Preliminaries Finite Labeled Forests Forest Products From finite MTL-algebras to Forest Products The duality Theorem

Finite MTL-algebras

J.L. Castiglioni W. J. Zuluaga Botero

Universidad Nacional de La Plata

CONICET

TACL 2017 Prague, June 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A semihoop is an algebra $\mathbf{A} = (A, \cdot, \rightarrow, \wedge, \vee, 1)$ of type (2, 2, 2, 2, 0) such that (A, \wedge, \vee) is lattice with 1 as greatest element, $(A, \cdot, 1)$ is a commutative monoid and for every $x, y, z \in A$:

A semihoop is an algebra $\mathbf{A} = (A, \cdot, \rightarrow, \wedge, \vee, 1)$ of type (2, 2, 2, 2, 0) such that (A, \wedge, \vee) is lattice with 1 as greatest element, $(A, \cdot, 1)$ is a commutative monoid and for every $x, y, z \in A$: (i) $xy \leq z$ if and only if $x \leq y \rightarrow z$, and

A semihoop is an algebra $\mathbf{A} = (A, \cdot, \rightarrow, \wedge, \vee, 1)$ of type (2, 2, 2, 2, 0) such that (A, \wedge, \vee) is lattice with 1 as greatest element, $(A, \cdot, 1)$ is a commutative monoid and for every $x, y, z \in A$: (i) $xy \leq z$ if and only if $x \leq y \rightarrow z$, and (ii) $(x \rightarrow y) \vee (y \rightarrow x) = 1$.

A semihoop is an algebra $\mathbf{A} = (A, \cdot, \rightarrow, \wedge, \vee, 1)$ of type (2, 2, 2, 2, 0) such that (A, \wedge, \vee) is lattice with 1 as greatest element, $(A, \cdot, 1)$ is a commutative monoid and for every $x, y, z \in A$: (i) $xy \leq z$ if and only if $x \leq y \rightarrow z$, and (ii) $(x \rightarrow y) \vee (y \rightarrow x) = 1$. A semihoop \mathbf{A} is bounded if $(A, \wedge, \vee, 1)$ has a least element 0.

A semihoop is an algebra $\mathbf{A} = (A, \cdot, \rightarrow, \wedge, \vee, 1)$ of type (2, 2, 2, 2, 0) such that (A, \wedge, \vee) is lattice with 1 as greatest element, $(A, \cdot, 1)$ is a commutative monoid and for every $x, y, z \in A$: (i) $xy \leq z$ if and only if $x \leq y \rightarrow z$, and (ii) $(x \rightarrow y) \vee (y \rightarrow x) = 1$. A semihoop \mathbf{A} is bounded if $(A, \wedge, \vee, 1)$ has a least element 0. A *MTL-algebra* is a bounded semihoop.

A semihoop is an algebra $\mathbf{A} = (A, \cdot, \rightarrow, \wedge, \vee, 1)$ of type (2, 2, 2, 2, 0) such that (A, \wedge, \vee) is lattice with 1 as greatest element, $(A, \cdot, 1)$ is a commutative monoid and for every $x, y, z \in A$: (i) $xy \leq z$ if and only if $x \leq y \rightarrow z$, and (ii) $(x \rightarrow y) \vee (y \rightarrow x) = 1$. A semihoop \mathbf{A} is bounded if $(A, \wedge, \vee, 1)$ has a least element 0. A *MTL-algebra* is a bounded semihoop.A MTL-algebra \mathbf{A} is a MTL chain if its semihoop reduct is totally ordered.

A semihoop is an algebra $\mathbf{A} = (A, \cdot, \rightarrow, \wedge, \vee, 1)$ of type (2, 2, 2, 2, 0) such that (A, \wedge, \vee) is lattice with 1 as greatest element, $(A, \cdot, 1)$ is a commutative monoid and for every $x, y, z \in A$: (i) $xy \leq z$ if and only if $x \leq y \rightarrow z$, and (ii) $(x \rightarrow y) \vee (y \rightarrow x) = 1$. A semihoop \mathbf{A} is bounded if $(A, \wedge, \vee, 1)$ has a least element 0. A *MTL-algebra* is a bounded semihoop.A MTL-algebra \mathbf{A} is a MTL chain if its semihoop reduct is totally ordered.

Let $I = (I, \leq)$ be a totally ordered set and $\mathcal{F} = {\mathbf{A}_i}_{i \in I}$ a family of semihoops.

Let $I = (I, \leq)$ be a totally ordered set and $\mathcal{F} = \{\mathbf{A}_i\}_{i \in I}$ a family of semihoops. Let us assume that the members of \mathcal{F} share (up to isomorphism) the same neutral element; i.e, for every $i \neq j$, $A_i \cap A_j = \{1\}$.

