Multiplicative derivations of commutative residuated lattices

TACL 2017

26-30 June 2017, Prague

Michiro Kondo
Tokyo Denki University, JAPAN

$$
\begin{aligned}
f(x+y) & =f(x)+f(y) \\
f(x \cdot y) & =f(x) \cdot y+x \cdot f(y)
\end{aligned}
$$

\Downarrow

Residuated Lattice Theory

multiplicative derivation $d: L \rightarrow L$

$$
d(x \wedge y)=(d x \odot y) \vee(x \odot d y) \quad(\forall x, y \in L)
$$

Results

(1) $\mathrm{Fix}_{d}(L)$ is a residuated lattice and

$$
L / \operatorname{ker}(d) \cong \mathrm{Fix}_{d}(L)
$$

(2) \mathbf{A} map $(d / F)(x / F)=d x / F$ is a good ideal derivation of L / F;
(3) The quotient residuated lattices $\mathrm{Fix}_{d / F}(L / F)$ and $\mathrm{Fix}_{d}(L) / d(F)$ are isomorphic,

$$
\mathrm{Fix}_{d / F}(L / F) \cong \mathrm{Fix}_{d}(L) / d(F)
$$

Definition $(L, \wedge, \vee, \odot, \rightarrow, 0,1)$ is called a residuated lattice if
(1) $(L, \wedge, \vee, 0,1)$ is a bounded lattice;
(2) $(L, \odot, 1)$ is a commutative monoid with unit element 1;
(3) For all $x, y, z \in L$,

$$
x \odot y \leq z \quad \Leftrightarrow \quad x \leq y \rightarrow z .
$$

Proposition 1 For all $x, y, z \in L$, we have

(1) $0^{\prime}=1,1^{\prime}=0$;
(2) $x \odot x^{\prime}=0$;
(3) $x \leq y \Leftrightarrow x \rightarrow y=1$;
(4) $x \odot(x \rightarrow y) \leq y$;
(5) $x \leq y \Rightarrow x \odot z \leq y \odot z, z \rightarrow x \leq z \rightarrow y$,

$$
y \rightarrow z \leq x \rightarrow z ;
$$

(6) $1 \rightarrow x=x$;
(7) $(x \vee y) \odot z=(x \odot z) \vee(y \odot z)$;
(8) $(x \vee y)^{\prime}=x^{\prime} \wedge y^{\prime}$;
(9) $\left(x^{\prime \prime} \odot y^{\prime \prime}\right)^{\prime \prime}=\left(x \odot y^{\prime \prime}\right)^{\prime \prime}=(x \odot y)^{\prime \prime}$.

Definition $x \in L$ is called complemented if

$$
\exists y \in L \text { s.t. } \quad x \wedge y=0 \text { and } x \vee y=1
$$

By $B(L)$, we mean the set of all complemented elements,

$$
B(L)=\{x \in L \mid \exists y \in L \text { s.t. } x \wedge y=0, x \vee y=1\}
$$

Proposition 2

For a residuated lattice L,
(1) $x \in B(L)$ if and only if $x \vee x^{\prime}=1$, where $x^{\prime}=x \rightarrow 0$;
(2) If $x \in B(L)$ then $x \wedge y=x \odot y$ for all $y \in L$;
(3) If $x \oplus y=x \vee y$ for all $y \in L$ then $x \vee x^{\prime}=1$, where $x \oplus y=\left(x^{\prime} \odot y^{\prime}\right)^{\prime}$;
(4) $B(L)$ is a Boolean subalgebra of L.

Definition $d: L \rightarrow L$ is called a multiplicative derivation (or simply derivation) of L if

$$
d(x \wedge y)=(d x \odot y) \vee(x \odot d y) \quad(\forall x, y \in L)
$$

Derivation d is called
monotone : if $x \leq y \Rightarrow d x \leq d y$. ideal : if monotone and contractive,i.e., $d x \leq x$. good: if $d 1 \in B(L)$.

Example 1] $X=\{0, a, 1\}(0<a<1)$ is a resid-

 uated lattice by $x \wedge y=x \odot y=\min \{x, y\}, x \vee y=$ $\max \{x, y\}$ and$$
x \rightarrow y= \begin{cases}1 & \text { (if } x \leq y) \\ y & \text { (otherwise) } .\end{cases}
$$

A map d_{a} defined by $d_{a}(x)=x \wedge a$ is a contractive monotone derivation, but not good.
Because, $d_{a}(1)=a \notin B(X)$ for $B(X)=\{0,1\}$.

Example 2 As another example,
a map $f: X \rightarrow X$ defined by $f 1=0=f 0, f a=a$ is
contractive and
$\operatorname{good}(f(1)=0 \in B(X)=\{0,1\})$, but
not monotone ($a \leq 1$ but $f(a) \leq f(1)$).

Proposition 3

Let d be a derivation of L.

For all $x, y \in L$,
(1) $d 0=0$;
(2) $d x \geq x \odot d 1$;
(3) $d x^{n}=x^{n-1} \odot d x$ for all $n \geq 1$;
(4) $x \odot y=0 \Rightarrow d x \odot y=x \odot d y=d x \odot d y=0$;
(5) $d\left(x^{\prime}\right) \leq(d x)^{\prime}$.

