A duality for involutive bisemilattices

Stefano Bonzio

The Czech Academy of Sciences
(Joint work with A. Loi and L. Peruzzi)

TACL 2017

Outline

1 Involutive bisemilattices ($\mathcal{I B S L}$).

2 Strongly inverse/direct systems.
(3) Płonka sum representation for $\mathcal{I B S L}$.

4 Duality.

Paraconsistent Weak Kleene

- The language: $\cdot,+,{ }^{\prime}, 0,1$

Paraconsistent Weak Kleene

- The language: $\cdot,+,{ }^{\prime}, 0,1$
- The algebra WK

\cdot	0	$\frac{1}{2}$	1
0	0	$\frac{1}{2}$	0
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
1	0	$\frac{1}{2}$	1

+	0	$\frac{1}{2}$	1
0	0	$\frac{1}{2}$	1
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
1	1	$\frac{1}{2}$	1

\prime	
1	0
$\frac{1}{2}$	$\frac{1}{2}$
0	1

Paraconsistent Weak Kleene

- The language: $\cdot,+,{ }^{\prime}, 0,1$
- The algebra WK

\cdot	0	$\frac{1}{2}$	1
0	0	$\frac{1}{2}$	0
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
1	0	$\frac{1}{2}$	1

+	0	$\frac{1}{2}$	1
0	0	$\frac{1}{2}$	1
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
1	1	$\frac{1}{2}$	1

\prime	
1	0
$\frac{1}{2}$	$\frac{1}{2}$
0	1

- The matrix: $\mathbf{P W K}=\langle\mathbf{W K},\{1,1 / 2\}\rangle$

A closer look to WK

$\mathbf{W K}=\left\langle\left\{0,1, \frac{1}{2}\right\}, \cdot,+{ }^{\prime}, 0,1\right\rangle$

A closer look to WK

$\mathbf{W K}=\left\langle\left\{0,1, \frac{1}{2}\right\}, \cdot,+{ }^{\prime}, 0,1\right\rangle$

$$
a \leq_{+} b \Longleftrightarrow a+b=b
$$

$$
\begin{aligned}
& \frac{1}{2} \\
& \mid \\
& 1 \\
& 1 \\
& 0
\end{aligned}
$$

A closer look to WK

$\mathbf{W K}=\left\langle\left\{0,1, \frac{1}{2}\right\}, \cdot,+{ }^{\prime}, 0,1\right\rangle$

$$
a \leq_{+} b \Longleftrightarrow a+b=b \quad \text { and } \quad a \leq b \Longleftrightarrow a \cdot b=a
$$

A closer look to WK

$\mathbf{W K}=\left\langle\left\{0,1, \frac{1}{2}\right\}, \cdot,+{ }^{\prime}, 0,1\right\rangle$

$$
a \leq_{+} b \Longleftrightarrow a+b=b \quad \text { and } \quad a \leq b \Longleftrightarrow a \cdot b=a
$$

$$
a \leq_{+} b \Longleftrightarrow b^{\prime} \leq a^{\prime}
$$

A closer look to WK

$\mathbf{W K}=\left\langle\left\{0,1, \frac{1}{2}\right\}, \cdot,+{ }^{\prime}, 0,1\right\rangle$

$$
\begin{array}{cc}
a \leq_{+} b \Longleftrightarrow a+b=b & \text { and } \quad a \leq b \Longleftrightarrow a \cdot b=a \\
& \Longleftrightarrow \leq_{+} b \Longleftrightarrow b^{\prime} \leq a^{\prime} \\
\frac{1}{2} & 1
\end{array}
$$

Involutive bisemilattices

Definition
An involutive bisemilattice is an algebra $\mathbf{B}=\left\langle B,+, \cdot{ }^{\prime}, 0,1\right\rangle$ of type ($2,2,1,0,0$), satisfying:

Involutive bisemilattices

Definition
An involutive bisemilattice is an algebra $\mathbf{B}=\left\langle B,+, \cdot{ }^{\prime}, 0,1\right\rangle$ of type ($2,2,1,0,0$), satisfying:

I1 $x+x=x$;
$12 x+y=y+x$;
I3 $x+(y+z)=(x+y)+z$;
$170+x=x$;

Involutive bisemilattices

Definition
An involutive bisemilattice is an algebra $\mathbf{B}=\left\langle B,+, \cdot{ }^{\prime}, 0,1\right\rangle$ of type ($2,2,1,0,0$), satisfying:

I1 $x+x=x$;
I2 $x+y=y+x$;
$13 x+(y+z)=(x+y)+z$;
$14\left(x^{\prime}\right)^{\prime}=x$;

$$
\begin{aligned}
& \text { I7 } 0+x=x \\
& \text { I8 } 1=0^{\prime}
\end{aligned}
$$

Involutive bisemilattices

Definition
An involutive bisemilattice is an algebra $\mathbf{B}=\left\langle B,+, \cdot{ }^{\prime}, 0,1\right\rangle$ of type ($2,2,1,0,0$), satisfying:

I1 $x+x=x$;
12 $x+y=y+x$;
I3 $x+(y+z)=(x+y)+z$;
$14\left(x^{\prime}\right)^{\prime}=x$;
$15 x \cdot y=\left(x^{\prime}+y^{\prime}\right)^{\prime}$;

$$
\begin{aligned}
& \text { I7 } 0+x=x \\
& \text { I8 } 1=0^{\prime}
\end{aligned}
$$

Involutive bisemilattices

Definition
An involutive bisemilattice is an algebra $\mathbf{B}=\left\langle B,+, \cdot{ }^{\prime}, 0,1\right\rangle$ of type ($2,2,1,0,0$), satisfying:

I1 $x+x=x$;
I2 $x+y=y+x$;
I3 $x+(y+z)=(x+y)+z$;
$14\left(x^{\prime}\right)^{\prime}=x$;
$15 x \cdot y=\left(x^{\prime}+y^{\prime}\right)^{\prime}$;
$16 x \cdot\left(x^{\prime}+y\right)=x \cdot y$;
$170+x=x$;
I8 $1=0^{\prime}$ 。

Involutive bisemilattices

Definition
An involutive bisemilattice is an algebra $\mathbf{B}=\left\langle B,+, \cdot{ }^{\prime}, 0,1\right\rangle$ of type ($2,2,1,0,0$), satisfying:

I1 $x+x=x$;
12 $x+y=y+x$;
$13 x+(y+z)=(x+y)+z$;
$14\left(x^{\prime}\right)^{\prime}=x$;
$15 x \cdot y=\left(x^{\prime}+y^{\prime}\right)^{\prime}$;
I6 $x \cdot\left(x^{\prime}+y\right)=x \cdot y$;
$170+x=x$;
I8 $1=0^{\prime}$ 。

Theorem
$\mathbb{V}(\mathbf{W K})=\mathcal{I B S L}$.

Strongly inverse systems

Definition
Given an arbitrary category \mathfrak{C}, a strongly inverse system in \mathfrak{C} is a triple $\mathcal{X}=\left\langle X_{i}, p_{i i^{\prime}}, I\right\rangle$ s.t.

Strongly inverse systems

Definition
Given an arbitrary category \mathfrak{C}, a strongly inverse system in \mathfrak{C} is a triple $\mathcal{X}=\left\langle X_{i}, p_{i i^{\prime}}, I\right\rangle$ s.t.

- I is a join semilattice with lower bound;

Strongly inverse systems

Definition
Given an arbitrary category \mathfrak{C}, a strongly inverse system in \mathfrak{C} is a triple $\mathcal{X}=\left\langle X_{i}, p_{i i^{\prime}}, I\right\rangle$ s.t.

- I is a join semilattice with lower bound;
- for each $i \in I, X_{i}$ is an object in \mathfrak{C};

Strongly inverse systems

Definition
Given an arbitrary category \mathfrak{C}, a strongly inverse system in \mathfrak{C} is a triple $\mathcal{X}=\left\langle X_{i}, p_{i i^{\prime}}, I\right\rangle$ s.t.

