On Two Approaches to Concrete Dualities and Their Relationships

Mustafa Demirci

Akdeniz University, Faculty of Sciences, Department of Mathematics, 07058-Antalya, Turkey, e-mail: demirci@akdeniz.edu.tr

June 30, 2017

Outline

Dualities of concrete categories with schizophrenic objects

Fundamental Duality of Abstract Categories

The relations between two approaches

Applications to Universal Algebras

1 Dualities of concrete categories with schizophrenic objects

- 1 Dualities of concrete categories with schizophrenic objects
- 2 Fundamental Duality of Abstract Categories

- 1 Dualities of concrete categories with schizophrenic objects
- 2 Fundamental Duality of Abstract Categories
- 3 The relations between two approaches

- 1 Dualities of concrete categories with schizophrenic objects
- 2 Fundamental Duality of Abstract Categories
- 3 The relations between two approaches
- Applications to Universal Algebras

Dualities of concrete categories with schizophrenic objects

```
Let (\mathbf{C}, | \ |) and (\mathbf{D}, | \ |) be concrete categories over Set with | \ | : \mathbf{C} \to \mathbf{Set} and | \ | : \mathbf{V} \to \mathbf{Set}. Consider L \in Ob(\mathbf{C}) and M \in Ob(\mathbf{D}).
```

Dualities of concrete categories with schizophrenic objects

```
Let (\mathbf{C}, | \ ) and (\mathbf{D}, \| \ \|) be concrete categories over Set with | \ | : \mathbf{C} \to \mathbf{Set} and \| \ \| : \mathbf{V} \to \mathbf{Set}. Consider L \in Ob(\mathbf{C}) and M \in Ob(\mathbf{D}). Every A \in Ob(\mathbf{C}) and every x \in |A| determines a map L_{(A,x)} : \mathbf{C}(A,L) \to |L| by L_{(A,x)}(h) = |h|(x).
```

Dualities of concrete categories with schizophrenic objects

Let $(C, |\ |)$ and $(D, |\ |\ |)$ be concrete categories over **Set** with $|\ |: C \to \textbf{Set}$ and $|\ |\ |: \textbf{V} \to \textbf{Set}$.

Consider $L \in Ob(\mathbf{C})$ and $M \in Ob(\mathbf{D})$.

Every $A \in Ob(\mathbf{C})$ and every $x \in |A|$ determines a map

$$L_{(A,x)}: \mathbf{C}(A,L) \to |L| \text{ by } L_{(A,x)}(h) = |h|(x).$$

For every $B \in Ob(\mathbf{D})$ and every $y \in ||B||$,

$$M_{(B,y)}: \mathbf{D}(B,M) \to ||M|| \text{ by } M_{(B,y)}(t) = ||t||(y).$$

Schizophrenic object

Definition

(L, s, M) is a schizophrenic object iff $s: |L| \to ||M||$ is a bijection, and (SO1) For each $A \in Ob(\mathbf{C})$, $\left(\mathbf{C}(A, L) \stackrel{s \circ L_{(A, x)}}{\longrightarrow} \|M\|\right)_{x \in |A|}$ has a $\| \quad \|\text{-initial lift } \left(T\left(A\right) \stackrel{T(A)_{x}}{\longrightarrow} M\right)_{x \in |A|},$ (SO2) For each $B \in Ob\left(\mathbf{D}\right)$, $\left(\mathbf{D}\left(B,M\right) \stackrel{s^{-1} \circ M_{\left(B,y\right)}}{\longrightarrow} |L|\right)_{y \in \|M\|}$ an | |-initial lift $\left(S\left(B\right) \stackrel{S\left(B\right)_{y}}{\longrightarrow} L\right)_{y \in \|M\|}$.

Every schizophrenic object (L, s, M) induces an adjoint situation (ADS)

$$(\gamma, \alpha): S \dashv T: \mathbf{C}^{op} \to \mathbf{D}.$$
 (1)

Every schizophrenic object (L, s, M) induces an adjoint situation (ADS)

$$(\gamma, \alpha): S \dashv T: \mathbf{C}^{op} \to \mathbf{D}.$$
 (1)

 $Fix(\alpha)$ = the f.s.c. of **C** of all A making α_A an isomorphism in \mathbf{C}^{op} .