Let $\mathbf{I} = (I, \leq)$ be a totally ordered set and $\mathcal{F} = {\mathbf{A}_i}_{i \in I}$ a family of semihoops. Let us assume that the members of \mathcal{F} share (up to isomorphism) the same neutral element; i.e, for every $i \neq j$, $A_i \cap A_j = {1}$. The ordinal sum of the family \mathcal{F} , is the structure $\bigoplus_{i \in I} A_i$ whose universe is $\bigcup_{i \in I} A_i$ and whose operations are defined as:

Let $\mathbf{I} = (I, \leq)$ be a totally ordered set and $\mathcal{F} = {\mathbf{A}_i}_{i \in I}$ a family of semihoops. Let us assume that the members of \mathcal{F} share (up to isomorphism) the same neutral element; i.e, for every $i \neq j$, $A_i \cap A_j = {1}$. The ordinal sum of the family \mathcal{F} , is the structure $\bigoplus_{i \in I} A_i$ whose universe is $\bigcup_{i \in I} A_i$ and whose operations are defined as:

$$x \cdot y = \begin{cases} x \cdot_i y, & \text{if } x, y \in A_i \\ y, & \text{if } x \in A_i, \text{ and } y \in A_j - \{1\}, \text{ with } i > j, \\ x, & \text{if } x \in A_i - \{1\}, \text{ and } y \in A_j, \text{ with } i < j. \end{cases}$$

Let $\mathbf{I} = (I, \leq)$ be a totally ordered set and $\mathcal{F} = {\mathbf{A}_i}_{i \in I}$ a family of semihoops. Let us assume that the members of \mathcal{F} share (up to isomorphism) the same neutral element; i.e, for every $i \neq j$, $A_i \cap A_j = \{1\}$. The ordinal sum of the family \mathcal{F} , is the structure $\bigoplus_{i \in I} A_i$ whose universe is $\bigcup_{i \in I} A_i$ and whose operations are defined as:

$$\begin{aligned} x \cdot y &= \begin{cases} x \cdot_i y, & \text{if } x, y \in A_i \\ y, & \text{if } x \in A_i, \text{ and } y \in A_j - \{1\}, \text{ with } i > j, \\ x, & \text{if } x \in A_i - \{1\}, \text{ and } y \in A_j, \text{ with } i < j. \end{cases} \\ x \to y &= \begin{cases} x \to_i y, & \text{if } x, y \in A_i \\ y, & \text{if } x \in A_i, \text{ and } y \in A_j, \text{ with } i > j, \\ 1, & \text{if } x \in A_i - \{1\}, \text{ and } y \in A_j, \text{ with } i < j. \end{cases} \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $\mathbf{I} = (I, \leq)$ be a totally ordered set and $\mathcal{F} = {\mathbf{A}_i}_{i \in I}$ a family of semihoops. Let us assume that the members of \mathcal{F} share (up to isomorphism) the same neutral element; i.e., for every $i \neq j$, $A_i \cap A_j = \{1\}$. The ordinal sum of the family \mathcal{F} , is the structure $\bigoplus_{i \in I} A_i$ whose universe is $\bigcup_{i \in I} A_i$ and whose operations are defined as:

$$\begin{aligned} x \cdot y &= \begin{cases} x \cdot_i y, & \text{if } x, y \in A_i \\ y, & \text{if } x \in A_i, \text{ and } y \in A_j - \{1\}, \text{ with } i > j, \\ x, & \text{if } x \in A_i - \{1\}, \text{ and } y \in A_j, \text{ with } i < j. \end{cases} \\ x \to y &= \begin{cases} x \to_i y, & \text{if } x, y \in A_i \\ y, & \text{if } x \in A_i, \text{ and } y \in A_j, \text{ with } i > j, \\ 1, & \text{if } x \in A_i - \{1\}, \text{ and } y \in A_j, \text{ with } i < j. \end{cases} \end{aligned}$$

where the subindex *i* denotes the application of operations in A_i .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Definition

A totally ordered MTL-algebra is archimedean if for every $x \le y < 1$, there exists $n \in \mathbb{N}$ such that $y^n \le x$.

Definition

A totally ordered MTL-algebra is archimedean if for every $x \le y < 1$, there exists $n \in \mathbb{N}$ such that $y^n \le x$.

Corollary

For any finite nontrivial MTL-chain M, there are equivalent:

- i. M is archimedean,
- ii. M is simple, and
- iii M does not have nontrivial idempotent elements.

• A forest is a poset X such that for every $a \in X$ the set

$$\downarrow a = \{x \in X \mid x \le a\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is a totally ordered subset of X.

• A forest is a poset X such that for every $a \in X$ the set

$$\downarrow a = \{x \in X \mid x \le a\}$$

is a totally ordered subset of X.

 A p-morphism is a morphism of posets *f* : *X* → *Y* satisfying the following property:

• A forest is a poset X such that for every $a \in X$ the set

$$\downarrow a = \{x \in X \mid x \le a\}$$

is a totally ordered subset of X.

 A p-morphism is a morphism of posets f : X → Y satisfying the following property: Given x ∈ X and y ∈ Y such that y ≤ f(x) there exists z ∈ X such that z ≤ x and f(z) = y.

• A forest is a poset X such that for every $a \in X$ the set

$$\downarrow a = \{x \in X \mid x \le a\}$$

is a totally ordered subset of X.

 A p-morphism is a morphism of posets f : X → Y satisfying the following property: Given x ∈ X and y ∈ Y such that y ≤ f(x) there exists z ∈ X such that z ≤ x and f(z) = y.

A labeled forest is a function *I* : *F* → 𝔅, such that *F* is a forest and the collection of archimedean MTL-chains {*I*(*i*)}_{*i*∈*F*} (up to isomorphism) shares the same neutral element 1.

A labeled forest is a function *I* : *F* → 𝔅, such that *F* is a forest and the collection of archimedean MTL-chains {*I*(*i*)}_{*i*∈*F*} (up to isomorphism) shares the same neutral element 1.

