A duality for involutive bisemilattices

Stefano Bonzio

The Czech Academy of Sciences

(Joint work with A. Loi and L. Peruzzi)

TACL 2017

Outline

- **1** Involutive bisemilattices (IBSL).
- 2 Strongly inverse/direct systems.
- **3** Płonka sum representation for \mathcal{IBSL} .
- 4 Duality.

Paraconsistent Weak Kleene

• The language: $\cdot, +, ', 0, 1$

Paraconsistent Weak Kleene

- The language: $\cdot, +, ', 0, 1$
- $\bullet\,$ The algebra ${\bf W}{\bf K}$

	0	$\frac{1}{2}$	1			$\frac{1}{2}$		/	
0	0	$\frac{1}{2}$	0	0	0	$\frac{1}{2}$	1	1	0
$\frac{1}{2}$	$\begin{array}{c} 0\\ \frac{1}{2}\\ 0 \end{array}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
1	0	$\frac{1}{2}$	1	1	1	$\frac{1}{2}$	1	0	1

Paraconsistent Weak Kleene

- The language: $\cdot, +, ', 0, 1$
- $\bullet\,$ The algebra ${\bf W}{\bf K}$

		$\frac{1}{2}$			0			/	
0	0	$\frac{1}{2}$	0	0	0	$\frac{1}{2}$	1	1	-
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\frac{1}{2}$						
1	0	$\frac{1}{2}$	1	1	1	$\frac{1}{2}$	1	0	1

• The matrix: $PWK = \langle WK, \{1, 1/2\} \rangle$

$\mathbf{WK} = \langle \{0,1,\frac{1}{2}\},\cdot,+,^{'},0,1\rangle$

$\mathbf{WK} = \langle \{0, 1, \frac{1}{2}\}, \cdot, +, ', 0, 1 \rangle$

$$a \leq_+ b \iff a+b=b$$

 $\mathbf{WK} = \langle \{0, 1, \frac{1}{2}\}, \cdot, +, ', 0, 1 \rangle$

$$a \leq_+ b \iff a + b = b$$
 and $a \leq_{\cdot} b \iff a \cdot b = a$

 $\frac{1}{2}$

0

 $| \\ 0 \\ | \\ \frac{1}{2}$

 $\mathbf{WK} = \langle \{0,1,\tfrac{1}{2}\},\cdot,+,^{'},0,1\rangle$

$$a \leq_+ b \iff a + b = b$$
 and $a \leq_. b \iff a \cdot b = a$

$$\mathbf{WK} = \langle \{0, 1, \frac{1}{2}\}, \cdot, +, ', 0, 1 \rangle$$

$$a \leq_{+} b \iff a + b = b \quad \text{and} \quad a \leq_{\cdot} b \iff a \cdot b = a$$

$$a \leq_{+} b \iff b' \leq_{\cdot} a'$$

$$\begin{vmatrix} \frac{1}{2} & 1 \\ | & | \\ 1 & 0 \\ | & | \\ 0 & \frac{1}{2} \end{vmatrix}$$
Let 3 be the involution and

Let \mathbf{J} be the involution and constants free reduct of WK

Definition

An *involutive bisemilattice* is an algebra $\mathbf{B} = \langle B, +, \cdot, ', 0, 1 \rangle$ of type (2,2,1,0,0), satisfying:

Definition

An *involutive bisemilattice* is an algebra $\mathbf{B} = \langle B, +, \cdot, ', 0, 1 \rangle$ of type (2,2,1,0,0), satisfying:

$$\begin{array}{ll} 1 & x+x=x;\\ 12 & x+y=y+x;\\ 13 & x+(y+z)=(x+y)+z; \end{array}$$

If 0 + x = x;

Definition

An *involutive bisemilattice* is an algebra $\mathbf{B} = \langle B, +, \cdot, ', 0, 1 \rangle$ of type (2,2,1,0,0), satisfying:

$$\begin{array}{ll} 1 & x+x=x;\\ 12 & x+y=y+x;\\ 13 & x+(y+z)=(x+y)+z;\\ 14 & (x')'=x; \end{array}$$

17 0 + x = x; 18 1 = 0'.

Definition

An *involutive bisemilattice* is an algebra $\mathbf{B} = \langle B, +, \cdot, ', 0, 1 \rangle$ of type (2,2,1,0,0), satisfying:

I1
$$x + x = x;$$

I2 $x + y = y + x;$
I3 $x + (y + z) = (x + y) + z;$
I4 $(x')' = x;$
I5 $x \cdot y = (x' + y')';$
I7 $0 + x = x;$

18 1 = 0'.