- I is a join semilattice with lower bound;
- for each $i \in I, X_{i}$ is an object in \mathfrak{C};
- $p_{i i^{\prime}}: X_{i^{\prime}} \rightarrow X_{i}$ is a morphism of \mathfrak{C}, for each pair $i \leq i^{\prime}$,

Strongly inverse systems

Definition
Given an arbitrary category \mathfrak{C}, a strongly inverse system in \mathfrak{C} is a triple $\mathcal{X}=\left\langle X_{i}, p_{i i^{\prime}}, I\right\rangle$ s.t.

- I is a join semilattice with lower bound;
- for each $i \in I, X_{i}$ is an object in \mathfrak{C};
- $p_{i i^{\prime}}: X_{i^{\prime}} \rightarrow X_{i}$ is a morphism of \mathfrak{C}, for each pair $i \leq i^{\prime}$, s.t. $p_{i i}=i d_{X_{i}}$

$$
p_{i i^{\prime}} \circ p_{i^{\prime} i^{\prime \prime}}=p_{i i^{\prime \prime}} \text { for } i \leq i^{\prime} \leq i^{\prime \prime} .
$$

Strongly inverse systems

Definition
Given an arbitrary category \mathfrak{C}, a strongly inverse system in \mathfrak{C} is a triple $\mathcal{X}=\left\langle X_{i}, p_{i i^{\prime}}, I\right\rangle$ s.t.

- I is a join semilattice with lower bound;
- for each $i \in I, X_{i}$ is an object in \mathfrak{C};
- $p_{i i^{\prime}}: X_{i^{\prime}} \rightarrow X_{i}$ is a morphism of \mathfrak{C}, for each pair $i \leq i^{\prime}$, s.t. $p_{i i}=i d_{X_{i}}$

$$
p_{i i^{\prime}} \circ p_{i^{\prime} i^{\prime \prime}}=p_{i i^{\prime \prime}} \text { for } i \leq i^{\prime} \leq i^{\prime \prime}
$$

I is called the index set of the system \mathcal{X}, X_{i} are the terms and $p_{i i^{\prime}}$ are referred to as bonding morphisms of \mathcal{X}.

Morphisms of strongly inv systems

Definition
A morphism between two strongly inverse systems $\mathcal{X}=\left\langle X_{i}, p_{i i^{\prime}}, I\right\rangle$ and $\mathcal{Y}=\left\langle Y_{j}, q_{j j^{\prime}}, J\right\rangle$, is a pair $\left(\varphi, f_{j}\right)$ s.t.

Morphisms of strongly inv systems

Definition
A morphism between two strongly inverse systems $\mathcal{X}=\left\langle X_{i}, p_{i i^{\prime}}, I\right\rangle$ and $\mathcal{Y}=\left\langle Y_{j}, q_{j j^{\prime}}, J\right\rangle$, is a pair $\left(\varphi, f_{j}\right)$ s.t.
i) $\varphi: J \rightarrow I$ is a semilattice homomorphism;

Morphisms of strongly inv systems

Definition
A morphism between two strongly inverse systems $\mathcal{X}=\left\langle X_{i}, p_{i i^{\prime}}, I\right\rangle$ and $\mathcal{Y}=\left\langle Y_{j}, q_{j j^{\prime}}, J\right\rangle$, is a pair $\left(\varphi, f_{j}\right)$ s.t.
i) $\varphi: J \rightarrow I$ is a semilattice homomorphism;
ii) $f_{j}: X_{\varphi(j)} \rightarrow Y_{j}$ is a morphism in \mathfrak{C}, for each $j \in J$

Morphisms of strongly inv systems

Definition

A morphism between two strongly inverse systems $\mathcal{X}=\left\langle X_{i}, p_{i i^{\prime}}, I\right\rangle$ and $\mathcal{Y}=\left\langle Y_{j}, q_{j j^{\prime}}, J\right\rangle$, is a pair $\left(\varphi, f_{j}\right)$ s.t.
i) $\varphi: J \rightarrow I$ is a semilattice homomorphism;
ii) $f_{j}: X_{\varphi(j)} \rightarrow Y_{j}$ is a morphism in \mathfrak{C}, for each $j \in J$, s.t. whenever $j \leq j^{\prime}$

