Algorithmic correspondence and canonicity for possibility semantics

Kentaro Yamamoto¹ and Zhiguang Zhao²

UC Berkeley, USA

TU Delft, the Netherlands

TACL, Prague, 26/06/2017

Possibility semantics

Possibility semantics

- a variant of standard Kripke semantics for modal logic
- motivation: partial possibilities vs total worlds
- constructive study of classical (modal) logic:
 - intuitionistic-style semantics: refinement relation
 - constructive completeness proofs
 - relation to constructive canonical extension

Existing works

Duality: Holliday 2016

Correspondence: Yamamoto 2016

• Canonicity: Holliday 2016

Possibility semantics

- possibility frame: $\mathbb{F} = (W, R, \sqsubseteq, RO(W, \sqsubseteq))$
- possibility model: $\mathbb{M} = (\mathbb{F}, V)$ where $V : \mathsf{Prop} \to \mathsf{RO}(W, \sqsubseteq)$
- refinement relation \sqsubseteq : partial order on W
- accessibility relation R: binary relation on W
- $RO(W, \sqsubseteq)$: set of admissible valuations
- intuition behind $RO(W, \sqsubseteq)$: subsets equal to their "double negation"

Possibility semantics

Satisfaction relation

- \mathbb{F} , V, $w \models p$ iff $w \in V(p)$;
- \mathbb{F} , V, $w \vDash \varphi \land \psi$ iff \mathbb{F} , V, $w \vDash \varphi$ and \mathbb{F} , V, $w \vDash \psi$;
- \mathbb{F} , $V, w \vDash \varphi \lor \psi$ iff $(\forall v \sqsubseteq w)(\exists u \sqsubseteq v)(\mathbb{F}, V, u \vDash \varphi \text{ or } \mathbb{F}, V, u \vDash \psi)$;
- \mathbb{F} , V, $w \vDash \varphi \rightarrow \psi$ iff $(\forall v \sqsubseteq w)(\mathbb{F}, V, v \vDash \varphi \Rightarrow \mathbb{F}, V, v \vDash \psi)$;
- \mathbb{F} , V, $w \models \neg \varphi$ iff $(\forall v \sqsubseteq w)(\mathbb{F}, V, v \nvDash \varphi)$;
- \mathbb{F} , V, $w \vDash \Box \varphi$ iff $\forall v (Rwv \Rightarrow \mathbb{F}, V, v \vDash \varphi)$.

Algebraic correspondence: from frames to algebras

$$\mathbb{B} \vDash \forall \vec{p}(\varphi(\vec{p})) \qquad \Leftrightarrow \quad \mathbb{F} \Vdash \varphi(\vec{p})$$

$$\updownarrow$$

$$\mathbb{B} \vDash \forall \vec{i} \mathsf{Pure}(\varphi(\vec{p})) \quad \Leftrightarrow \quad \mathbb{F} \Vdash \mathsf{FO}(\mathsf{Pure}(\varphi(\vec{p})))$$

- In the dual BAO of Kripke frames, nominals are interpreted as atoms.
- How about possibility semantics?

Dual algebras

Given $\mathbb{F} = (W, \sqsubseteq, R, RO(W, \sqsubseteq))$, the regular open dual BAO \mathbb{B}_{RO}

- \mathbb{B}_{RO} is a complete and completely additive BAO, but not necessarily atomic.
- lack of atomicity: what is the consequence in correspondence theory?

Nominals and their interpretations

Algebraic setting	Interpretation for nominals	Dually corresponding to
perfect	atoms	singletons
Boolean algebras		
perfect	complete	w ↑
distributive lattices	join-primes	
perfect	complete	Galois closure of singletons
general lattices	join-irreducibles	
constructive	closed elements	N.A.
canonical extensions		
complex algebras		regular open
of possibility frames		closures of singletons

Our results

- Correspondence results for inductive formulas over full possibility frames
- Correspondence results for inductive formulas over filter-descriptive possibility frames
- Constructive canonicity-via-correspondence