Definition

An *involutive bisemilattice* is an algebra $\mathbf{B} = \langle B, +, \cdot, ', 0, 1 \rangle$ of type (2,2,1,0,0), satisfying:

11
$$x + x = x;$$

12 $x + y = y + x;$
13 $x + (y + z) = (x + y) + z;$
14 $(x')' = x;$
15 $x \cdot y = (x' + y')';$
16 $x \cdot (x' + y) = x \cdot y;$
17 $0 + x = x;$
18 $1 = 0'.$

Definition

An *involutive bisemilattice* is an algebra $\mathbf{B} = \langle B, +, \cdot, ', 0, 1 \rangle$ of type (2,2,1,0,0), satisfying:

11
$$x + x = x;$$

12 $x + y = y + x;$
13 $x + (y + z) = (x + y) + z;$
14 $(x')' = x;$
15 $x \cdot y = (x' + y')';$
16 $x \cdot (x' + y) = x \cdot y;$
17 $0 + x = x;$
18 $1 = 0'.$

Theorem $\mathbb{V}(\mathbf{WK}) = \mathcal{IBSL}.$

Definition

Definition

Given an arbitrary category \mathfrak{C} , a *strongly inverse system* in \mathfrak{C} is a triple $\mathcal{X} = \langle X_i, p_{ii'}, I \rangle$ s.t.

• *I* is a join semilattice with lower bound;

Definition

- *I* is a join semilattice with lower bound;
- for each $i \in I$, X_i is an object in \mathfrak{C} ;

Definition

- *I* is a join semilattice with lower bound;
- for each $i \in I$, X_i is an object in \mathfrak{C} ;
- $p_{ii'}: X_{i'} \to X_i$ is a morphism of \mathfrak{C} , for each pair $i \leq i'$,

Definition

- *I* is a join semilattice with lower bound;
- for each $i \in I$, X_i is an object in \mathfrak{C} ;
- $p_{ii'}: X_{i'} \to X_i$ is a morphism of \mathfrak{C} , for each pair $i \leq i'$, s.t. $p_{ii} = id_{X_i}$ $p_{ii'} \circ p_{i'i''} = p_{ii''}$ for $i \leq i' \leq i''$.

Definition

Given an arbitrary category \mathfrak{C} , a *strongly inverse system* in \mathfrak{C} is a triple $\mathcal{X} = \langle X_i, p_{ii'}, I \rangle$ s.t.

- *I* is a join semilattice with lower bound;
- for each $i \in I$, X_i is an object in \mathfrak{C} ;
- $p_{ii'}: X_{i'} \to X_i$ is a morphism of \mathfrak{C} , for each pair $i \leq i'$, s.t. $p_{ii} = id_{X_i}$ $p_{ii'} \circ p_{i'i''} = p_{ii''}$ for $i \leq i' \leq i''$.

I is called the *index set* of the system \mathcal{X} , X_i are the *terms* and $p_{ii'}$ are referred to as *bonding morphisms* of \mathcal{X} .

Definition

A morphism between two strongly inverse systems $\mathcal{X} = \langle X_i, p_{ii'}, I \rangle$ and $\mathcal{Y} = \langle Y_j, q_{jj'}, J \rangle$, is a pair (φ, f_j) s.t.

Definition

A morphism between two strongly inverse systems $\mathcal{X} = \langle X_i, p_{ii'}, I \rangle$ and $\mathcal{Y} = \langle Y_j, q_{jj'}, J \rangle$, is a pair (φ, f_j) s.t.

i) $\varphi: J \to I$ is a semilattice homomorphism;

Definition

A morphism between two strongly inverse systems $\mathcal{X} = \langle X_i, p_{ii'}, I \rangle$ and $\mathcal{Y} = \langle Y_j, q_{jj'}, J \rangle$, is a pair (φ, f_j) s.t.

i) $\varphi: J \to I$ is a semilattice homomorphism; ii) $f_j: X_{\varphi(j)} \to Y_j$ is a morphism in \mathfrak{C} , for each $j \in J$

Definition

A morphism between two strongly inverse systems $\mathcal{X} = \langle X_i, p_{ii'}, I \rangle$ and $\mathcal{Y} = \langle Y_j, q_{jj'}, J \rangle$, is a pair (φ, f_j) s.t.

