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Introduction - Q-valued structures

Stubbe constructed an isomorphism between the categories of right
Q-modules and cocomplete skeletal Q-categories for a given unital quantale
Q. Employing his results, Solovyov obtained an isomorphism between the
categories of Q-algebras and Q-quantales, where Q is additionally assumed
to be commutative (a lecture on a non-commutative version of this result was
presented at 92nd Workshop on General Algebra in 2016).

Resende introduced (many-sorted) sup-algebras that are certain partially
ordered algebraic structures which generalize quantales, frames and
biframes (pointless topologies) as well as various lattices of multiplicative
ideals from ring theory and functional analysis (C*-algebras, von Neumann
algebras). One-sorted case was studied e.g. by Zhang and Laan, J.P., and, in
the generalized form of Q-sup-algebras by Šlesinger.
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Introduction - Q-valued structures

With this paper we hope to contribute to the theory of quantales and
quantale-like structures. It considers the notion of Q-sup-algebra and shows
a representation theorem for such structures generalizing the well-known
representation theorems for quantales and sup-algebras. In addition, we
present some important properties of the category of Q-sup-algebras.
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Sup-lattices

Sup-lattice: a partially ordered set (complete lattice) in which every
subset S has a join (supremum)

∨
S, and therefore also a meet (infimum)∧

S. The greatest element is denoted by >, the least element by ⊥.

Sup-lattice homomorphism: join-preserving mapping,
f (
∨

S) =
∨
{ f (s) | s ∈ S} (preserves ⊥)

=⇒ category Sup.

A mapping f : A→ B if a sup-lattice homomorphism if and only if it has a
right adjoint g : B→ A, by which is meant a mapping g that satisfies

f (a)≤ b ⇐⇒ a≤ g(b)

for all a ∈ A and b ∈ B. We write f a g in order to state that g is a right
adjoint to f (equivalently, f is a left adjoint to g).
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Quantales

Quantale: is a semigroup object in the monoidal category of sup-lattices
in Sup (associative multiplication · distributes over joins in both
arguments)

a ·
(∨

S
)
=
∨
b∈S

a ·b ,
(∨

S
)
·a =

∨
b∈S

b ·a

for all a ∈ Q and S⊂ Q.

Unital quantale: has a multiplication unit (need not be the greatest
element), denoted 1.

For any a ∈ Q, a ·− preserves joins =⇒ has a right adjoint a→r −,
satisfying a ·b≤ c ⇐⇒ b≤ a→r c for any a,b,c ∈ Q, explicitly
a→r c =

∨
{b ∈ Q | a ·b≤ c}

By analogy we have a→l − for −·a (for Q commutative the operations
coincide, denoted→).
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Quantale homomorphisms

Quantale homomorphism: is a homomorphism f : Q→ R of
semigroups that is also a homomorphism of sup-lattices; that is, for all
S⊆ Q and a,b ∈ Q we have

f
(∨

S
)
=
∨
s∈S

f (s) , f (a ·b) = f (a) · f (b) .

=⇒ category of quantales Quant.
A homomorphism of unital quantales is unital if it is a monoid
homomorphism.

=⇒ category of unital quantales UQuant.
UQuant is a subcategory of Quant.

Q-sup-algebras and their representation 9 / 34
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Quantale modules

Given a quantale Q.

(Left) module over Q: a sup-lattice M with a (left) action
−∗− : Q×M→M of Q, which distributes over joins in both arguments
(right modules defined by analogy)

Adjoints→Q : M×M→ Q and→M : Q×M→M

Unital module: for Q unital, such that 1∗m = m for all m ∈M.

Q-module homomorphism from M to N: is a
∨

-preserving map
ϕ : M→ N with ϕ(q∗a) = q∗ϕ(a) for every q ∈ Q,a ∈M.

=⇒ category of Q-modules Q−Mod.

Q-sup-algebras and their representation 10 / 34
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Q-order

Let Q be a fixed unital (commutative) quantale.

