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• The matrix: PWK = 〈WK, {1, 1/2}〉
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A closer look to WK

WK = 〈{0, 1, 12}, ·,+,
′
, 0, 1〉

a ≤+ b ⇐⇒ a+ b = b and a ≤· b ⇐⇒ a · b = a

1
2 1

1 0

0 1
2

a ≤+ b ⇐⇒ b′ ≤· a′

Let 3 be the involution and
constants free reduct of WK
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Involutive bisemilattices
Definition
An involutive bisemilattice is an algebra B = 〈B,+, ·,′ , 0, 1〉 of
type (2,2,1,0,0), satisfying:

I1 x+ x = x;
I2 x+ y = y + x;
I3 x+ (y + z) = (x+ y) + z;
I4 (x′)′ = x;
I5 x · y = (x′ + y′)′;
I6 x · (x′ + y) = x · y;
I7 0 + x = x;
I8 1 = 0′.

Theorem
V(WK) = IBSL.
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Strongly inverse systems

Definition
Given an arbitrary category C, a strongly inverse system in C is a
triple X = 〈Xi, pii′ , I〉 s.t.

• I is a join semilattice with lower bound;

• for each i ∈ I, Xi is an object in C;

• pii′ : Xi′ → Xi is a morphism of C, for each pair i ≤ i′, s.t.
pii = idXi

pii′ ◦ pi′i′′ = pii′′ for i ≤ i′ ≤ i′′.

I is called the index set of the system X , Xi are the terms and pii′
are referred to as bonding morphisms of X .
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Morphisms of strongly inv systems

Definition
A morphism between two strongly inverse systems X = 〈Xi, pii′ , I〉
and Y = 〈Yj , qjj′ , J〉, is a pair (ϕ, fj) s.t.

i) ϕ : J → I is a semilattice homomorphism;

ii) fj : Xϕ(j) → Yj is a morphism in C, for each j ∈ J , s.t.
whenever j ≤ j′, the following diagram commutes

Yj Yj′
qjj′

pϕ(j)ϕ(j′)
Xϕ(j) Xϕ(j′)

fj fj′
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Strongly direct systems

Definition

Let C be an arbitrary category. A strongly direct system in C is a
triple X = 〈Xi, pii′ , I〉 s.t.

• I is a is a (join) semilattice with lower bound;

• for each i ∈ I, Xi is an object in C;

• pii′ : Xi → Xi′ is a morphism of C, for each i ≤ i′, s.t.
pii = idXi

i ≤ i′ ≤ i′′ implies pi′i′′ ◦ pii′ = pii′′ .
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Morphisms
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(ϕ, fi) : X→ Y s.t.
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Figure: The commuting diagram defining morphisms of strongly direct
systems
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Duality
Definition
A category D is the dual category of C, if there exists an invertible
contravariant functor F : C→ D with inverse G s.t. G ◦ F = idC
and G ◦ F = idD.

Example

1 The category SA of Stone spaces is the dual of the category
BA of Boolean algebras.

2 The category PS of Priestley spaces is the dual of the
category DL of distributive lattices.

Remark

If C and D are dual categories, then strong-dir-C is the dual
category of strong-inv-D.
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Płonka sums

Definition

Let A be a strongly direct system of algebras of type ν,

the Płonka
sum over A is the algebra Pl(A) = 〈

⊔
I Ai, g

Pl〉, for g ∈ ν and

a1, . . . , an ∈
⊔
I Ai, with ar ∈ Air , we set j = i1 ∨ · · · ∨ in,

gPl(a1, . . . , an) = gAj (ϕi1j(a1), . . . , ϕinj(an)).

In case ν contains constants, then we define g = gA0 .
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A0 A1 A2
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1 b ¬b
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ϕ12



Płonka sums representation

Theorem
1 If A is a strongly direct system of Boolean algebras, then the

Płonka sum Pl(A) is an involutive bisemilattice.

2 If B is an involutive bisemilattice, then B is isomorphic to the
Płonka sum over a strongly direct system of Boolean algebras.
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Categories into play

Category Objects Morphisms
BA Boolean Algebras Homomorph. of BA

IBSL Involutive bisemilattices Hom. of IBSL
strong-dir-BA str. dir. systems of B.A. Morphisms of s.d.s.

SA Stone spaces continuous maps
strong-inv-SA str. inv. systems of Stone sp. Morphisms of s.i.s.



First result

Proposition

The category IBSL is equivalent to strong-dir-BA.

Theorem

The category strong-inv-SA is the dual of IBSL.

Is it possible to describe the dual in terms of a unique space?
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Duality for BSL

Theorem (Gierz, Romanowska)

The categories DB and GR are dual to each other under the
functors Homb(−,3) : DB→ GR and
HomGR(−,3) : GR→ DB.



GR spaces with involution

Definition

A GR space with involution G is a GR space

with a continous map
¬ : G→ G s.t. for any a ∈ G:

1 ¬(¬a) = a

2 ¬(a ∗ b) = ¬a ∗ ¬b

3 if a ≤ b then ¬b v ¬a

4 ¬c0 = c1, ¬c1 = c0 and ¬cα = cα

5 HomGR(G,3) with natural involution ¬, i.e.
¬ϕ(a) = (ϕ(¬a))′ satisfies ϕ · (¬ϕ+ ψ) = ψ · ϕ

6 there exist ϕ0, ϕ1 ∈ HomGR(G,3) s.t. ¬ϕ0 = ϕ1 and
ϕ+ ϕ0 = ϕ, for each ϕ ∈ HomGR(G,3).
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1 ¬(¬a) = a

2 ¬(a ∗ b) = ¬a ∗ ¬b

3 if a ≤ b then ¬b v ¬a

4 ¬c0 = c1, ¬c1 = c0 and ¬cα = cα

5 HomGR(G,3) with natural involution ¬, i.e.
¬ϕ(a) = (ϕ(¬a))′ satisfies ϕ · (¬ϕ+ ψ) = ψ · ϕ

6 there exist ϕ0, ϕ1 ∈ HomGR(G,3) s.t. ¬ϕ0 = ϕ1 and
ϕ+ ϕ0 = ϕ, for each ϕ ∈ HomGR(G,3).
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The duality

Definition
IGR is the category whose objects are GR spaces with involution
with their morphisms.

Theorem

The category IGR is the dual of the category IBSL.

Corollary
The category strong-inv-SA is equivalent to the category IGR.
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Thank you!