i) $\varphi: J \to I$ is a semilattice homomorphism; ii) $f_j: X_{\varphi(j)} \to Y_j$ is a morphism in \mathfrak{C} , for each $j \in J$, s.t. whenever $j \leq j'$

Definition

A morphism between two strongly inverse systems $\mathcal{X} = \langle X_i, p_{ii'}, I \rangle$ and $\mathcal{Y} = \langle Y_j, q_{jj'}, J \rangle$, is a pair (φ, f_j) s.t.

i) φ: J → I is a semilattice homomorphism;
ii) f_j: X_{φ(j)} → Y_j is a morphism in 𝔅, for each j ∈ J, s.t. whenever j ≤ j', the following diagram commutes

Definition

Let \mathfrak{C} be an arbitrary category. A *strongly direct system* in \mathfrak{C} is a triple $\mathbb{X} = \langle X_i, p_{ii'}, I \rangle$ s.t.

Definition

Let \mathfrak{C} be an arbitrary category. A *strongly direct system* in \mathfrak{C} is a triple $\mathbb{X} = \langle X_i, p_{ii'}, I \rangle$ s.t.

• *I* is a is a (join) semilattice with lower bound;

Definition

Let \mathfrak{C} be an arbitrary category. A *strongly direct system* in \mathfrak{C} is a triple $\mathbb{X} = \langle X_i, p_{ii'}, I \rangle$ s.t.

- *I* is a is a (join) semilattice with lower bound;
- for each $i \in I$, X_i is an object in \mathfrak{C} ;

Definition

Let \mathfrak{C} be an arbitrary category. A *strongly direct system* in \mathfrak{C} is a triple $\mathbb{X} = \langle X_i, p_{ii'}, I \rangle$ s.t.

- *I* is a is a (join) semilattice with lower bound;
- for each $i \in I$, X_i is an object in \mathfrak{C} ;
- $p_{ii'}: X_i \to X_{i'}$ is a morphism of \mathfrak{C} , for each $i \leq i'$, s.t. $p_{ii} = id_{X_i}$ $i \leq i' \leq i''$ implies $p_{i'i''} \circ p_{ii'} = p_{ii''}$.

Definition

A morphism between two strongly direct systems X, Y is a pair $(\varphi, f_i) : X \to Y$ s.t.

Definition

A morphism between two strongly direct systems X, Y is a pair $(\varphi, f_i) : X \to Y$ s.t.

i) $\varphi: I \to J$ is a semilattice homomorphism

Definition

A morphism between two strongly direct systems X, Y is a pair $(\varphi, f_i) : X \to Y$ s.t.

i) $\varphi: I \to J$ is a semilattice homomorphism ii) $f_i: X_i \to Y_{\varphi(i)}$ is a morphism in \mathfrak{C}

Definition

A morphism between two strongly direct systems X, Y is a pair $(\varphi, f_i) : X \to Y$ s.t.

i) $\varphi: I \to J$ is a semilattice homomorphism

ii) $f_i : X_i \to Y_{\varphi(i)}$ is a morphism in \mathfrak{C} , making the following diagram commutative for each $i, i' \in I$, $i \leq i'$:

Definition

A morphism between two strongly direct systems X, Y is a pair $(\varphi, f_i) : X \to Y$ s.t.

i) φ: I → J is a semilattice homomorphism
ii) f_i: X_i → Y_{φ(i)} is a morphism in C, making the following diagram commutative for each i, i' ∈ I, i < i':

Definition

A category \mathfrak{D} is the *dual category* of \mathfrak{C} , if there exists an invertible contravariant functor $\mathcal{F} : \mathfrak{C} \to \mathfrak{D}$ with inverse \mathcal{G} s.t. $\mathcal{G} \circ \mathcal{F} = id_{\mathfrak{C}}$ and $\mathcal{G} \circ \mathcal{F} = id_{\mathfrak{D}}$.

Definition

A category \mathfrak{D} is the *dual category* of \mathfrak{C} , if there exists an invertible contravariant functor $\mathcal{F} : \mathfrak{C} \to \mathfrak{D}$ with inverse \mathcal{G} s.t. $\mathcal{G} \circ \mathcal{F} = id_{\mathfrak{C}}$ and $\mathcal{G} \circ \mathcal{F} = id_{\mathfrak{D}}$.

Example

 The category GA of Stone spaces is the dual of the category BA of Boolean algebras.