• A morphism $I \to m$ is a pair (φ, \mathcal{F}) such that

- A labeled forest is a function *I* : *F* → 𝔅, such that *F* is a forest and the collection of archimedean MTL-chains {*I*(*i*)}_{*i*∈*F*} (up to isomorphism) shares the same neutral element 1.
- A morphism *I* → *m* is a pair (φ, F) such that φ : F → G is a p-morphism and

- A labeled forest is a function *I* : *F* → 𝔅, such that *F* is a forest and the collection of archimedean MTL-chains {*I*(*i*)}_{*i*∈*F*} (up to isomorphism) shares the same neutral element 1.
- A morphism *l* → *m* is a pair (φ, F) such that φ : F → G is a p-morphism and F = {f_x}_{x∈F} is a family of injective morphisms f_x : (m ∘ φ)(x) → *l*(x) of MTL-algebras.

- A labeled forest is a function *I* : *F* → 𝔅, such that *F* is a forest and the collection of archimedean MTL-chains {*I*(*i*)}_{*i*∈*F*} (up to isomorphism) shares the same neutral element 1.
- A morphism *l* → *m* is a pair (φ, F) such that φ : F → G is a p-morphism and F = {f_x}_{x∈F} is a family of injective morphisms f_x : (m ∘ φ)(x) → l(x) of MTL-algebras.

 Let (φ, F) : I → m and (ψ, G) : m → n be two morphism between labeled forests.

- A labeled forest is a function *I* : *F* → 𝔅, such that *F* is a forest and the collection of archimedean MTL-chains {*I*(*i*)}_{*i*∈*F*} (up to isomorphism) shares the same neutral element 1.
- A morphism *l* → *m* is a pair (φ, F) such that φ : F → G is a p-morphism and F = {f_x}_{x∈F} is a family of injective morphisms f_x : (m ∘ φ)(x) → *l*(x) of MTL-algebras.

 Let (φ, F) : I → m and (ψ, G) : m → n be two morphism between labeled forests. (φ, F)(ψ, G) = (ψφ, M),

- A labeled forest is a function *I* : *F* → 𝔅, such that *F* is a forest and the collection of archimedean MTL-chains {*I*(*i*)}_{*i*∈*F*} (up to isomorphism) shares the same neutral element 1.
- A morphism *l* → *m* is a pair (φ, F) such that φ : F → G is a p-morphism and F = {f_x}_{x∈F} is a family of injective morphisms f_x : (m ∘ φ)(x) → *l*(x) of MTL-algebras.
- Let (φ, F) : I → m and (ψ, G) : m → n be two morphism between labeled forests. (φ, F)(ψ, G) = (ψφ, M), where M is the family whose elements are the MTL-morphims f_xg_{φ(x)} : n(ψφ)(x) → I(x) for every x ∈ F.

Forest Products

Definition

Forest Products

Definition

Let $\mathbf{F} = (F, \leq)$ be a forest and let $\{\mathbf{M}_i\}_{i \in \mathbf{F}}$ a collection of MTL-chains such that, up to isomorphism, all they share the same neutral element 1. If $(\bigcup_{i \in \mathbf{F}} \mathbf{M}_i)^F$ denotes the set of functions $h : F \to \bigcup_{i \in \mathbf{F}} \mathbf{M}_i$ such that $h(i) \in \mathbf{M}_i$ for all $i \in \mathbf{F}$, the forest product $\bigotimes_{i \in \mathbf{F}} \mathbf{M}_i$ is the algebra \mathbf{M} defined as follows:

(1) The elements of **M** are the $h \in (\bigcup_{i \in \mathbf{F}} \mathbf{M}_i)^F$ such that, for all $i \in \mathbf{F}$ if $h(i) \neq 0_i$ then for all j < i, h(j) = 1.

Forest Products

Definition

- (1) The elements of **M** are the $h \in (\bigcup_{i \in \mathbf{F}} \mathbf{M}_i)^F$ such that, for all $i \in \mathbf{F}$ if $h(i) \neq 0_i$ then for all j < i, h(j) = 1.
- (2) The monoid operation and the lattice operations are defined pointwise.

(日) (同) (三) (三) (三) (○) (○)

Forest Products

Definition

- (1) The elements of **M** are the $h \in (\bigcup_{i \in \mathbf{F}} \mathbf{M}_i)^F$ such that, for all $i \in \mathbf{F}$ if $h(i) \neq 0_i$ then for all j < i, h(j) = 1.
- (2) The monoid operation and the lattice operations are defined pointwise.
- (3) The residual is defined as follows:

(日) (同) (三) (三) (三) (○) (○)

Forest Products

Definition

- (1) The elements of **M** are the $h \in (\bigcup_{i \in \mathbf{F}} \mathbf{M}_i)^F$ such that, for all $i \in \mathbf{F}$ if $h(i) \neq 0_i$ then for all j < i, h(j) = 1.
- (2) The monoid operation and the lattice operations are defined pointwise.
- (3) The residual is defined as follows:

$$(h o g)(i) = \left\{ egin{array}{ll} h(i) o_i g(i), & ext{if for all } j < i, \ h(j) \leq_j g(j) \\ 0_i & ext{otherwise} \end{array}
ight.$$

