Multiplicative derivations of commutative residuated lattices

TACL 2017

26-30 June 2017, Prague

Michiro Kondo Tokyo Denki University, JAPAN

derivation $f: A \to A$

$$f(x + y) = f(x) + f(y)$$
$$f(x \cdot y) = f(x) \cdot y + x \cdot f(y)$$

 \downarrow

Residuated Lattice Theory

multiplicative derivation $d: L \rightarrow L$

$$d(x \wedge y) = (dx \odot y) \lor (x \odot dy) \quad (\forall x, y \in L)$$

(1) $\operatorname{Fix}_d(L)$ is a residuated lattice and $L/\operatorname{ker}(d) \cong \operatorname{Fix}_d(L);$

(2) A map (d/F)(x/F) = dx/F is a good ideal derivation of L/F;

(3) The quotient residuated lattices $\operatorname{Fix}_{d/F}(L/F)$ and $\operatorname{Fix}_d(L)/d(F)$ are isomorphic,

 $\operatorname{Fix}_{d/F}(L/F) \cong \operatorname{Fix}_d(L)/d(F).$

Definition $(L, \land, \lor, \odot, \rightarrow, 0, 1)$ is called a *residuated lattice* if

- (1) $(L, \land, \lor, 0, 1)$ is a bounded lattice;
- (2) $(L, \odot, 1)$ is a commutative monoid with unit element 1;
- (3) For all $x, y, z \in L$,

$$x \odot y \le z \iff x \le y \to z.$$

Proposition 1 For all $x, y, z \in L$, we have (1) 0' = 1, 1' = 0;(2) $x \odot x' = 0;$ (3) $x < y \Leftrightarrow x \rightarrow y = 1;$ (4) $x \odot (x \rightarrow y) < y$; (5) $x < y \Rightarrow x \odot z < y \odot z, z \rightarrow x < z \rightarrow y,$ $y \to z \leq x \to z;$ (6) $1 \rightarrow x = x;$ (7) $(x \lor y) \odot z = (x \odot z) \lor (y \odot z)$; (8) $(x \lor y)' = x' \land y'$: (9) $(x'' \odot y'')'' = (x \odot y'')'' = (x \odot y)''$.

Definition $x \in L$ is called *complemented* if

$$\exists y \in L \text{ s.t. } x \land y = 0 \text{ and } x \lor y = 1.$$

By B(L), we mean the set of all complemented elements,

$$B(L) = \{ x \in L \mid \exists y \in L \text{ s.t. } x \land y = 0, x \lor y = 1 \}.$$

(1) $x \in B(L)$ if and only if $x \lor x' = 1$, where $x' = x \to 0$;

(2) If $x \in B(L)$ then $x \wedge y = x \odot y$ for all $y \in L$;

(3) If $x \oplus y = x \lor y$ for all $y \in L$ then $x \lor x' = 1$, where $x \oplus y = (x' \odot y')'$;

(4) B(L) is a Boolean subalgebra of L.

Definition $d : L \rightarrow L$ is called a multiplicative derivation (or simply derivation) of L if

$$d(x \wedge y) = (dx \odot y) \lor (x \odot dy) \quad (\forall x, y \in L)$$

Derivation d is called

monotone : if $x \leq y \Rightarrow dx \leq dy$.

ideal : if monotone and *contractive*, i.e., $dx \le x$. good : if $d1 \in B(L)$. **Example 1** $X = \{0, a, 1\}$ (0 < a < 1) is a residuated lattice by $x \land y = x \odot y = \min\{x, y\}, x \lor y = \max\{x, y\}$ and

$$x \rightarrow y = \begin{cases} 1 & (\text{if } x \leq y) \\ y & (\text{otherwise}). \end{cases}$$

A map d_a defined by $d_a(x) = x \wedge a$ is a contractive monotone derivation, but <u>not</u> good.

Because, $d_a(1) = a \notin B(X)$ for $B(X) = \{0, 1\}$.

Example 2 As another example, a map $f: X \to X$ defined by f1 = 0 = f0, fa = a is

contractive and

good
$$(f(1) = 0 \in B(X) = \{0, 1\})$$
, but

<u>not</u> monotone $(a \leq 1 \text{ but } f(a) \not\leq f(1))$.

Proposition 3 Let *d* be a derivation of *L*. For all $x, y \in L$, (1) d0 = 0;(2) $dx > x \odot d1;$ (3) $dx^n = x^{n-1} \odot dx$ for all n > 1; (4) $x \odot y = 0 \Rightarrow dx \odot y = x \odot dy = dx \odot dy = 0;$ (5) d(x') < (dx)'.