Definition

A category \mathfrak{D} is the *dual category* of \mathfrak{C} , if there exists an invertible contravariant functor $\mathcal{F} : \mathfrak{C} \to \mathfrak{D}$ with inverse \mathcal{G} s.t. $\mathcal{G} \circ \mathcal{F} = id_{\mathfrak{C}}$ and $\mathcal{G} \circ \mathcal{F} = id_{\mathfrak{D}}$.

Example

- The category GA of Stone spaces is the dual of the category BA of Boolean algebras.
- The category \$\$\mathcal{P}\$\$\$\$\$\$\$\$ of Priestley spaces is the dual of the category \$\$\mathcal{L}\$\$\$\$\$ of distributive lattices.

Definition

A category \mathfrak{D} is the *dual category* of \mathfrak{C} , if there exists an invertible contravariant functor $\mathcal{F} : \mathfrak{C} \to \mathfrak{D}$ with inverse \mathcal{G} s.t. $\mathcal{G} \circ \mathcal{F} = id_{\mathfrak{C}}$ and $\mathcal{G} \circ \mathcal{F} = id_{\mathfrak{D}}$.

Example

- The category GA of Stone spaces is the dual of the category BA of Boolean algebras.

Remark

If \mathfrak{C} and \mathfrak{D} are dual categories, then strong-dir- \mathfrak{C} is the dual category of strong-inv- \mathfrak{D} .

Definition

Let \mathbb{A} be a strongly direct system of algebras of type ν ,

Definition

Let \mathbb{A} be a strongly direct system of algebras of type ν , the *Plonka* sum over \mathbb{A} is the algebra $\mathcal{P}_l(\mathbb{A}) = \langle \bigsqcup_I A_i, g^{\mathcal{P}_l} \rangle$,

Definition

Let \mathbb{A} be a strongly direct system of algebras of type ν , the *Płonka* sum over \mathbb{A} is the algebra $\mathcal{P}_l(\mathbb{A}) = \langle \bigsqcup_I A_i, g^{\mathcal{P}_l} \rangle$, for $g \in \nu$ and $a_1, \ldots, a_n \in \bigsqcup_I A_i$, with $a_r \in A_{i_r}$, we set $j = i_1 \vee \cdots \vee i_n$,

$$g^{\mathcal{P}_l}(a_1,\ldots,a_n) = g^{\mathbf{A}_j}(\varphi_{i_1j}(a_1),\ldots,\varphi_{i_nj}(a_n)).$$

Definition

Let \mathbb{A} be a strongly direct system of algebras of type ν , the *Płonka* sum over \mathbb{A} is the algebra $\mathcal{P}_l(\mathbb{A}) = \langle \bigsqcup_I A_i, g^{\mathcal{P}_l} \rangle$, for $g \in \nu$ and $a_1, \ldots, a_n \in \bigsqcup_I A_i$, with $a_r \in A_{i_r}$, we set $j = i_1 \vee \cdots \vee i_n$,

$$g^{\mathcal{P}_l}(a_1,\ldots,a_n) = g^{\mathbf{A}_j}(\varphi_{i_1j}(a_1),\ldots,\varphi_{i_nj}(a_n)).$$

In case ν contains constants, then we define $g = g^{\mathbf{A}_0}$.

Example

Płonka sums representation

Theorem

1 If \mathbb{A} is a strongly direct system of Boolean algebras, then the Płonka sum $\mathcal{P}_l(\mathbb{A})$ is an involutive bisemilattice.

Płonka sums representation

Theorem

- **1** If \mathbb{A} is a strongly direct system of Boolean algebras, then the Płonka sum $\mathcal{P}_l(\mathbb{A})$ is an involutive bisemilattice.
- If B is an involutive bisemilattice, then B is isomorphic to the Płonka sum over a strongly direct system of Boolean algebras.

Categories into play

Category	Objects	Morphisms
BA	Boolean Algebras	Homomorph. of \mathcal{BA}
IBEL	Involutive bisemilattices	Hom. of \mathcal{IBSL}
strong-dir-BA	str. dir. systems of B.A.	Morphisms of s.d.s.
ଟଥ	Stone spaces	continuous maps
strong-inv-SA	str. inv. systems of Stone sp.	Morphisms of s.i.s.

First result

Proposition

The category \mathfrak{IBSL} is equivalent to strong-dir- \mathfrak{BA} .

First result

Proposition

The category \mathfrak{IBSL} is equivalent to strong-dir- \mathfrak{BA} .

Theorem

The category strong-inv- \mathfrak{SA} is the dual of \mathfrak{IBSL} .

First result

Proposition

The category \mathfrak{IBSL} is equivalent to strong-dir- \mathfrak{BA} .