Definition

Let X be a set. A mapping e : X×X → Q is a Q-order if
1 e(x,x)≥ 1, (Q-reflexivity)
2 e(x,y) · e(y,z)≤ e(x,z), (Q-transitivity)
3 e(x,y)≥ 1 and e(y,x)≥ 1 =⇒ x = y. (Q-antisymmetry)

for any x,y,z ∈ X .

Instance of fuzzy relation (introduced by Zadeh 1971).

In order to study fuzzy relational systems, based on complete residuated
lattices, Bělohlávek in 2002 introduced and studied a kind of fuzzy orders,
called L-orders.
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Q-order

At the same time Fan and Zhang, in order to study quantitative domains
theory under the framework of fuzzy set theory, for L a complete Heyting
algebra, defined and studied a kind of L-orders, called the degree functions.

In fact, an L-order in the sense of Fan-Zhang (when being extended onto a
complete residuated lattice) and an L-order in the sense of Bělohlávek are
equivalent to each other. Both orders are special kinds of Ω-categories, and
a more general notion is that of categories enriched in a quantaloid.

Example

1 Q = 2: partial order relation
2 A (left) Q-module M: e(m,n) = m→Q n =

∨
{q ∈ Q | q∗m≤ n}

Induced partial order relation: x≤e y iff e(x,y)≥ 1.
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Q-monotone mappings

Definition

Let (X ,eX ) and (Y,eY ) be Q-ordered sets. A mapping f : X → Y is
Q-monotone if

eX (x,y)≤ eY ( f (x), f (y))

for any x,y ∈ X .

=⇒ category Q-Ord.

Every Q-monotone mapping is monotone wrt. to the induced partial order ≤e.
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Q-suprema

Definition

A Q-subset of a set X is an element of the set QX .

Again, for Q = 2 coincides with ordinary subsets.

Definition

Let (X ,e) be a Q-ordered set, and let M ∈ QX . An element s of X is called a
Q-supremum (Q-join) of M, denoted

⊔
M if:

1 M(x)≤ e(x,s) for all x ∈ X , and
2 for all y ∈ X ,

∧
x∈X (M(x)→ e(x,y))≤ e(s,y)

or, equivalently,
3 for all y ∈ X ,

∧
x∈X (M(x)→ e(x,y)) = e(s,y).

For A⊆ X and M(x) =

{
1 if x ∈ A,
⊥ otherwise,

we have
⊔

M =
∨

A whenever
⊔

M or∨
A is defined.

Q-sup-algebras and their representation 15 / 34
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Q-sup-lattices

Definition

A Q-ordered set (X ,e) is a Q-sup-lattice (Q-join-complete) if any M ∈ QX has⊔
M in X .

⇐⇒ any M ∈ QX has
d

M in X (
d

M defined by analogy to
⊔

M).

Definition

Let X and Y be sets, and f : X → Y be a mapping. Zadeh’s forward power
set operator f→Q : QX → QY maps Q-subsets of X to Q-subsets of Y by:

f→Q (M)(y) =
∨

x∈ f−1(y)

M(x).

Note that Zadeh’s forward power set operator is a kind of existential quantifier.

For Q = 2 we have y ∈ f→Q (M) ⇐⇒ ∃x ∈M s.t. f (x) = y.

Q-sup-algebras and their representation 16 / 34
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Category Q-Sup

Definition

Let (X ,eX ) and (Y,eY ) be Q-ordered sets. A mapping f : (X ,eX )→ (Y,eY ) is
Q-join-preserving if for any M ∈ QX such that

⊔
X M exists,

⊔
Y f→Q (M) exists

and
f
(⊔

X
M
)
=
⊔

Y
f→Q (M).

Category Q-Sup: Q-join-complete sets with Q-join-preserving mappings.
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Q-Sup is isomorphic to Q-Mod

Q-sup-lattices are equivalent to Q-modules, where Q is a unital (commutative)
quantale. This fact was first pointed out by Stubbe in 2006 and later proved in
quantale-like setting by Solovyov in 2016. Thus, Q-modules can be seen as a
fuzzification of complete lattices.