Morphisms of strongly inv systems

Definition

A morphism between two strongly inverse systems $\mathcal{X}=\left\langle X_{i}, p_{i i^{\prime}}, I\right\rangle$ and $\mathcal{Y}=\left\langle Y_{j}, q_{j j^{\prime}}, J\right\rangle$, is a pair $\left(\varphi, f_{j}\right)$ s.t.
i) $\varphi: J \rightarrow I$ is a semilattice homomorphism;
ii) $f_{j}: X_{\varphi(j)} \rightarrow Y_{j}$ is a morphism in \mathfrak{C}, for each $j \in J$, s.t. whenever $j \leq j^{\prime}$, the following diagram commutes

Strongly direct systems

Definition

Let \mathfrak{C} be an arbitrary category. A strongly direct system in \mathfrak{C} is a triple $\mathbb{X}=\left\langle X_{i}, p_{i i^{\prime}}, I\right\rangle$ s.t.

Strongly direct systems

Definition

Let \mathfrak{C} be an arbitrary category. A strongly direct system in \mathfrak{C} is a triple $\mathbb{X}=\left\langle X_{i}, p_{i i^{\prime}}, I\right\rangle$ s.t.

- I is a is a (join) semilattice with lower bound;

Strongly direct systems

Definition

Let \mathfrak{C} be an arbitrary category. A strongly direct system in \mathfrak{C} is a triple $\mathbb{X}=\left\langle X_{i}, p_{i i^{\prime}}, I\right\rangle$ s.t.

- I is a is a (join) semilattice with lower bound;
- for each $i \in I, X_{i}$ is an object in \mathfrak{C};

Strongly direct systems

Definition

Let \mathfrak{C} be an arbitrary category. A strongly direct system in \mathfrak{C} is a triple $\mathbb{X}=\left\langle X_{i}, p_{i i^{\prime}}, I\right\rangle$ s.t.

- I is a is a (join) semilattice with lower bound;
- for each $i \in I, X_{i}$ is an object in \mathfrak{C};
- $p_{i i^{\prime}}: X_{i} \rightarrow X_{i^{\prime}}$ is a morphism of \mathfrak{C}, for each $i \leq i^{\prime}$, s.t.

$$
\begin{aligned}
& p_{i i}=i d_{X_{i}} \\
& i \leq i^{\prime} \leq i^{\prime \prime} \text { implies } p_{i^{\prime} i^{\prime \prime}} \circ p_{i i^{\prime}}=p_{i i^{\prime \prime}}
\end{aligned}
$$

Morphisms

Definition

A morphism between two strongly direct systems \mathbb{X}, \mathbb{Y} is a pair $\left(\varphi, f_{i}\right): \mathbb{X} \rightarrow \mathbb{Y}$ s.t.

Morphisms

Definition

A morphism between two strongly direct systems \mathbb{X}, \mathbb{Y} is a pair $\left(\varphi, f_{i}\right): \mathbb{X} \rightarrow \mathbb{Y}$ s.t.
i) $\varphi: I \rightarrow J$ is a semilattice homomorphism

Morphisms

Definition
A morphism between two strongly direct systems \mathbb{X}, \mathbb{Y} is a pair $\left(\varphi, f_{i}\right): \mathbb{X} \rightarrow \mathbb{Y}$ s.t.
i) $\varphi: I \rightarrow J$ is a semilattice homomorphism
ii) $f_{i}: X_{i} \rightarrow Y_{\varphi(i)}$ is a morphism in \mathfrak{C}

$$
f_{i} \quad \begin{gathered}
X_{i} \\
\\
\\
\\
\\
Y_{\varphi(i)}
\end{gathered}
$$

$$
X_{i^{\prime}}
$$

Morphisms

Definition
A morphism between two strongly direct systems \mathbb{X}, \mathbb{Y} is a pair $\left(\varphi, f_{i}\right): \mathbb{X} \rightarrow \mathbb{Y}$ s.t.
i) $\varphi: I \rightarrow J$ is a semilattice homomorphism
ii) $f_{i}: X_{i} \rightarrow Y_{\varphi(i)}$ is a morphism in \mathfrak{C}, making the following diagram commutative for each $i, i^{\prime} \in I, i \leq i^{\prime}$:

Morphisms

Definition
A morphism between two strongly direct systems \mathbb{X}, \mathbb{Y} is a pair $\left(\varphi, f_{i}\right): \mathbb{X} \rightarrow \mathbb{Y}$ s.t.
i) $\varphi: I \rightarrow J$ is a semilattice homomorphism
ii) $f_{i}: X_{i} \rightarrow Y_{\varphi(i)}$ is a morphism in \mathfrak{C}, making the following diagram commutative for each $i, i^{\prime} \in I, i \leq i^{\prime}$:

Duality

Definition

A category \mathfrak{D} is the dual category of \mathfrak{C}, if there exists an invertible contravariant functor $\mathcal{F}: \mathfrak{C} \rightarrow \mathfrak{D}$ with inverse \mathcal{G} s.t. $\mathcal{G} \circ \mathcal{F}=i d_{\mathfrak{C}}$ and $\mathcal{G} \circ \mathcal{F}=i d_{\mathfrak{D}}$.

Duality

Definition
A category \mathfrak{D} is the dual category of \mathfrak{C}, if there exists an invertible contravariant functor $\mathcal{F}: \mathfrak{C} \rightarrow \mathfrak{D}$ with inverse \mathcal{G} s.t. $\mathcal{G} \circ \mathcal{F}=i d_{\mathfrak{C}}$ and $\mathcal{G} \circ \mathcal{F}=i d_{\mathfrak{D}}$.

Example

(1) The category $\mathfrak{S A}$ of Stone spaces is the dual of the category $\mathfrak{B A}$ of Boolean algebras.

Duality

Definition
A category \mathfrak{D} is the dual category of \mathfrak{C}, if there exists an invertible contravariant functor $\mathcal{F}: \mathfrak{C} \rightarrow \mathfrak{D}$ with inverse \mathcal{G} s.t. $\mathcal{G} \circ \mathcal{F}=i d_{\mathfrak{C}}$ and $\mathcal{G} \circ \mathcal{F}=i d_{\mathfrak{D}}$.

Example

(1) The category $\mathfrak{S A}$ of Stone spaces is the dual of the category $\mathfrak{B A}$ of Boolean algebras.

2 The category $\mathfrak{P S}$ of Priestley spaces is the dual of the category $\mathfrak{D L}$ of distributive lattices.

Duality

Definition
A category \mathfrak{D} is the dual category of \mathfrak{C}, if there exists an invertible contravariant functor $\mathcal{F}: \mathfrak{C} \rightarrow \mathfrak{D}$ with inverse \mathcal{G} s.t. $\mathcal{G} \circ \mathcal{F}=i d_{\mathfrak{C}}$ and $\mathcal{G} \circ \mathcal{F}=i d_{\mathfrak{D}}$.

Example

1 The category $\mathfrak{S A}$ of Stone spaces is the dual of the category $\mathfrak{B A}$ of Boolean algebras.

2 The category $\mathfrak{P S}$ of Priestley spaces is the dual of the category $\mathfrak{D} \mathfrak{L}$ of distributive lattices.

Remark

If \mathfrak{C} and \mathfrak{D} are dual categories, then strong-dir- \mathfrak{C} is the dual category of strong-inv- \mathfrak{D}.

Płonka sums

Definition

Let \mathbb{A} be a strongly direct system of algebras of type ν,

Płonka sums

Definition

Let \mathbb{A} be a strongly direct system of algebras of type ν, the Płonka sum over \mathbb{A} is the algebra $\mathcal{P}_{l}(\mathbb{A})=\left\langle\bigsqcup_{I} A_{i}, g^{\mathcal{P}_{l}}\right\rangle$,