Forest Products

Definition

Let $\mathbf{F} = (F, \leq)$ be a forest and let $\{\mathbf{M}_i\}_{i \in \mathbf{F}}$ a collection of MTL-chains such that, up to isomorphism, all they share the same neutral element 1. If $(\bigcup_{i \in \mathbf{F}} \mathbf{M}_i)^F$ denotes the set of functions $h : F \to \bigcup_{i \in \mathbf{F}} \mathbf{M}_i$ such that $h(i) \in \mathbf{M}_i$ for all $i \in \mathbf{F}$, the forest product $\bigotimes_{i \in \mathbf{F}} \mathbf{M}_i$ is the algebra \mathbf{M} defined as follows:

- (1) The elements of **M** are the $h \in (\bigcup_{i \in \mathbf{F}} \mathbf{M}_i)^F$ such that, for all $i \in \mathbf{F}$ if $h(i) \neq 0_i$ then for all j < i, h(j) = 1.
- (2) The monoid operation and the lattice operations are defined pointwise.
- (3) The residual is defined as follows:

$$(h o g)(i) = \left\{ egin{array}{ll} h(i) o_i g(i), & ext{if for all } j < i, \ h(j) \leq_j g(j) \\ 0_i & ext{otherwise} \end{array}
ight.$$

where de subindex *i* denotes the application of operations and of order in M_i .

Forest Products are Sheaves

In every poset **F** the collection $\mathbb{D}(\mathbf{F})$ of downsets of **F** defines a topology over *F* called the *Alexandrov topology* on **F**.

Forest Products are Sheaves

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In every poset **F** the collection $\mathbb{D}(\mathbf{F})$ of downsets of **F** defines a topology over *F* called the *Alexandrov topology* on **F**. Let $S, T \in \mathbb{D}(\mathbf{F})$ such that $S \subseteq T$ and $\{\mathbf{M}_i\}_{i \in \mathbf{F}}$ be a collection of MTL-chains.

Forest Products are Sheaves

In every poset **F** the collection $\mathbb{D}(\mathbf{F})$ of downsets of **F** defines a topology over *F* called the *Alexandrov topology* on **F**. Let $S, T \in \mathbb{D}(\mathbf{F})$ such that $S \subseteq T$ and $\{\mathbf{M}_i\}_{i \in \mathbf{F}}$ be a collection of MTL-chains. Observe that if $h \in \bigotimes_{i \in \mathbf{T}} \mathbf{M}_i$ then the restriction $h|_S$ is an element of $\bigotimes_{i \in \mathbf{S}} \mathbf{M}_i$,

In every poset **F** the collection $\mathbb{D}(\mathbf{F})$ of downsets of **F** defines a topology over *F* called the *Alexandrov topology* on **F**. Let $S, T \in \mathbb{D}(\mathbf{F})$ such that $S \subseteq T$ and $\{\mathbf{M}_i\}_{i \in \mathbf{F}}$ be a collection of MTL-chains. Observe that if $h \in \bigotimes_{i \in \mathbf{T}} \mathbf{M}_i$ then the restriction $h|_S$ is an element of $\bigotimes_{i \in \mathbf{S}} \mathbf{M}_i$, so the assignment that sends $T \in \mathbb{D}(\mathbf{F})$ to $\bigotimes_{i \in \mathbf{T}} \mathbf{M}_i$ defines a presheaf $\mathcal{P} : \mathbb{D}(\mathbf{F})^{op} \to \mathcal{MTL}$.

In every poset **F** the collection $\mathbb{D}(\mathbf{F})$ of downsets of **F** defines a topology over *F* called the *Alexandrov topology* on **F**. Let $S, T \in \mathbb{D}(\mathbf{F})$ such that $S \subseteq T$ and $\{\mathbf{M}_i\}_{i \in \mathbf{F}}$ be a collection of MTL-chains. Observe that if $h \in \bigotimes_{i \in \mathbf{T}} \mathbf{M}_i$ then the restriction $h|_S$ is an element of $\bigotimes_{i \in \mathbf{S}} \mathbf{M}_i$, so the assignment that sends $T \in \mathbb{D}(\mathbf{F})$ to $\bigotimes_{i \in \mathbf{T}} \mathbf{M}_i$ defines a presheaf $\mathcal{P} : \mathbb{D}(\mathbf{F})^{op} \to \mathcal{MTL}$. Let *S* be a proper downset of **F** and consider

$$X_{\mathcal{S}} := \{h \in \bigotimes_{i \in \mathbf{F}} \mathbf{M}_i \mid h|_{\mathcal{S}} = 1\}$$

In every poset **F** the collection $\mathbb{D}(\mathbf{F})$ of downsets of **F** defines a topology over *F* called the *Alexandrov topology* on **F**. Let $S, T \in \mathbb{D}(\mathbf{F})$ such that $S \subseteq T$ and $\{\mathbf{M}_i\}_{i \in \mathbf{F}}$ be a collection of MTL-chains. Observe that if $h \in \bigotimes_{i \in \mathbf{T}} \mathbf{M}_i$ then the restriction $h|_S$ is an element of $\bigotimes_{i \in \mathbf{S}} \mathbf{M}_i$, so the assignment that sends $T \in \mathbb{D}(\mathbf{F})$ to $\bigotimes_{i \in \mathbf{T}} \mathbf{M}_i$ defines a presheaf $\mathcal{P} : \mathbb{D}(\mathbf{F})^{op} \to \mathcal{MTL}$. Let *S* be a proper downset of **F** and consider

$$X_{\mathcal{S}} := \{h \in \bigotimes_{i \in \mathbf{F}} \mathbf{M}_i \mid h|_{\mathcal{S}} = 1\}$$