Theorem 4] [P.He, X.Xin and J.Zhan, 2016]
For a good derivation d, the following are equivalent:
(1) d is an ideal derivation;
(2) $d x \leq d 1$;
(3) $d x=x \odot d 1=x \wedge d 1$;
(4) $d(x \wedge y)=d x \wedge d y$;
(5) $d(x \vee y)=d x \vee d y$;
(6) $d(x \odot y)=d x \odot d y$.

Fact $d=d^{2}$ for a good ideal derivation d.

If d is a good ideal derivation, then we have $d x=x \wedge d 1$ and thus $d^{2} x=d(d x)=d(x \wedge d 1)=$ $(x \wedge d 1) \wedge d 1=x \wedge d 1=d x$. This means that $d^{2}=d$.

For a derivation d of L, we denote by $\mathrm{Fix}_{d}(L)$ the set of all fixed elements for d,

$$
\operatorname{Fix}_{d}(L)=\{x \in L \mid d x=x\}
$$

Proposition 5] For a good ideal derivation d of a residuated lattice L, we have $\mathrm{Fix}_{d}(L)=d(L)$.

Lemma 6 Let d be a good ideal derivation. Then we have $d(d x \rightarrow d y)=d(x \rightarrow y)$ for all $x, y \in L$.

We define some operations in $\mathrm{Fix}_{d}(L)=d(L)$ by

$$
\begin{aligned}
d x \wedge d y & =d(x \wedge y) ; \\
d x \vee d y & =d(x \vee y) \\
d x \odot d y & =d(x \odot y) ; \\
d x \mapsto d y & =d(d x \rightarrow d y)
\end{aligned}
$$

Theorem 7 Let L be a residuated lattice and d be a good ideal derivation of L. Then, $\mathrm{Fix}_{d}(L)=$ $\left(\mathrm{Fix}_{d}(L), \wedge, \vee, \odot, \mapsto, 0, d 1\right)$ is a residuated lattice.

However, it is not a subalgebra of L in general.

$$
\Downarrow
$$

$\mathrm{Fix}_{d}(L)$ is a subalgebra of $L \Leftrightarrow d=i d_{L}$

Moreover, we see that a good ideal derivation d is a homomorphism from L to $\mathrm{Fix}_{d}(L)$.

Theorem 88 For every good ideal derivation d, it is a homomorphism from L to $\mathrm{Fix}_{d}(L)$ and hence

$$
L / \operatorname{ker}(d) \cong \operatorname{Fix}_{d}(L)
$$

where $\operatorname{ker}(d)=\{(x, y) \in L \times L \mid d x=d y\}$.

Definition filter and d-filter

A non-empty subset F is called a filter if
(F1) If $x, y \in F$ then $x \odot y \in F$;
(F2) If $x \in F$ and $x \leq y$ then $y \in F$.

For a good ideal derivation d, a filter F is called a d-filter if $x \in F$ implies $d x \in F$ for all $x \in L$.

$$
\begin{aligned}
\mathcal{F}(L) & =\{F \mid F \text { is a filter }\} \\
\mathcal{F}_{d}(L) & =\{F \mid F \text { is a } d \text {-filter }\}
\end{aligned}
$$

By $[S)$ (or $[S)_{d}$), we mean the generated filter (or generated d-filter, respectively) by S.

Proposition 9
[Characterization of d-filters]

For a good ideal derivation d and a non-empty subset S, we have $[S)_{d}=[S \cup d(S)$).

Corollary $\mathcal{F}_{d}(L)$ is a complete Heyting algebra.
Corollary If F is a filter, then $[F)_{d}=[d(F))$.
Corollary For any $F \in \mathcal{F}(L), F$ is a d-filter if and only if $F=[d(F))$.

Proposition 10 Let d be a good ideal derivation

 of L. Then we have(1) $F \in \mathcal{F}_{d}(L) \Rightarrow d(F) \in \mathcal{F}(d(L))$;
(2) $G \in \mathcal{F}(d(L)) \Rightarrow d^{-1}(G) \in \mathcal{F}_{d}(L)$,
where $d^{-1}(G)=\{x \in L \mid d x \in G\}$.

Proposition 11 Let d be a good ideal derivation and $F \in \mathcal{F}_{d}(L)$. A map $d / F: L / F \rightarrow L / F$ defined by $(d / F)(x / F)=d x / F$ is a good ideal derivation of L / F.

From the above, the quotient structure

$$
(d / F)(L / F)=\left(\mathrm{Fix}_{d / F}(L / F), \wedge, \vee, \odot, \mapsto, 0 / F, 1 / F\right)
$$

is a residuated lattice for any good ideal derivation d and d-filter F.

Moreover, since F is the d-filter, $d(F)$ is the filter of $d(L)$ and thus the quotient structure $d(L) / d(F)$ forms a residuated lattice.

Question What is the relation between two residuated lattices $(d / F)(L / F)$ and $d(L) / d(F)$?

If $F \in \mathcal{F}_{d}(L)$ then we have $F \cap d(L)=d(F)$.

Theorem 13] Let d be a good ideal derivation and F be a d-filter of L.

Then $(d / F)(L / F)=\mathrm{Fix}_{d / F}(L / F)$ is isomorphic to $d(L) / d(F)$, that is,

$$
(d / F)(L / F)=\mathrm{Fix}_{d / F}(L / F) \cong d(L) / d(F)
$$

Thank you for your attention!