 $Fix(\gamma) = \text{the f.s.c.}$ of **D** of all *B* making γ_B an isomorphism in **D**.

Every schizophrenic object (L, s, M) induces an adjoint situation (ADS)

$$(\gamma, \alpha): S \dashv T: \mathbf{C}^{op} \to \mathbf{D}.$$
 (1)

 $Fix(\alpha) = \text{the f.s.c.}$ of **C** of all A making α_A an isomorphism in \mathbf{C}^{op} .

 $Fix(\gamma) = \text{the f.s.c.}$ of **D** of all *B* making γ_B an isomorphism in **D**.

Corollary

The ADS (1) restricts to a duality between Fix (α) and Fix (γ) , i.e., Fix $(\alpha)^{op} \sim \text{Fix}(\gamma)$.

Fundamental Duality of Abstract Categories

- C: An abstract category with set-indexed products
- \mathcal{M} : A class of **C**-monomorphisms
- L: An arbitrarily fixed object of **C**.

Definition

Given a set
$$X$$
, $\left(X, \tau \stackrel{m}{\to} L^X\right)$ is a **C**- \mathcal{M} - L -space if $\tau \stackrel{m}{\to} L^X \in \mathcal{M}$.

The category \mathbf{C} - \mathcal{M} -L- \mathbf{Top}

Objects: \mathbf{C} - \mathcal{M} -L-spaces.

Morphisms: $\left(X, \tau \stackrel{m_1}{\to} L^X\right) \stackrel{f}{\to} \left(Y, \nu \stackrel{m_2}{\to} L^Y\right)$ s.t. $f: X \to Y$ is a

function, and there exists a **C**-morphism $r_f: \nu \to \tau$ making

commute.

The category \mathbf{C} - \mathcal{M} -L- \mathbf{Top}

Objects: \mathbf{C} - \mathcal{M} -L-spaces.

Morphisms: $\left(X, \tau \xrightarrow{m_1} L^X\right) \xrightarrow{f} \left(Y, \nu \xrightarrow{m_2} L^Y\right)$ s.t. $f: X \to Y$ is a function, and there exists a **C**-morphism $r_f: \nu \to \tau$ making

commute.

$$L^{Y} \xrightarrow{f_{L}^{\leftarrow}} L^{X}$$

$$\searrow \qquad \downarrow \pi_{X}$$

Let \mathbf{C} be essentially $(\mathcal{E}, \mathcal{M})$ -structured for some $\mathcal{E} \subseteq Mor(\mathbf{C})$, i.e., (i) Every $f \in Mor(\mathbf{C})$ has an $(\mathcal{E}, \mathcal{M})$ -factorization $f = m \circ e$, (ii) \mathbf{C} has a unique $(\mathcal{E}, \mathcal{M})$ -diagonalization property: for any $e \in \mathcal{E}$, $m \in \mathcal{M}$ and $f, g \in Mor(\mathbf{C})$,

Then there exists an ADS

$$(\eta, \varepsilon) : L\Omega \dashv LPt : \mathbf{C}^{op} \to \mathbf{C} - \mathcal{M} - L - \mathbf{Top}.$$
 (2)

- (i) A **C**- \mathcal{M} -L-space W is L-sober iff $\eta_W \in Iso$ (**C**- \mathcal{M} -L-**Top**).
- (ii) A **C**-object *A* is *L*-spatial iff $\varepsilon_A \in Iso(\mathbf{C}^{op})$.

- (i) A **C**- \mathcal{M} -L-space W is L-sober iff $\eta_W \in Iso$ (**C**- \mathcal{M} -L-**Top**).
- (ii) A **C**-object *A* is *L*-spatial iff $\varepsilon_A \in Iso(\mathbf{C}^{op})$.