Lemma

Let **F** be a forest and $\{M_i\}_{i\in F}$ a collection of MTL-chains. Then, for every $S \in \mathbb{D}(F)$

$$\mathcal{P}(S) \cong \mathcal{P}(F)/X_S.$$

Let $\mathbf{Shv}(\mathbf{P})$ be the category of sheaves over the Alexandrov space $(P, \mathbb{D}(\mathbf{P}))$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $\mathbf{Shv}(\mathbf{P})$ be the category of sheaves over the Alexandrov space $(P, \mathbb{D}(\mathbf{P}))$.

Lemma

Let **F** be a forest and $\{\mathbf{M}_i\}_{i \in \mathbf{F}}$ a collection of MTL-chains. Then, the presheaf $\mathcal{P} : \mathbb{D}(\mathbf{P})^{op} \to \mathcal{MTL}, \ \mathcal{P}(T) = \bigotimes_{i \in \mathbf{T}} \mathbf{M}_i$ is a MTL-algebra in Shv(**P**).

Let $\mathbf{Shv}(\mathbf{P})$ be the category of sheaves over the Alexandrov space $(P, \mathbb{D}(\mathbf{P}))$.

Lemma

Let **F** be a forest and $\{\mathbf{M}_i\}_{i\in \mathbf{F}}$ a collection of MTL-chains. Then, the presheaf $\mathcal{P} : \mathbb{D}(\mathbf{P})^{op} \to \mathcal{MTL}, \ \mathcal{P}(T) = \bigotimes_{i\in \mathbf{T}} \mathbf{M}_i$ is a MTL-algebra in Shv(**P**).

Lemma

Let **F** be a forest and $\{\mathbf{M}_i\}_{i \in \mathbf{F}}$ a collection of MTL-chains. For every $i \in F$, $\mathcal{P}_i \cong \mathcal{P}(\downarrow i) \cong \bigoplus_{j \leq i} \mathbf{M}_j$ in \mathcal{MTL} .

Let $\mathbf{Shv}(\mathbf{P})$ be the category of sheaves over the Alexandrov space $(P, \mathbb{D}(\mathbf{P}))$.

Lemma

Let **F** be a forest and $\{\mathbf{M}_i\}_{i\in \mathbf{F}}$ a collection of MTL-chains. Then, the presheaf $\mathcal{P} : \mathbb{D}(\mathbf{P})^{op} \to \mathcal{MTL}, \ \mathcal{P}(T) = \bigotimes_{i\in \mathbf{T}} \mathbf{M}_i$ is a MTL-algebra in Shv(**P**).

Lemma

Let **F** be a forest and $\{\mathbf{M}_i\}_{i \in \mathbf{F}}$ a collection of MTL-chains. For every $i \in F$, $\mathcal{P}_i \cong \mathcal{P}(\downarrow i) \cong \bigoplus_{j \leq i} \mathbf{M}_j$ in \mathcal{MTL} .

Corollary

Let **F** be a forest and $\{\mathbf{M}_i\}_{i \in \mathbf{F}}$ a collection of MTL-chains. Then \mathcal{P} is a sheaf of MTL-chains.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Let $I : \mathbf{F} \to \mathfrak{S}$, $m : \mathbf{G} \to \mathfrak{S}$ be finite labeled forests and $(\varphi, \mathcal{F}) : I \to m$ be a morphism of finite labeled forests.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Let $I : \mathbf{F} \to \mathfrak{S}$, $m : \mathbf{G} \to \mathfrak{S}$ be finite labeled forests and $(\varphi, \mathcal{F}) : I \to m$ be a morphism of finite labeled forests.

•
$$\gamma: \bigotimes_{k \in \varphi(F)} m(k) \to \bigotimes_{i \in F} (m \circ \varphi)(i)$$
 defined as

Let $I : \mathbf{F} \to \mathfrak{S}$, $m : \mathbf{G} \to \mathfrak{S}$ be finite labeled forests and $(\varphi, \mathcal{F}) : I \to m$ be a morphism of finite labeled forests.

• $\gamma: \bigotimes_{k \in \varphi(F)} m(k) \to \bigotimes_{i \in \mathbf{F}} (m \circ \varphi)(i)$ defined as

$$F \xrightarrow{\varphi} \varphi(F) \xrightarrow{h} \bigcup_{i \in \mathbf{F}} (m \circ \varphi)(i)$$

Let $I : \mathbf{F} \to \mathfrak{S}$, $m : \mathbf{G} \to \mathfrak{S}$ be finite labeled forests and $(\varphi, \mathcal{F}) : I \to m$ be a morphism of finite labeled forests.

• $\gamma: \bigotimes_{k \in \varphi(F)} m(k) \to \bigotimes_{i \in \mathbf{F}} (m \circ \varphi)(i)$ defined as

$$F \xrightarrow{\varphi} \varphi(F) \xrightarrow{h} \bigcup_{i \in \mathbf{F}} (m \circ \varphi)(i)$$

The family *F* induces a map α : ⊗_{i∈F}(m ∘ φ)(i) → ⊗_{i∈F} l(i) defined as α(g)(i) = f_i(g(i)) for every i ∈ F.