Yao introduced L-frames by means of L-ordered sets and proved in 2012 that
the categories of Yao-L-frames, Zhang-Liu-L-frames and L-algebras are
isomorphic, where L is a frame.

Based on the work of Yao, Wang and Zhao in 2016 independently introduced
the notion of Q-quantales, and proved that the category of Q-quantales is
isomorphic to the category of Q-algebras.
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Q-Sup is isomorphic to Q-Mod

1 F : Q-Mod→ Q-Sup, given a Q-module A:
e(a,b) = a→Q b, and

⊔
M =

∨
a∈A(M(a)∗a)

2 G : Q-Sup→ Q-Mod, given a Q-sup-lattice A:
a≤ b ⇐⇒ 1≤ e(a,b),

∨
S =

⊔
M1

S , q∗a =
⊔

Mq
a where

Mq
S (a) =

{
q if x ∈ S,
⊥ otherwise.

3 A mapping that is a morphism in either category, becomes a morphism
in the other one as well.

4 G◦F = 1Q-Mod and F ◦G = 1Q-Sup, i.e., the categories Q-Mod and Q-Sup
are isomorphic.

Results on quantale modules can be directly transferred to Q-sup-lattices. In
particular, a nucleus of quantale modules corresponds one-one to a
Q-monotone closure operator.
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Outline

1 Introduction - Q-valued structures

2 Basic notions, definitions and results
Sup-lattices
Quantales
Quantale modules

3 Q-sup-lattices
Q-order
Fuzzy sets
Q-sup-lattices
Q-Sup is isomorphic to Q-Mod

4 Q-sup-algebras
Po-algebras and sup-algebras
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Po-algebras and sup-algebras

In 1998 Resende introduced so-called sup-algebras (actually their
many-sorted variant).

A type is a set Ω of function symbols. To each ω ∈Ω, a number n ∈ N0 is
assigned, which is called the arity of ω (and ω is called an n-ary function
symbol). Then for each n ∈ N0, Ωn ⊆Ω will denote the subset of all n-ary
function symbols from Ω.

Definition

Given a set Ω, an algebra of type Ω (shortly, an Ω-algebra) is a pair
A = (A,Ω) where for each ω ∈Ω with arity n, there is an n-ary operation
fω : An→ A.
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Po-algebras and sup-algebras

Definition

A partially ordered algebra of type Ω (shortly, a po-algebra) is a triple
A = (A,≤,Ω) where (A,≤) is a poset, (A,Ω) is an Ω-algebra, and each
operation ω is monotone in any component, that is, b≤ c implies

ω(a1, . . . ,a j−1,b,a j+1, . . . ,an)≤ ω(a1, . . . ,a j−1,c,a j+1, . . . ,an)

for any n ∈ N, ω ∈Ωn, j ∈ {1, . . . ,n}, and a1, . . . ,an,b,c ∈ A.
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Po-algebras and sup-algebras

Definition

A monotone mapping φ : A→ B from a po-algebra (A,≤A,Ω) to a po-algebra
(B,≤B,Ω) is called a

1 po-algebra subhomomorphism if

ωB(φ(a1), . . . ,φ(an))≤B φ(ωA(a1, . . . ,an))

for any n ∈ N, ω ∈Ωn, and a1, . . . ,an ∈ A, and, for any ω ∈Ω0,

ωB ≤B φ(ωA).

2 po-algebra homomorphism if

ωB(φ(a1), . . . ,φ(an)) = φ(ωA(a1, . . . ,an))

for any n ∈ N, ω ∈Ωn, and a1, . . . ,an ∈ A, and

ωB = φ(ωA)

for any ω ∈Ω0.
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Po-algebras and sup-algebras