Theorem 4 [P.He, X.Xin and J.Zhan, 2016] For a good derivation *d*, the following are equivalent:

(1) d is an ideal derivation;
(2) dx ≤ d1;
(3) dx = x ⊙ d1 = x ∧ d1;
(4) d(x ∧ y) = dx ∧ dy;
(5) d(x ∨ y) = dx ∨ dy;
(6) d(x ⊙ y) = dx ⊙ dy.

Fact $d = d^2$ for a good ideal derivation d.

If d is a good ideal derivation, then we have $dx = x \wedge d1$ and thus $d^2x = d(dx) = d(x \wedge d1) =$ $(x \wedge d1) \wedge d1 = x \wedge d1 = dx$. This means that $d^2 = d$.

For a derivation d of L, we denote by $Fix_d(L)$ the set of all fixed elements for d,

$$\mathsf{Fix}_d(L) = \{ x \in L \, | \, dx = x \}.$$

Proposition 5 For a good ideal derivation d of a residuated lattice L, we have $Fix_d(L) = d(L)$.

Lemma 6 Let d be a good ideal derivation. Then we have $d(dx \rightarrow dy) = d(x \rightarrow y)$ for all $x, y \in L$.

We define some operations in $Fix_d(L) = d(L)$ by

$$dx \wedge dy = d(x \wedge y);$$

$$dx \vee dy = d(x \vee y);$$

$$dx \odot dy = d(x \odot y);$$

$$dx \mapsto dy = d(dx \to dy).$$

Theorem 7 Let *L* be a residuated lattice and *d* be a good ideal derivation of *L*. Then, $Fix_d(L) =$ ($Fix_d(L), \land, \lor, \odot, \mapsto, 0, d1$) is a residuated lattice.

However, it is not a subalgebra of L in general.

 \downarrow

 $Fix_d(L)$ is a subalgebra of $L \Leftrightarrow d = id_L$

Moreover, we see that a good ideal derivation dis a homomorphism from L to $Fix_d(L)$.

Theorem 8 For every good ideal derivation d, it is a homomorphism from L to $Fix_d(L)$ and hence

 \downarrow

 $L/\ker(d)\cong \operatorname{Fix}_d(L),$

where ker(d) = { $(x, y) \in L \times L | dx = dy$ }.

Definition filter and *d*-filter

A non-empty subset F is called a *filter* if (F1) If $x, y \in F$ then $x \odot y \in F$; (F2) If $x \in F$ and $x \leq y$ then $y \in F$.

For a good ideal derivation d, a filter F is called a *d*-filter if $x \in F$ implies $dx \in F$ for all $x \in L$.

$$\mathcal{F}(L) = \{F \mid F \text{ is a filter}\}$$
$$\mathcal{F}_d(L) = \{F \mid F \text{ is a } d\text{-filter}\}$$

By [S) (or $[S)_d$), we mean the generated filter (or generated *d*-filter, respectively) by S.

Proposition 9 [Characterization of *d*-filters]

For a good ideal derivation d and a non-empty subset S, we have $[S]_d = [S \cup d(S))$.

Corollary $\mathcal{F}_d(L)$ is a complete Heyting algebra.

Corollary If F is a filter, then $[F]_d = [d(F))$.

Corollary For any $F \in \mathcal{F}(L)$, F is a d-filter if and only if F = [d(F)).

Proposition 10 Let d be a good ideal derivation

of L. Then we have

(1) $F \in \mathcal{F}_d(L) \Rightarrow d(F) \in \mathcal{F}(d(L));$ (2) $G \in \mathcal{F}(d(L)) \Rightarrow d^{-1}(G) \in \mathcal{F}_d(L),$ where $d^{-1}(G) = \{x \in L \mid dx \in G\}.$

Proposition 11 Let *d* be a good ideal derivation and $F \in \mathcal{F}_d(L)$. A map $d/F : L/F \to L/F$ defined by (d/F)(x/F) = dx/F is a good ideal derivation of L/F. From the above, the quotient structure

 $(d/F)(L/F) = (\mathsf{Fix}_{d/F}(L/F), \land, \lor, \odot, \mapsto, 0/F, 1/F)$

is a residuated lattice for any good ideal derivation d and d-filter F.

Moreover, since F is the d-filter, d(F) is the filter of d(L) and thus the quotient structure d(L)/d(F)forms a residuated lattice.

(Question) What is the relation between two residuated lattices (d/F)(L/F) and d(L)/d(F)?

Lemma 12

If $F \in \mathcal{F}_d(L)$ then we have $F \cap d(L) = d(F)$.

Theorem 13 Let d be a good ideal derivation and F be a d-filter of L.

 \downarrow

Then $(d/F)(L/F) = \operatorname{Fix}_{d/F}(L/F)$ is isomorphic to d(L)/d(F), that is,

 $(d/F)(L/F) = \operatorname{Fix}_{d/F}(L/F) \cong d(L)/d(F).$

Thank you for your attention!