Let $I : \mathbf{F} \to \mathfrak{S}$, $m : \mathbf{G} \to \mathfrak{S}$ be finite labeled forests and $(\varphi, \mathcal{F}) : I \to m$ be a morphism of finite labeled forests.

• $\gamma: \bigotimes_{k \in \varphi(F)} m(k) \to \bigotimes_{i \in \mathbf{F}} (m \circ \varphi)(i)$ defined as

$$F \xrightarrow{\varphi} \varphi(F) \xrightarrow{h} \bigcup_{i \in \mathbf{F}} (m \circ \varphi)(i)$$

The family *F* induces a map α : ⊗_{i∈F}(m ∘ φ)(i) → ⊗_{i∈F} l(i) defined as α(g)(i) = f_i(g(i)) for every i ∈ F.

$$\mathcal{P}_m(\mathbf{G}) \xrightarrow{\beta} \bigotimes_{k \in \varphi(F)} m(k) \xrightarrow{\alpha \gamma} \mathcal{P}_l(\mathbf{F})$$

Let $I : \mathbf{F} \to \mathfrak{S}$, $m : \mathbf{G} \to \mathfrak{S}$ be finite labeled forests and $(\varphi, \mathcal{F}) : I \to m$ be a morphism of finite labeled forests.

• $\gamma: \bigotimes_{k \in \varphi(F)} m(k) \to \bigotimes_{i \in \mathbf{F}} (m \circ \varphi)(i)$ defined as

$$F \xrightarrow{\varphi} \varphi(F) \xrightarrow{h} \bigcup_{i \in \mathbf{F}} (m \circ \varphi)(i)$$

The family *F* induces a map α : ⊗_{i∈F}(m ∘ φ)(i) → ⊗_{i∈F} l(i) defined as α(g)(i) = f_i(g(i)) for every i ∈ F.

$$\mathcal{P}_m(\mathbf{G}) \xrightarrow{\beta} \bigotimes_{k \in \varphi(F)} m(k) \xrightarrow{\alpha \gamma} \mathcal{P}_l(\mathbf{F})$$

where $\mathcal{P}_m(G) = \bigotimes_{k \in \mathbf{G}} m(k)$, $\mathcal{P}_l(\mathbf{F}) = \bigotimes_{i \in \mathbf{F}} l(i)$ and $\beta : \mathcal{P}_m(G) \to \bigotimes_{k \in \varphi(F)} m(k)$ is the restriction of $\mathcal{P}_m(G)$ to $\varphi(\mathbf{F})$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

From finite Forest Products to MTL-algebras

Theorem

The assignments $I \mapsto \mathcal{P}_{I}(F)$ and $(\varphi, \mathcal{F}) \mapsto \alpha \gamma \beta$ define a contravariant functor

$\mathcal{H}: f\mathcal{LF} \to f\mathcal{MTL}.$

Let us consider the poset of idempotent elements of a MTL-algebra M,

$$\mathcal{I}(M) := \{ x \in M \mid x^2 = x \}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let us consider the poset of idempotent elements of a MTL-algebra M,

$$\mathcal{I}(M) := \{ x \in M \mid x^2 = x \}.$$

If F_M denotes the subposet of join irreducible elements of $\mathcal{I}(M)$, then

Let us consider the poset of idempotent elements of a MTL-algebra M,

$$\mathcal{I}(M) := \{ x \in M \mid x^2 = x \}.$$

If F_M denotes the subposet of join irreducible elements of $\mathcal{I}(M)$, then

Proposition

The posets $\operatorname{Spec}(M)^{op}$ and F_M are isomorphic.

Let us consider the poset of idempotent elements of a MTL-algebra M,

$$\mathcal{I}(M) := \{ x \in M \mid x^2 = x \}.$$

If F_M denotes the subposet of join irreducible elements of $\mathcal{I}(M)$, then

Proposition

The posets $\operatorname{Spec}(M)^{op}$ and F_M are isomorphic.

Corollary

For every finite MTL-algebra M, the poset F_M is a finite forest.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Lemma

Let *M* be a finite *MTL*-algebra and $e \in F_M$. Then $M/\uparrow e$ is archimedean if and only if $e \in m(M)$.

Lemma

Let M be a finite MTL-algebra and $e \in F_M$. Then $M/\uparrow e$ is archimedean if and only if $e \in m(M)$.

Lemma

Let *M* be a *MTL*-algebra and $e \in F_M$. Then, there exists a unique $a_e \in F_M \cup \{0\}$ such that $a_e \prec e$.

Lemma

Let M be a finite MTL-algebra and $e \in F_M$. Then $M/\uparrow e$ is archimedean if and only if $e \in m(M)$.

Lemma

Let *M* be a *MTL*-algebra and $e \in F_M$. Then, there exists a unique $a_e \in F_M \cup \{0\}$ such that $a_e \prec e$.

Lemma

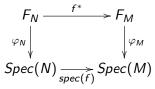
Let M be a finite MTL-algebra, then for every $e \in F_M$, $\uparrow a_e / \uparrow e$ is an archimedean MTL chain.

Let $f : M \to N$ be a morphism of finite MTL-algebras.

Let $f : M \to N$ be a morphism of finite MTL-algebras.