SPA(C)=The f.s.c. of C of all *L*-spatial objects SOBTop(C)=The f.s.c. of C- \mathcal{M} -*L*-Top of all *L*-sober objects

- (i) A **C**- \mathcal{M} -L-space W is L-sober iff $\eta_W \in Iso$ (**C**- \mathcal{M} -L-**Top**).
- (ii) A **C**-object A is L-spatial iff $\varepsilon_A \in Iso(\mathbf{C}^{op})$.

SPA(C)=The f.s.c. of C of all *L*-spatial objects **SOBTop**(C)=The f.s.c. of $C-\mathcal{M}-L$ -Top of all *L*-sober objects

$\mathsf{Theorem}$

(FCDT) SPA(C)^{op} \sim SOBTop(C).

The relations between two approaches

 $(\mathbf{C}, | \ |)$ and $(\mathbf{D}, \| \ \|)$ are concrete categories over **Set**, and the category \mathbf{C} is an essentially $(\mathcal{E}, \mathcal{M})$ -structured category with set-indexed products for some $\mathcal{E} \subseteq Surj(\mathbf{C})$.

The functor $L\Omega$: \mathbf{C} - \mathcal{M} -L- $\mathbf{Top} \rightarrow \mathbf{C}^{op}$ restricts to

$$L\Omega^*: \mathbf{SOBTop}\left(\mathbf{C}\right) \rightarrow \mathbf{C}^{op},$$

while the functor $\mathit{LPt}: \mathbf{C}^{op} \to \mathbf{C}\text{-}\mathcal{M}\text{-}\mathit{L}\text{-}\mathbf{Top}$ restricts to

$$\mathit{LPt}^*: \mathbf{C}^{\mathit{op}} \to \mathbf{SOBTop}\left(\mathbf{C}\right).$$

The relations between two approaches

 $(\mathbf{C}, | \ |)$ and $(\mathbf{D}, \| \ \|)$ are concrete categories over **Set**, and the category \mathbf{C} is an essentially $(\mathcal{E}, \mathcal{M})$ -structured category with set-indexed products for some $\mathcal{E} \subseteq Surj(\mathbf{C})$.

The functor $L\Omega$: \mathbf{C} - \mathcal{M} -L- $\mathbf{Top} \rightarrow \mathbf{C}^{op}$ restricts to

$$L\Omega^* : SOBTop(C) \rightarrow C^{op},$$

while the functor $\mathit{LPt}: \mathbf{C}^{op} \to \mathbf{C}\text{-}\mathcal{M}\text{-}\mathit{L}\text{-}\mathbf{Top}$ restricts to

$$LPt^*: \mathbf{C}^{op} \to \mathbf{SOBTop}(\mathbf{C})$$
.

$$T^* = \mathsf{SOBTop}\left(\mathsf{C}\right) \xrightarrow{L\Omega^*} \mathsf{C}^{op} \xrightarrow{T} \mathsf{D},$$

$$S^* = \mathbf{D} \xrightarrow{S} \mathbf{C}^{op} \xrightarrow{LPt^*} \mathbf{SOBTop}(\mathbf{C})$$
.

Outline
Dualities of concrete categories with schizophrenic objects
Fundamental Duality of Abstract Categories
The relations between two approaches
Applications to Universal Algebras

Theorem

$$S^* \dashv T^* : \mathbf{SOBTop}(\mathbf{C}) \longrightarrow \mathbf{D}$$
.

$$S^* \dashv T^* : SOBTop(C) \longrightarrow D$$
.

Proposition

If $S \dashv T : \mathbf{C}^{op} \to \mathbf{D}$ is an equivalence, then so is

 $S^* \dashv T^* : \mathbf{SOBTop}(\mathbf{C}) \longrightarrow \mathbf{D}$.

The converse is also true in case SPA(C) = C.

Applications to Universal Algebras

A type is a class \sum together with a function ar from \sum to the class of all sets. \sum is finitary if the range of ar is $\mathbb N$

A \sum -algebra $\overline{A} = (A, (w^A)_{w \in \sum})$ consists of a set A and a family of functions $w^A : A^{ar(w)} \to A$.

