, i.e., they are built from variables by using only group operations $\cdot, -1$, and e.

By means of the strong distributivity properties of ℓ -groups, checking validity of equations in \mathcal{RG} amounts to checking

 $\mathcal{RG} \models e \leq t_1 \lor \ldots \lor t_n,$

where t_1, \ldots, t_n are group terms, i.e., they are built from variables by using only group operations $\cdot, -1$, and e.

Let **F** be the **free group** over a non-empty set X of generators, its elements being reduced group terms obtained by cancelling occurrences of e, xx^{-1} , and $x^{-1}x$.

Let **F** be the **free group** over a non-empty set X of generators, its elements being reduced group terms obtained by cancelling occurrences of e, xx^{-1} , and $x^{-1}x$.

Theorem

The following are equivalent for group terms t_1, \ldots, t_n :

$$(1) \vdash_{\mathbf{F}} \{t_1,\ldots,t_n\}.$$

- (2) There exist $s_1, \ldots, s_m \in F \setminus \{e\}$ such that $e \in \langle \langle \{t_1, \ldots, t_n, s_1^{\delta_1}, \ldots, s_m^{\delta_m}\} \rangle \rangle$, for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$.
- (3) $\{t_1, \ldots, t_n\}$ does not extend to an order of **F**.

(4) $\mathcal{RG} \vDash \mathbf{e} \leq \mathbf{t}_1 \lor \ldots \lor \mathbf{t}_n$.

Theorem

The following are equivalent for group terms t_1, \ldots, t_n :

(1)
$$\vdash_{\mathbf{F}} \{t_1,\ldots,t_n\}.$$

- (2) There exist $s_1, \ldots, s_m \in F \setminus \{e\}$ such that $e \in \langle \langle \{t_1, \ldots, t_n, s_1^{\delta_1}, \ldots, s_m^{\delta_m} \} \rangle \rangle$, for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$.
- (3) $\{t_1, \ldots, t_n\}$ does not extend to an order of **F**.

(4) $\mathcal{RG} \vDash e \leq t_1 \lor \ldots \lor t_n$.

Theorem

The following are equivalent for group terms t_1, \ldots, t_n :

(1)
$$\vdash_{\mathbf{F}} \{t_1,\ldots,t_n\}.$$

- (2) There exist $s_1, \ldots, s_m \in F \setminus \{e\}$ such that $e \in \langle \langle \{t_1, \ldots, t_n, s_1^{\delta_1}, \ldots, s_m^{\delta_m} \} \rangle \rangle$, for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$.
- (3) $\{t_1, \dots, t_n\}$ does not extend to an order of **F**. \uparrow Contrapositively
- (4) $\mathcal{RG} \vDash e \leq t_1 \lor \ldots \lor t_n$.

Theorem

The following are equivalent for group terms t_1, \ldots, t_n :

(1) $\vdash_{\mathbf{F}} \{t_1,\ldots,t_n\}.$

- (2) There exist $s_1, \ldots, s_m \in F \setminus \{e\}$ such that $e \in \langle \langle \{t_1, \ldots, t_n, s_1^{\delta_1}, \ldots, s_m^{\delta_m}\} \rangle \rangle$, for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$.
- (3) $\{t_1, \ldots, t_n\}$ does not extend to an order of **F**.
- (4) $\mathcal{RG} \vDash e \leq t_1 \lor \ldots \lor t_n$.

 $\ \, \Uparrow \ \, By \ \, induction \ \, on \ \, the \ \, height \ \, of \ \, \vdash_{\mathbf{F}} \{t_1, \ldots, t_n\}$ $(1) \ \, \vdash_{\mathbf{F}} \{t_1, \ldots, t_n\}.$

Theorem

The following are equivalent for group terms t_1, \ldots, t_n :

(1)
$$\vdash_{\mathbf{F}} \{t_1,\ldots,t_n\}.$$

- (2) There exist $s_1, \ldots, s_m \in F \setminus \{e\}$ such that $e \in \langle \langle \{t_1, \ldots, t_n, s_1^{\delta_1}, \ldots, s_m^{\delta_m}\} \rangle \rangle$, for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$.
- (3) $\{t_1, \ldots, t_n\}$ does not extend to an order of **F**.
- (4) $\mathcal{RG} \vDash e \leq t_1 \lor \ldots \lor t_n$.