Lemma

Let M and N be finite MTL-algebras and $f : M \to N$ a MTL-algebra morphism. There exists a unique p-morphism $f^* : F_N \to F_M$ such that the diagram



commutes.

Lemma

Let M and N be finite MTL-algebras and $f : M \to N$ be a MTL-algebra morphism. Then, for every $e \in F_N$, f determines a morphism $\dot{f}_e :\uparrow a_{f^*(e)} \to\uparrow a_e$ such that exists a unique MTL-algebra morphism $f_e :\uparrow a_{f^*(e)} /\uparrow f^*(e) \to\uparrow a_e /\uparrow e$ which makes the diagram

commutes.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

From finite MTL-algebras to Forest Products

• Let *M* be a finite MTL-algebra and consider the function

$$I_M: F_M \to \mathfrak{S}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

defined as $I_M(e) = \uparrow a_e / \uparrow e$.

• Let *M* be a finite MTL-algebra and consider the function

$$I_M:F_M\to\mathfrak{S}$$

defined as $I_M(e) = \uparrow a_e / \uparrow e$.

 Let f : M → N be a MTL-morphism between finite MTL-algebras and F_f = {f_e}_{e∈F_N}.

• Let *M* be a finite MTL-algebra and consider the function

$$I_M:F_M\to\mathfrak{S}$$

defined as $I_M(e) = \uparrow a_e / \uparrow e$.

 Let f : M → N be a MTL-morphism between finite MTL-algebras and F_f = {f_e}_{e∈F_N}.

Corollary

Let M and N be finite MTL-algebras and $f : M \to N$ a MTL-algebra morphism. Then the pair (f^*, \mathcal{F}_f) is a morphism between the labeled forests I_N and I_M .

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

• Let *M* be a finite MTL-algebra and consider the function

$$I_M: F_M \to \mathfrak{S}$$

defined as $I_M(e) = \uparrow a_e / \uparrow e$.

 Let f : M → N be a MTL-morphism between finite MTL-algebras and F_f = {f_e}_{e∈F_N}.

Corollary

Let M and N be finite MTL-algebras and $f : M \to N$ a MTL-algebra morphism. Then the pair (f^*, \mathcal{F}_f) is a morphism between the labeled forests I_N and I_M .

Theorem

The assignments $M \mapsto I_M$ and $f \mapsto (f^*, \mathcal{F}_f)$ define a contravariant functor

$$\mathcal{G}: f\mathcal{MTL} \to f\mathcal{LF}.$$

Proposition

The functor \mathcal{G} is left adjoint to the functor \mathcal{H} . Moreover, \mathcal{G} is full and faithful.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Proposition

The functor \mathcal{G} is left adjoint to the functor \mathcal{H} . Moreover, \mathcal{G} is full and faithful.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

Let M be a finite MTL-algebra. An element $e \in \mathcal{I}(M)^*$ is a local unit if ex = x for every $x \leq e$.

Proposition

The functor \mathcal{G} is left adjoint to the functor \mathcal{H} . Moreover, \mathcal{G} is full and faithful.

Definition

Let M be a finite MTL-algebra. An element $e \in \mathcal{I}(M)^*$ is a local unit if ex = x for every $x \leq e$.

Lemma

Let M be a finite MTL-algebra and $e \in \mathcal{I}(M)^*$. The following are equivalent:

Proposition

The functor \mathcal{G} is left adjoint to the functor \mathcal{H} . Moreover, \mathcal{G} is full and faithful.

Definition

Let M be a finite MTL-algebra. An element $e \in \mathcal{I}(M)^*$ is a local unit if ex = x for every $x \leq e$.

Lemma

Let M be a finite MTL-algebra and $e \in \mathcal{I}(M)^*$. The following are equivalent:

1. e is a local unit.

Proposition

The functor \mathcal{G} is left adjoint to the functor \mathcal{H} . Moreover, \mathcal{G} is full and faithful.

Definition

Let M be a finite MTL-algebra. An element $e \in \mathcal{I}(M)^*$ is a local unit if ex = x for every $x \leq e$.

Lemma

Let M be a finite MTL-algebra and $e \in \mathcal{I}(M)^*$. The following are equivalent:

- 1. e is a local unit.
- 2. $ey = e \land y$, for every $y \in M$.

Proposition

The functor \mathcal{G} is left adjoint to the functor \mathcal{H} . Moreover, \mathcal{G} is full and faithful.

Definition

Let M be a finite MTL-algebra. An element $e \in \mathcal{I}(M)^*$ is a local unit if ex = x for every $x \leq e$.

Lemma

Let M be a finite MTL-algebra and $e \in \mathcal{I}(M)^*$. The following are equivalent:

- 1. e is a local unit.
- 2. $ey = e \land y$, for every $y \in M$.

Definition

A finite MTL-algebra M is id – representable if every non zero idempotent satisfies any of the equivalent conditions of the latter Lemma.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Definition

A finite MTL-algebra M is id - representable if every non zero idempotent satisfies any of the equivalent conditions of the latter Lemma.

Remark

Let *M* be an *id* – representable finite *MTL*-algebra. For every $e \in F_M$, $\uparrow a_e / \uparrow e \cong [a_e, e]$.

Definition

A finite MTL-algebra M is id - representable if every non zero idempotent satisfies any of the equivalent conditions of the latter Lemma.