A \sum -homomorphism from a \sum -algebra \overline{A} to another \sum -algebra \overline{B} means a function $f:A\to B$ such that

commutes, where $f^{ar(w)}(h) = f \circ h$. Σ -algebras and Σ -homomorphisms constitute a category $Alg(\Sigma)$.

Structured Topological Spaces

Definition

Let $\Delta = (\Delta_1, \Delta_2, \Delta_3)$ be a triple of types. We call a quintuple $\widetilde{X} = \left(X, \left(o^X\right)_{o \in \Delta_1}, \left(p^X\right)_{p \in \Delta_2}, \left(r^X\right)_{r \in \Delta_3}, \tau^X\right)$ a Δ -structured topological space if X is a set, $\left(o^X\right)_{o \in \Delta_1}$ is a family of operations $o^X : X^{ar(o)} \to X$, $\left(p^X\right)_{p \in \Delta_2}$ is a family of partial operations $p^X : dom(p^X) \to X$ with $dom(p^X) \subseteq X^{ar(p)}$, $\left(r^X\right)_{r \in \Delta_3}$ is a family of relations $r^X \subseteq X^{ar(r)}$, and τ^X is a topology on X.

Proposition

 Δ -structured topological spaces form a category Δ -STOP with morphisms $f:\widetilde{X}\to\widetilde{Y}$ all functions $f:X\to Y$ satisfying the following conditions:

(ST1)
$$f: (X, \tau^X) \to (Y, \tau^Y)$$
 is continuous,

(ST2)
$$f: \left(X, \left(o^X\right)_{o \in \Delta_1}\right) \to \left(Y, \left(o^Y\right)_{o \in \Delta_1}\right)$$
 is a

 Δ_1 -homomorphism,

(ST3)
$$f: \left(X, \left(p^X\right)_{p \in \Delta_2}\right) \to \left(Y, \left(p^Y\right)_{p \in \Delta_2}\right)$$
 is a Δ_2 -partial

homomorphism, i.e.,

for each
$$p \in \Delta_2$$
 and $h \in dom(p^X)$, $f^{ar(p)}(h) \in dom(p^Y)$ and $p^Y(f^{ar(p)}(h)) = f(p^X(h))$,

(ST4)
$$f: \left(X, \left(r^X\right)_{r \in \Delta_3}\right) \to \left(Y, \left(r^Y\right)_{r \in \Delta_3}\right)$$
 is a Δ_3 -relational

homomorphism, i.e., for each $r \in \Delta_3$ and $t \in r^X$, $f^{ar(r)}(t) \in r^Y$.

Application of the first approach

A prevariety \mathcal{V} in $\mathbf{Alg}(\sum)$ is a full subcategory consisting of all \sum -algebras closed under the formation of isomorphic copies, subalgebras and products.

Application of the first approach

A prevariety \mathcal{V} in $\mathbf{Alg}(\sum)$ is a full subcategory consisting of all \sum -algebras closed under the formation of isomorphic copies, subalgebras and products.

Similarly, a prevariety \mathcal{W} in $\Delta\text{-}\mathbf{STOP}$ is a full subcategory consisting of all $\Delta\text{-}$ structured topological spaces closed under the formation of isomorphic copies, substructures and products.

Application of the first approach

A prevariety \mathcal{V} in $\mathbf{Alg}(\sum)$ is a full subcategory consisting of all \sum -algebras closed under the formation of isomorphic copies, subalgebras and products.

Similarly, a prevariety \mathcal{W} in $\Delta\text{-}\mathbf{STOP}$ is a full subcategory consisting of all $\Delta\text{-}\mathrm{structured}$ topological spaces closed under the formation of isomorphic copies, substructures and products.

 $\mathcal V$ and $\mathcal W$ can be considered as concrete categories $(\mathcal V, |\ |)$ and $(\mathcal W, |\ |)$ with $|\ |: \mathcal V \to \mathbf{Set}$ and $|\ |\ |: \mathcal W \to \mathbf{Set}$.