Theorem (1)

Every free group can be totally ordered.

Theorem

The following are equivalent for group terms t_1, \ldots, t_n :

(1)
$$\vdash_{\mathbf{F}} \{t_1,\ldots,t_n\}.$$

- (2) There exist $s_1, \ldots, s_m \in F \setminus \{e\}$ such that $e \in \langle \langle \{t_1, \ldots, t_n, s_1^{\delta_1}, \ldots, s_m^{\delta_m}\} \rangle \rangle$, for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$.
- (3) $\{t_1, \ldots, t_n\}$ does not extend to an order of **F**.
- (4) $\mathcal{RG} \vDash e \leq t_1 \lor \ldots \lor t_n$.

Theorem (1)

Every free group can be totally ordered.

Ordering Free Groups

Theorem The following are equivalent for group terms t_1, \ldots, t_n :

$(1) \vdash_{\mathbf{F}} \{t_1,\ldots,t_n\}.$

- (2) There exist $s_1, \ldots, s_m \in F \setminus \{e\}$ such that $e \in \langle \langle \{t_1, \ldots, t_n, s_1^{\delta_1}, \ldots, s_m^{\delta_m}\} \rangle \rangle$, for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$.
- (3) $\{t_1, \ldots, t_n\}$ does not extend to an order of **F**.

(4) $\mathcal{RG} \not\models e \leq x$.

Theorem (1) Every free group can be totally ordered.

Ordering Free Groups

Theorem The following are equivalent for group terms t_1, \ldots, t_n :

$(1) \vdash_{\mathbf{F}} \{t_1,\ldots,t_n\}.$

(2) There exist $s_1, \ldots, s_m \in F \setminus \{e\}$ such that $e \in \langle \langle \{t_1, \ldots, t_n, s_1^{\delta_1}, \ldots, s_m^{\delta_m}\} \rangle \rangle$, for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$.

(3) x does extend to an order of **F**.

(4) $\mathcal{RG} \not\models \mathbf{e} \leq \mathbf{x}$.

Theorem (1) Every free group can be totally ordered.

- Can this approach provide new insights into the problem of deciding validity of equations in totally ordered groups?
- Can we use our conditions to prove ordering results for other groups (e.g., fundamental groups of surfaces)?
- This is not an isolated case (e.g., variety of *l*-groups, group varieties of representable *l*-groups). How far can we get? (e.g., normal-valued *l*-groups)

- Can this approach provide new insights into the problem of deciding validity of equations in totally ordered groups?
- Can we use our conditions to prove ordering results for other groups (e.g., fundamental groups of surfaces)?
- This is not an isolated case (e.g., variety of *l*-groups, group varieties of representable *l*-groups). How far can we get? (e.g., normal-valued *l*-groups)

- Can this approach provide new insights into the problem of deciding validity of equations in totally ordered groups?
- Can we use our conditions to prove ordering results for other groups (e.g., fundamental groups of surfaces)?
- This is not an isolated case (e.g., variety of *l*-groups, group varieties of representable *l*-groups). How far can we get? (e.g., normal-valued *l*-groups)

- Can this approach provide new insights into the problem of deciding validity of equations in totally ordered groups?
- Can we use our conditions to prove ordering results for other groups (e.g., fundamental groups of surfaces)?
- This is not an isolated case (e.g., variety of *l*-groups, group varieties of representable *l*-groups). How far can we get? (e.g., normal-valued *l*-groups)

- Can this approach provide new insights into the problem of deciding validity of equations in totally ordered groups?
- Can we use our conditions to prove ordering results for other groups (e.g., fundamental groups of surfaces)?
- This is not an isolated case (e.g., variety of ℓ-groups, group varieties of representable ℓ-groups). How far can we get? (e.g., normal-valued ℓ-groups)

- Can this approach provide new insights into the problem of deciding validity of equations in totally ordered groups?
- Can we use our conditions to prove ordering results for other groups (e.g., fundamental groups of surfaces)?
- This is not an isolated case (e.g., variety of ℓ-groups, group varieties of representable ℓ-groups). How far can we get? (e.g., normal-valued ℓ-groups)

Thank you!