Remark

Let *M* be an *id* – representable finite *MTL*-algebra. For every $e \in F_M$, $\uparrow a_e / \uparrow e \cong [a_e, e]$.

Lemma

For every id – representable finite MTL-algebra M and $m \in Max(F_M)$ it has that $M/\uparrow m \cong \bigoplus_{e \le m} [a_e, e]$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Observe that $F_M = \bigcup_{m \in F_M} \downarrow m$ so the family $\mathcal{R} = \{\downarrow m\}_{m \in M}$ is a covering for F_M .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Observe that $F_M = \bigcup_{m \in F_M} \downarrow m$ so the family $\mathcal{R} = \{\downarrow m\}_{m \in M}$ is a covering for F_M . Let $f_m : M \to \mathcal{P}_{I_M}(\downarrow m)$, defined as $f_m(x) = h_{x \land m}$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Observe that $F_M = \bigcup_{m \in F_M} \downarrow m$ so the family $\mathcal{R} = \{\downarrow m\}_{m \in M}$ is a covering for F_M . Let $f_m : M \to \mathcal{P}_{I_M}(\downarrow m)$, defined as $f_m(x) = h_{x \land m}$.

Lemma

Let M be an id – representable MTL-algebra. For every $x \in M$, the family $\{f_m(x)\}_{m \in Max(F_M)}$ is a matching family for the covering \mathcal{R} .

Observe that $F_M = \bigcup_{m \in F_M} \downarrow m$ so the family $\mathcal{R} = \{\downarrow m\}_{m \in M}$ is a covering for F_M . Let $f_m : M \to \mathcal{P}_{I_M}(\downarrow m)$, defined as $f_m(x) = h_{x \land m}$.

Lemma

Let M be an id – representable MTL-algebra. For every $x \in M$, the family $\{f_m(x)\}_{m \in Max(F_M)}$ is a matching family for the covering \mathcal{R} .

Lemma

For every id – representable MTL-algebra M, the assignment $f_M : M \to \mathcal{P}_{I_M}(F_M)$ defined as $f(x) = h_x$, where h_x is the amalgamation of the family $\{f_m(x)\}_{m \in Max(F_M)}$ is an isomorphism.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 Let *rMTL* be the category of *id* – *representable* finite MTL-algebras.

- Let *rMTL* be the category of *id representable* finite MTL-algebras.
- Let rLF the subcategory of fLF whose objects are the finite labeled forest such that their poset product is a *id – representable* MTL-algebra.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Let *rMTL* be the category of *id representable* finite MTL-algebras.
- Let rLF the subcategory of fLF whose objects are the finite labeled forest such that their poset product is a *id – representable* MTL-algebra.
- Let us write \$\mathcal{G}^*\$ for the restriction of the functor \$\mathcal{G}\$ to the category \$rMTL\$ and \$\mathcal{H}^*\$ for the restriction of the functor \$\mathcal{H}\$ to \$rLF\$.

- Let *rMTL* be the category of *id representable* finite MTL-algebras.
- Let rLF the subcategory of fLF whose objects are the finite labeled forest such that their poset product is a *id – representable* MTL-algebra.
- Let us write \$\mathcal{G}^*\$ for the restriction of the functor \$\mathcal{G}\$ to the category \$rMTL\$ and \$\mathcal{H}^*\$ for the restriction of the functor \$\mathcal{H}\$ to \$rLF\$.

- Let *rMTL* be the category of *id representable* finite MTL-algebras.
- Let rLF the subcategory of fLF whose objects are the finite labeled forest such that their poset product is a *id – representable* MTL-algebra.
- Let us write G* for the restriction of the functor G to the category rMTL and H* for the restriction of the functor H to rLF.

Theorem

The categories $r\mathcal{MTL}$ and $r\mathcal{LF}$ are dual.

Bibliography I

- S. Aguzzoli, S. Bova and V. Marra. Applications of Finite Duality to Locally Finite Varieties of BL-Algebras, in S. Artemov and A. Nerode (eds.), Logical Foundations of Computer Science, *Lecture Notes in Computer Science*, 5407 (2009) 1-15.
- [2] M. Busaniche, and F. Montagna. Chapter VII: Basic Fuzzy Logic and BL-algebras, *Handbook of Mathematical Fuzzy Logic*. Vol I. Studies in Logic. College Publications. 2011.
- [3] J. L. Castiglioni, M. Menni and W. J. Zuluaga Botero. A representation theorem for integral rigs and its applications to residuated lattices, *Journal of Pure and Applied Algebra*, 220 (10) (2016) 3533–3566.
- [4] A. Di Nola and A. Lettieri. Finite BL-algebras, *Discrete Math.*, 269 (2003) 93–122.

Bibliography II

- [5] P. Jipsen. Generalizations of Boolean products for lattice-ordered algebras, *Annals of Pure and Applied Logic*. Vol 161. Issue 2. Elsevier. 2011. 228–234.
- [6] S. MacLane and I. Moerdijk. Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Universitext, Springer Verlag (1992).
- [7] W. Zuluaga Botero. Representation by Sheaves of riRigs (Spanish). PhD Thesis. Universidad Nacional de La Plata. http://sedici.unlp.edu.ar/handle/10915/54115. (2016)

Preliminaries Finite Labeled Forests Forest Products From finite MTL-algebras to Forest Products The duality Theorem

Thank you !

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?