Let $\overline{L}=(L,..)$ be a \mathcal{V} -object, and $\widetilde{L}=(L,...)$ a \mathcal{W} -object algebraic over \overline{L} in the sense that (AL1) o^L: $\overline{L}^{ar(o)} \to \overline{L}$ is a Σ -homomorphism for each $o \in \Delta_1$, (AL2) $\overline{dom(p^L)}$ is a Σ -subalgebra of $\overline{L}^{ar(p)}$, and p^L : $\overline{dom(p^L)} \to \overline{L}$ is a Σ -homomorphism for each $p \in \Delta_2$, (AL3) w^L : $\overline{L}^{ar(w)} \to \widetilde{L}$ is a Δ -STOP-morphism. Then $L^* = (\overline{L}, id_L, \widetilde{L})$ is a schizophrenic object for $(\mathcal{V}, |\cdot|)$ and $(\mathcal{W}, ||\cdot|)$, and so induces an adjunction

$$S_{L^*} \dashv T_{L^*} : \mathcal{V}^{op} \to \mathcal{W}.$$

If $\widetilde{L}=(L,...)$ is algebraic over a Σ -algebra \overline{L} , then the theorem establishes a dual adjunction between the smallest prevariety in $\mathbf{Alg}(\Sigma)$ including \overline{L} (denoted $\mathcal{V}\left(\overline{L}\right)$) and the smallest prevariety in Δ -STOP including \widetilde{L} (denoted $\mathcal{W}\left(\widetilde{L}\right)$).

If $\widetilde{L}=(L,...)$ is algebraic over a Σ -algebra \overline{L} , then the theorem establishes a dual adjunction between the smallest prevariety in $\mathbf{Alg}(\Sigma)$ including \overline{L} (denoted $\mathcal{V}\left(\overline{L}\right)$) and the smallest prevariety in Δ -STOP including \widetilde{L} (denoted $\mathcal{W}\left(\widetilde{L}\right)$).

Additionally, if \sum is finatary, L is finite and τ^L is the discrete topology, then this adjunction restricts to a dual adjunction between $\mathcal{V}\left(\overline{L}\right)$ and the f.s.c. of $\Delta\text{-}\mathbf{STOP}$ of all objects isomorphic to closed substructures of direct powers of \widetilde{L} .

Application of the second approach

Definition

An \overline{L} -topological space is a pair $(X, \overline{\tau})$ of a set X and a subalgebra $\overline{\tau}$ of \overline{L}^X .

Application of the second approach

Definition

An \overline{L} -topological space is a pair $(X, \overline{\tau})$ of a set X and a subalgebra $\overline{\tau}$ of \overline{L}^X .

 \overline{L} -**Top** is the category of \overline{L} -topological spaces with morphisms $f:(X,\overline{\tau})\to (Y,\overline{\nu})$ all functions $f:X\to Y$ with the property that $\mu\circ h\in \tau$ for all $\mu\in \nu$.

Application of the second approach

Definition

An \overline{L} -topological space is a pair $(X, \overline{\tau})$ of a set X and a subalgebra $\overline{\tau}$ of \overline{L}^X .

 \overline{L} -**Top** is the category of \overline{L} -topological spaces with morphisms $f:(X,\overline{\tau})\to (Y,\overline{\nu})$ all functions $f:X\to Y$ with the property that $\mu\circ h\in \tau$ for all $\mu\in \nu$.

Corollary

Any prevariety $\mathcal V$ in $\mathbf{Alg}(\sum)$ including $\overline L$ gives rise to an adjunction

$$\overline{L}\Omega \dashv \overline{L}Pt: \mathcal{V}^{op} \rightarrow \overline{L}$$
-Top.

(i) A \sum -algebra \overline{A} is \overline{L} -spatial iff for any $a, b \in A$ with $a \neq b$, there exists a \sum -homomorphism $h : \overline{A} \to \overline{L}$ such that $h(a) \neq h(b)$.