Płonka sums

Definition

Let \mathbb{A} be a strongly direct system of algebras of type ν, the Płonka sum over \mathbb{A} is the algebra $\mathcal{P}_{l}(\mathbb{A})=\left\langle\bigsqcup_{I} A_{i}, g^{\mathcal{P}_{l}}\right\rangle$, for $g \in \nu$ and $a_{1}, \ldots, a_{n} \in \bigsqcup_{I} A_{i}$, with $a_{r} \in A_{i_{r}}$, we set $j=i_{1} \vee \cdots \vee i_{n}$,

$$
g^{\mathcal{P}_{l}}\left(a_{1}, \ldots, a_{n}\right)=g^{\mathbf{A}_{j}}\left(\varphi_{i_{1 j} j}\left(a_{1}\right), \ldots, \varphi_{i_{n} j}\left(a_{n}\right)\right) .
$$

Płonka sums

Definition

Let \mathbb{A} be a strongly direct system of algebras of type ν, the Płonka sum over \mathbb{A} is the algebra $\mathcal{P}_{l}(\mathbb{A})=\left\langle\bigsqcup_{I} A_{i}, g^{\mathcal{D}_{l}}\right\rangle$, for $g \in \nu$ and $a_{1}, \ldots, a_{n} \in \bigsqcup_{I} A_{i}$, with $a_{r} \in A_{i_{r}}$, we set $j=i_{1} \vee \cdots \vee i_{n}$,

$$
g^{\mathcal{P}_{l}}\left(a_{1}, \ldots, a_{n}\right)=g^{\mathbf{A}_{j}}\left(\varphi_{i_{1 j}}\left(a_{1}\right), \ldots, \varphi_{i_{n j} j}\left(a_{n}\right)\right) .
$$

In case ν contains constants, then we define $g=g^{\mathbf{A}_{0}}$.

Example

Płonka sums representation

Theorem
1 If \mathbb{A} is a strongly direct system of Boolean algebras, then the Płonka sum $\mathcal{P}_{l}(\mathbb{A})$ is an involutive bisemilattice.

Płonka sums representation

Theorem
1 If \mathbb{A} is a strongly direct system of Boolean algebras, then the Płonka sum $\mathcal{P}_{l}(\mathbb{A})$ is an involutive bisemilattice.

2 If \mathbf{B} is an involutive bisemilattice, then \mathbf{B} is isomorphic to the Płonka sum over a strongly direct system of Boolean algebras.

Categories into play

Category	Objects	Morphisms
$\mathfrak{B A}$	Boolean Algebras	Homomorph. of $\mathcal{B A}$
$\mathfrak{I B S L}$	Involutive bisemilattices	Hom. of $\mathcal{I B S L}$
strong-dir- $\mathfrak{B A}$	str. dir. systems of B.A.	Morphisms of s.d.s.
$\mathfrak{S A}$	Stone spaces	continuous maps
strong-inv- $\mathfrak{S A}$	str. inv. systems of Stone sp.	Morphisms of s.i.s.

First result

Proposition

The category $\mathfrak{I B S L}$ is equivalent to strong-dir- $\mathfrak{B A}$.

First result

Proposition

The category $\mathfrak{I B S L}$ is equivalent to strong-dir- $\mathfrak{B A}$.

Theorem
The category strong-inv- \mathfrak{A} is the dual of $\mathfrak{I B S L}$.

First result

Proposition

The category $\mathfrak{I B S L}$ is equivalent to strong-dir- $\mathfrak{B A}$.

Theorem
The category strong-inv- \mathfrak{A} is the dual of $\mathfrak{I B S L}$.

Is it possible to describe the dual in terms of a unique space?

Duality for $\mathcal{B S L}$

Theorem (Gierz, Romanowska)
The categories $\mathfrak{D B}$ and $\mathfrak{G} \mathfrak{R}$ are dual to each other under the functors $\operatorname{Hom}_{\mathrm{b}}(-, \mathbf{3}): \mathfrak{D} \mathfrak{B} \rightarrow \mathfrak{G} \mathfrak{R}$ and $\operatorname{Hom}_{\mathrm{GR}}(-, \mathbf{3}): \mathfrak{G} \mathfrak{R} \rightarrow \mathfrak{D} \mathfrak{B}$.