Definition

1 A sup-algebra of type Ω (shortly, a sup-algebra) is a triple A = (A,
∨
,Ω)

where (A,
∨
) is a sup-lattice, (A,Ω) is an Ω-algebra, and each operation

ω is join-preserving in any component, that is,

ω

(
a1, . . . ,a j−1,

∨
B,a j+1, . . . ,an

)
=
∨
{ω(a1, . . . ,a j−1,b,a j+1, . . . ,an) | b∈B}

for any n ∈ N, ω ∈Ωn, j ∈ {1, . . . ,n}, a1, . . . ,an ∈ A, and B⊆ A.
2 A join-preserving mapping φ : A→ B from a sup-algebra (A,

∨
,Ω) to a

sup-algebra (B,
∨
,Ω) is called a sup-algebra homomorphism if

ωB(φ(a1), . . . ,φ(an)) = φ(ωA(a1, . . . ,an))

for any n ∈ N, ω ∈Ωn, and a1, . . . ,an ∈ A, and

ωB = φ(ωA)
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Po-algebras and sup-algebras

Definition

Sup-algebras of type Ω and their homomorphisms form the category
Ω-SupAlg.

Instances of sup-algebras that are commonly used include the following
(operation arities that are evident from context are omitted):

1 sup-lattices with Ω = /0,
2 quantales with Ω = {·}, and unital quantales with Ω = {·,1},
3 frames with Ω = {∧,1},
4 quantale modules with Ω = {q∗ | q ∈ Q}.
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Instances of sup-algebras that are commonly used include the following
(operation arities that are evident from context are omitted):

1 sup-lattices with Ω = /0,
2 quantales with Ω = {·}, and unital quantales with Ω = {·,1},
3 frames with Ω = {∧,1},
4 quantale modules with Ω = {q∗ | q ∈ Q}.
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In 2016 Šlesinger introduced Q-po-algebras and Q-sup-algebras (one-sorted
variant).

Definition

A Q-ordered algebra of type Ω (shortly, a Q-ordered algebra) is a triple
A = (A,e,Ω) where (A,e) is a Q-ordered set, (A,Ω) is an Ω-algebra, and each
operation ω of non-zero arity is Q-monotone in any component, that is,

e(b,c)≤ e(ω(a1, . . . ,a j−1,b,a j+1, . . . ,an),ω(a1, . . . ,a j−1,c,a j+1, . . . ,an))

for any n ∈ N, ω ∈Ωn, j ∈ {1, . . . ,n}, and a1, . . . ,an,b,c ∈ A.
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Example

Let (S,◦) be a groupoid, and define multiplication on QS by
(A◦B)(s) =

∨
a◦b=s(A(a) ·B(b)). Let A,B,C ∈ QS be arbitrary. Then for any

A,B,C ∈ QS and q ∈ Q we have

q≤ e(B,C) ⇐⇒ q≤ infs∈S(B(s)→C(s))
⇐⇒ ∀s ∈ S : q≤ B(s)→C(s) ⇐⇒ ∀s ∈ S : q ·B(s)≤C(s)
=⇒ ∀s,c,d ∈ S s.t. c◦d = s : q ·A(c) ·B(d)≤ A(c) ·C(d)
=⇒ ∀s,c,d ∈ S s.t. c◦d = s : q · (A(c) ·B(d))≤

∨
a◦b=s(A(a) ·C(b))

⇐⇒ ∀s ∈ S : q ·
∨

a◦b=s(A(a) ·B(b))≤
∨

a◦b=s(A(a) ·C(b))
⇐⇒ ∀s ∈ S : q≤

∨
a◦b=s(A(a) ·B(b))→

∨
a◦b=s(A(a) ·C(b))

=⇒ q≤ infs∈S (
∨

a◦b=s(A(a) ·B(b))→
∨

a◦b=s(A(a) ·C(b)))
= infs∈S((A◦B)(s)→ (A◦C)(s))
= e(A◦B,A◦C),

and the operation ◦ is thus Q-monotone on the right-hand side. Verifying
Q-monotonicity on the left-hand side of ◦ is completely analogous, and
(QS,e,◦) is then a Q-ordered groupoid.
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Definition

Let (A,eA,Ω) and (B,eB,Ω) be Q-ordered algebras, and φ : A→ B be a
Q-monotone mapping. Then φ is called:

1 a Q-ordered algebra subhomomorphism if

1≤ eB(ωB(φ(a1), . . . ,φ(an)),φ(ωA(a1, . . . ,an)))

for any n ∈ N, ω ∈Ωn, and a1, . . . ,an ∈ A,
and

1≤ eB(ωB,φ(ωA))

for every ω ∈Ω0,
2 a Q-ordered algebra homomorphism if

ωB(φ(a1), . . . ,φ(an)) = φ(ωA(a1, . . . ,an))

for any n ∈ N0, ω ∈Ωn, and a1, . . . ,an ∈ A.
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Definition

A Q-sup-algebra of type Ω (shortly, a Q-sup-algebra) is a triple
A = (A,

⊔
,Ω) where (A,

⊔
) is a Q-sup-lattice, (A,Ω) is an Ω-algebra, and

each operation ω is Q-join-preserving in any component, that is,

ω

(
a1, . . . ,a j−1,

⊔
M,a j+1, . . . ,an

)
=
⊔

ω(a1, . . . ,a j−1,−,a j+1, . . . ,an)
→
Q (M)

for any n ∈ N, ω ∈Ωn, j ∈ {1, . . . ,n}, a1, . . . ,an ∈ A, and M ∈ QA.

Example

As instances of Q-sup-algebras, we may typically encounter the
Q-counterparts of those from examples of sup-algebras:

1 Q-sup-lattices (Ω = /0),
2 Q-quantales (Ω = {·}),
3 unital Q-quantales (Ω = {·,1}),
4 modules over a Q-quantale A, (Ω = {a∗ | a ∈ A}).
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Example

Recall that QX is the free Q-sup-lattice over a set X . As before, any Ω-algebra
A gives rise to a Q-sup-algebra QA with operations defined by

ωQA(A1, . . . ,An)(a) =
∨

ωA(a1,...,an)=a

A1(a1) · · · · ·An(an),

given n ∈ N, ω ∈Ωn, A1, . . . ,An ∈ QA, a,a1, . . . ,an ∈ A.

Definition

Let (A,
⊔

A,Ω) and (B,
⊔

B,Ω) be Q-sup algebras, and φ : A→ B be a
Q-join-preserving mapping. Then φ is called a Q-sup-algebra
homomorphism if

ωB(φ(a1), . . . ,φ(an)) = φ(ωA(a1, . . . ,an))

for any n ∈ N, ω ∈Ω, and a1, . . . ,an ∈ A, and, for any ω ∈Ω0

ωB = φ(ωA).
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Representation theorem for Q-sup-algebras

Definition

Q-sup-algebras of type Ω and their homomorphisms form the category
Ω-Q-SupAlg.

Like with e.g. quantales, or sup-algebras in general, quotients and
subalgebras of Q-sup-algebras can be characterized by means of Q-order
nuclei and conuclei acting on the carrier Q-sup-lattice that are also
subhomomorphisms of the induced sup-algebras.

For any algebra A of type Ω it can be shown that the set QA of all its
Q-subsets is a Q-sup-algebra.
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Note that there exists the following commutative triangle of the obvious
forgetful functors (notice that Set is the category of sets and maps and Ω-Alg
is the category of algebras of type Ω and their homomorphisms:

Ω-Q-SupAlg
U - Set

Ω-Alg

W

-

V
-

Theorem

The functor V : Ω-Q-SupAlg→Ω-Alg has a left adjoint F .

F(A) = QA
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An analogy of the representation theorem for sup-algebras (in particular for
quantales and modules) can then be presented:

Theorem

If (A,
⊔

A,Ω) is a Q-sup-algebra, then there is a nucleus j on QA such that
A∼= (QA) j.
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We also have:

Theorem

The category of Q-sup-algebras of type Ω is a monadic construct.

Corollary

The category of Q-sup-algebras of type Ω is complete, cocomplete,
wellpowered, extremally co-wellpowered, and has regular factorizations.
Moreover, monomorphisms are precisely those morphisms that are injective
functions.
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Appendix

Thank you for your attention.
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