- (i) A \sum -algebra \overline{A} is \overline{L} -spatial iff for any $a, b \in A$ with $a \neq b$, there exists a \sum -homomorphism $h : \overline{A} \to \overline{L}$ such that $h(a) \neq h(b)$.
- (ii) An \overline{L} -topological space $(X, \overline{\tau})$ is \overline{L} -sober iff for each Σ -homomorphism $h: \overline{\tau} \to \overline{L}$, there exists a unique $x \in X$ satisfying $h(\mu) = \mu(x)$ for all $\mu \in \tau$.

- (i) A \sum -algebra \overline{A} is \overline{L} -spatial iff for any $a, b \in A$ with $a \neq b$, there exists a \sum -homomorphism $h : \overline{A} \to \overline{L}$ such that $h(a) \neq h(b)$.
- (ii) An \overline{L} -topological space $(X, \overline{\tau})$ is \overline{L} -sober iff for each Σ -homomorphism $h : \overline{\tau} \to \overline{L}$, there exists a unique $x \in X$ satisfying $h(\mu) = \mu(x)$ for all $\mu \in \tau$.

Proposition

For any prevariety $\mathcal V$ in $\mathbf{Alg}(\sum)$ including $\overline L$, $\mathbf{SPA}(\mathcal V)=$ the f.s.c. of $\mathcal V$ of all $\overline L$ -spatial objects $=\mathcal V$ ($\overline L$) $\mathbf{SOBTop}(\mathcal V)\cong$ the f.s.c. of $\overline L$ -Top of all $\overline L$ -sober objects ($\overline L$ -SobTop).

Corollary

For any prevariety V in $\mathbf{Alg}(\sum)$ including \overline{L} , and for any prevariety W in $\Delta\text{-}\mathbf{STOP}$ including \widetilde{L} , if \widetilde{L} is algebraic over \overline{L} , then there exists an adjunction

$$S_{L^*}^* \dashv T_{L^*}^* : \overline{L}$$
-SobTop $\to \mathcal{W}$.

REFERENCES

- [1] G. M. Bergman, On coproducts in varieties, quasivarieties and prevarieties, Algebra Number Theory 3 (8) (2009), 847–879.
- [2] D. M. Clark and B. A. Davey, Natural Dualities for the Working Algebraist, Cambridge University Press, 1998.
- [3] M. Demirci, Fundamental duality of abstract categories and its applications, Fuzzy Sets and Syst. 256 (2014), 73-94.
- [4] M. Demirci, Stratified categorical fixed-basis fuzzy topological spaces and their duality, Fuzzy Sets and Syst. 267 (2015), 1-17.
- [5] M. Demirci, Stone and Priestley dualities as applications of fundamental categorical duality theorem, 9th Scandinavian Logic Symposium, Tampere, Finland, August 25-27, 2014, pp. 22-22.

- [6] M. Demirci, Applications of fundamental categorical duality theorem to L-fuzzy sets and separated M-valued sets, LINZ 2017, 37th Linz Seminar on Fuzzy Set Theory Enriched Category Theory and Related Topics, Bildungszentrum St.Magdalena, Linz, Austria, February 7-10, 2017, Abstracts, Editted by I. Stubbe, U. Höhle, S. Saminger-Platz, T. Vetterlein, pp. 11-14.
- [7] H. E. Porst and W. Tholen, Concrete dualities, in: H. Herrlich and H. E. Porst (Eds.), Category Theory at Work, Research and Expositions in Mathematics, Vol. 18, Heldermann Verlag, 1990. pp. 111-136.
- [8] S. A. Solovyov, Sobriety and spatiality in varieties of algebras, Fuzzy Sets Syst. 159 (2008) 2567-2585.

Outline
Dualities of concrete categories with schizophrenic objects
Fundamental Duality of Abstract Categories
The relations between two approaches
Applications to Universal Algebras

THANK YOU FOR YOUR ATTENDENCE