GR spaces with involution

Definition
A $G R$ space with involution \mathbf{G} is a $G R$ space

GR spaces with involution

Definition
A $G R$ space with involution \mathbf{G} is a $G R$ space with a continous map $\neg: G \rightarrow G$ s.t. for any $a \in G$:

GR spaces with involution

Definition
A $G R$ space with involution \mathbf{G} is a $G R$ space with a continous map $\neg: G \rightarrow G$ s.t. for any $a \in G$:

1 $\neg(\neg a)=a$
2 $\neg(a * b)=\neg a * \neg b$
3) if $a \leq b$ then $\neg b \sqsubseteq \neg a$
4. $\neg c_{0}=c_{1}, \neg c_{1}=c_{0}$ and $\neg c_{\alpha}=c_{\alpha}$

GR spaces with involution

Definition
A $G R$ space with involution \mathbf{G} is a $G R$ space with a continous map $\neg: G \rightarrow G$ s.t. for any $a \in G$:

1. $\neg(\neg a)=a$
$2 \neg(a * b)=\neg a * \neg b$
3) if $a \leq b$ then $\neg b \sqsubseteq \neg a$
4. $\neg c_{0}=c_{1}, \neg c_{1}=c_{0}$ and $\neg c_{\alpha}=c_{\alpha}$
$5 \operatorname{Hom}_{\mathrm{GR}}(\mathbf{G}, \mathbf{3})$ with natural involution \neg, i.e.

$$
\neg \varphi(a)=(\varphi(\neg a))^{\prime}
$$

GR spaces with involution

Definition
A $G R$ space with involution \mathbf{G} is a $G R$ space with a continous map $\neg: G \rightarrow G$ s.t. for any $a \in G$:

1. $\neg(\neg a)=a$
$2 \neg(a * b)=\neg a * \neg b$
3) if $a \leq b$ then $\neg b \sqsubseteq \neg a$
4. $\neg c_{0}=c_{1}, \neg c_{1}=c_{0}$ and $\neg c_{\alpha}=c_{\alpha}$
$5 \operatorname{Hom}_{\mathrm{GR}}(\mathbf{G}, \mathbf{3})$ with natural involution \neg, i.e. $\neg \varphi(a)=(\varphi(\neg a))^{\prime}$ satisfies $\varphi \cdot(\neg \varphi+\psi)=\psi \cdot \varphi$

GR spaces with involution

Definition
A $G R$ space with involution \mathbf{G} is a $G R$ space with a continous map $\neg: G \rightarrow G$ s.t. for any $a \in G$:

1. $\neg(\neg a)=a$
$2 \neg(a * b)=\neg a * \neg b$
3 if $a \leq b$ then $\neg b \sqsubseteq \neg a$
2. $\neg c_{0}=c_{1}, \neg c_{1}=c_{0}$ and $\neg c_{\alpha}=c_{\alpha}$
$5 \operatorname{Hom}_{\mathrm{GR}}(\mathbf{G}, \mathbf{3})$ with natural involution \neg, i.e. $\neg \varphi(a)=(\varphi(\neg a))^{\prime}$ satisfies $\varphi \cdot(\neg \varphi+\psi)=\psi \cdot \varphi$

6 there exist $\varphi_{0}, \varphi_{1} \in \operatorname{Hom}_{\mathrm{GR}}(\mathbf{G}, \mathbf{3})$ s.t. $\neg \varphi_{0}=\varphi_{1}$ and $\varphi+\varphi_{0}=\varphi$, for each $\varphi \in \operatorname{Hom}_{\mathrm{GR}}(\mathbf{G}, \mathbf{3})$.

The duality

Definition
$\mathfrak{I G R}$ is the category whose objects are GR spaces with involution with their morphisms.

The duality

Definition
$\mathfrak{I G} \mathfrak{R}$ is the category whose objects are GR spaces with involution with their morphisms.

Theorem
The category $\mathfrak{I G} \mathfrak{R}$ is the dual of the category $\mathfrak{I B S L}$.

The duality

Definition
$\mathfrak{I G} \mathfrak{R}$ is the category whose objects are GR spaces with involution with their morphisms.

Theorem
The category $\mathfrak{I G} \mathfrak{R}$ is the dual of the category $\mathfrak{I B S L}$.

Corollary
The category strong-inv- $\mathfrak{S A}$ is equivalent to the category $\mathfrak{I G} \mathfrak{R}$.

Thank you!