Theorem

The category strong-inv- \mathfrak{SA} is the dual of \mathfrak{IBSL} .

Is it possible to describe the dual in terms of a unique space?

Duality for \mathcal{BSL}

Theorem (Gierz, Romanowska)

The categories \mathfrak{DB} and \mathfrak{GR} are dual to each other under the functors $\operatorname{Hom}_{\operatorname{b}}(-,3):\mathfrak{DB} \to \mathfrak{GR}$ and $\operatorname{Hom}_{\operatorname{GR}}(-,3):\mathfrak{GR} \to \mathfrak{DB}$.

Definition

A GR space with involution G is a GR space

Definition

A *GR space with involution* **G** is a GR space with a continous map $\neg : G \rightarrow G$ s.t. for any $a \in G$:

Definition

A *GR space with involution* **G** is a GR space with a continous map $\neg : G \rightarrow G$ s.t. for any $a \in G$:

1
$$\neg(\neg a) = a$$

2 $\neg(a * b) = \neg a * \neg b$

3 if
$$a \leq b$$
 then $\neg b \sqsubseteq \neg a$

4
$$\neg c_0 = c_1, \ \neg c_1 = c_0 \text{ and } \neg c_\alpha = c_\alpha$$

Definition

A *GR space with involution* **G** is a GR space with a continous map $\neg : G \rightarrow G$ s.t. for any $a \in G$:

$$\mathbf{1} \ \neg(\neg a) = a$$

$$\mathbf{2} \ \neg(a \ast b) = \neg a \ast \neg b$$

3 if
$$a \leq b$$
 then $\neg b \sqsubseteq \neg a$

4
$$\neg c_0 = c_1$$
, $\neg c_1 = c_0$ and $\neg c_\alpha = c_\alpha$

5 Hom_{GR}(G, 3) with natural involution \neg , i.e. $\neg \varphi(a) = (\varphi(\neg a))'$

Definition

A *GR space with involution* **G** is a GR space with a continous map $\neg : G \rightarrow G$ s.t. for any $a \in G$:

$$\mathbf{1} \ \neg(\neg a) = a$$

$$\mathbf{2} \ \neg(a \ast b) = \neg a \ast \neg b$$

3 if
$$a \leq b$$
 then $\neg b \sqsubseteq \neg a$

4
$$\neg c_0 = c_1$$
, $\neg c_1 = c_0$ and $\neg c_\alpha = c_\alpha$

5 Hom_{GR}(G, 3) with natural involution \neg , i.e. $\neg \varphi(a) = (\varphi(\neg a))'$ satisfies $\varphi \cdot (\neg \varphi + \psi) = \psi \cdot \varphi$

Definition

A *GR space with involution* **G** is a GR space with a continous map $\neg : G \rightarrow G$ s.t. for any $a \in G$:

$$\mathbf{1} \ \neg(\neg a) = a$$

$$\mathbf{2} \ \neg(a \ast b) = \neg a \ast \neg b$$

3 if
$$a \leq b$$
 then $\neg b \sqsubseteq \neg a$

4
$$\neg c_0 = c_1$$
, $\neg c_1 = c_0$ and $\neg c_\alpha = c_\alpha$

- 5 Hom_{GR}(G, 3) with natural involution \neg , i.e. $\neg \varphi(a) = (\varphi(\neg a))'$ satisfies $\varphi \cdot (\neg \varphi + \psi) = \psi \cdot \varphi$
- 6 there exist $\varphi_0, \varphi_1 \in \operatorname{Hom}_{\operatorname{GR}}(\mathbf{G}, \mathbf{3})$ s.t. $\neg \varphi_0 = \varphi_1$ and $\varphi + \varphi_0 = \varphi$, for each $\varphi \in \operatorname{Hom}_{\operatorname{GR}}(\mathbf{G}, \mathbf{3})$.

The duality

Definition

 \mathfrak{IGR} is the category whose objects are GR spaces with involution with their morphisms.

The duality

Definition

 \mathfrak{IGR} is the category whose objects are GR spaces with involution with their morphisms.

Theorem

The category $\Im \mathfrak{GR}$ is the dual of the category $\Im \mathfrak{GL}$.

The duality

Definition

 \mathfrak{IGR} is the category whose objects are GR spaces with involution with their morphisms.

Theorem

The category $\Im \mathfrak{GR}$ is the dual of the category $\Im \mathfrak{GL}$.

Corollary The category strong-inv-SL is equivalent to the category J&R. Thank you!