Two systems of point-free affine geometry

Giangiacomo Gerla¹ Rafał Gruszczyński²

¹IIASS University of Salerno Italy

²Department of Logic Nicolaus Copernicus University in Toruń Poland

TACL 2017

G. Gerla, R. Gruszczyński Point-free affine geometry

2 Half-plane structures

G. Gerla, R. Gruszczyński Point-free affine geometry

- A. N. Whitehead and ovate class of regions
- aleksander Śniatycki and half-planes
- affine geometry
- Interpretended in the second secon
- \bigcirc (regular) open convex subsets of \mathbb{R}^2 «the litmus paper»

Inspirations and objectives

A. N. Whitehead and ovate class of regions

- a Aleksander Śniatycki and half-planes
- affine geometry
- Interpretended in the second secon
- \bigcirc (regular) open convex subsets of \mathbb{R}^2 «the litmus paper»

- A. N. Whitehead and ovate class of regions
- Aleksander Śniatycki and half-planes
- affine geometry
- Interpretended in the second secon
- \bigcirc (regular) open convex subsets of \mathbb{R}^2 «the litmus paper»

- A. N. Whitehead and ovate class of regions
- Aleksander Śniatycki and half-planes
- affine geometry
- Interpretation for the second seco
- \bigcirc (regular) open convex subsets of \mathbb{R}^2 «the litmus paper»

- A. N. Whitehead and ovate class of regions
- Aleksander Śniatycki and half-planes
- affine geometry
- follow geometrical intuitions
- \bigcirc (regular) open convex subsets of \mathbb{R}^2 «the litmus paper»

- A. N. Whitehead and ovate class of regions
- Aleksander Śniatycki and half-planes
- affine geometry
- follow geometrical intuitions
- \bigcirc (regular) open convex subsets of \mathbb{R}^2 «the litmus paper»

Outline

G. Gerla, R. Gruszczyński Point-free affine geometry

Basic notions of Śniatycki's approach

We begin with an examination of triples $\langle \mathbf{R}, \leq, \mathbf{H} \rangle$ in which:

- R is a non-empty set whose elements are called regions,
- $\langle \mathbf{R}, \leq \rangle$ is a complete Boolean lattice,
- H ⊆ R is a set whose elements are called half-planes (we assume that 1 and 0 are not half-planes).

Specific axioms for half-planes

$h \in \mathbf{H} \longrightarrow -h \in \mathbf{H}$ (H1)

$$\forall_{x_1, x_2, x_3 \in \mathbf{R}} \Big(\exists_{h \in \mathbf{H}} \forall_{i \in \{1, 2, 3\}} (x_i \cdot h \neq \mathbf{0} \land x_i \cdot - h \neq \mathbf{0}) \lor$$

$$\exists_{h_1, h_2, h_3 \in \mathbf{H}} (x_1 \leq h_1 \land x_2 \leq h_2 \land x_3 \leq h_3 \land$$
(H2)

$$x_1 + x_2 \perp h_2 \land x_1 + x_3 \perp h_2 \land x_2 + x_3 \perp h_1) \Big)$$

Specific axioms for half-planes

$$h \in \mathbf{H} \longrightarrow -h \in \mathbf{H}$$
 (H1)

$$\forall_{x_1, x_2, x_3 \in \mathbf{R}} \Big(\exists_{h \in \mathbf{H}} \forall_{i \in \{1, 2, 3\}} (x_i \cdot h \neq \mathbf{0} \land x_i \cdot - h \neq \mathbf{0}) \lor$$

$$\exists_{h_1, h_2, h_3 \in \mathbf{H}} (x_1 \le h_1 \land x_2 \le h_2 \land x_3 \le h_3 \land$$
(H2)

$$x_1 + x_2 \perp h_2 \land x_1 + x_3 \perp h_2 \land x_2 + x_3 \perp h_1) \Big)$$

Specific axioms for half-planes

$\forall_{h_1,h_2,h_3\in\mathbf{H}} (h_2 \le h_1 \land h_3 \le h_1 \longrightarrow h_2 \le h_3 \lor h_3 \le h_2)$ (H3)

Figure: In Beltramy-Klein model there are half-planes contained in a given one but incomparable in terms of \leq . In the picture above h_1 and h_2 are both parts of h, yet neither $h_1 \leq h_2$ nor $h_2 \leq h_1$. The purpose of (H3) is to ensure that parallelity of lines is a Euclidean relation.

Specific axioms for half-planes

 $\forall_{h_1,h_2,h_3 \in \mathbf{H}} (h_2 \le h_1 \land h_3 \le h_1 \longrightarrow h_2 \le h_3 \lor h_3 \le h_2)$ (H3)

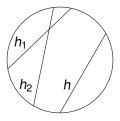


Figure: In Beltramy-Klein model there are half-planes contained in a given one but incomparable in terms of \leq . In the picture above h_1 and h_2 are both parts of h, yet neither $h_1 \leq h_2$ nor $h_2 \leq h_1$. The purpose of (H3) is to ensure that parallelity of lines is a Euclidean relation.

Lines and parallelity relation

Definition (of a line)

 $L \in \mathcal{P}(\mathbf{H})$ is a line iff there is a half-plane *h* such that $L = \{h, -h\}$:

$$L \in \mathfrak{L} \stackrel{\mathrm{df}}{\longleftrightarrow} \exists_{h \in \mathbf{H}} L = \{h, -h\}.$$
 (df \mathfrak{L})

Definition (of parallelity relation)

 $L_1, L_2 \in \mathfrak{L}$ are parallel iff there are half-planes $h \in L_1$ and $h' \in L_2$ which are disjoint:

$$L_1 \parallel L_2 \stackrel{\mathrm{df}}{\longleftrightarrow} \exists_{h \in L_1} \exists_{h' \in L_2} h \perp h' \,. \tag{df} \parallel)$$

In case L_1 and L_2 are not parallel we say they intersect and write: $L_1 \not\parallel L_2$.

Angles and bowties...

Definition

Given two intersecting lines L₁ and L₂ by an angle we understand a region x such that for h₁ ∈ L₁ and h₂ ∈ L₂ we have x = h₁ ⋅ h₂:

$$x ext{ is an angle} \stackrel{\mathrm{df}}{\longleftrightarrow} \exists_{L_1, L_2 \in \mathfrak{L}} \left(L_1 \not\parallel L_2 \land \exists_{h_1 \in L_1} \exists_{h_2 \in L_2} x = h_1 \cdot h_2 \right).$$

- An angle x is opposite to an angle y iff there are $h_1, h_2 \in \mathbf{H}$ such that $x = h_1 \cdot h_2$ and $y = -h_1 \cdot -h_2$.
- A bowtie is the sum of an angle and its opposite.

Angles and bowties...

Definition

Given two intersecting lines L₁ and L₂ by an angle we understand a region x such that for h₁ ∈ L₁ and h₂ ∈ L₂ we have x = h₁ ⋅ h₂:

$$x ext{ is an angle} \stackrel{\mathrm{df}}{\longleftrightarrow} \exists_{L_1,L_2 \in \mathfrak{L}} \left(L_1 \nexists L_2 \land \exists_{h_1 \in L_1} \exists_{h_2 \in L_2} x = h_1 \cdot h_2 \right).$$

- An angle x is opposite to an angle y iff there are $h_1, h_2 \in \mathbf{H}$ such that $x = h_1 \cdot h_2$ and $y = -h_1 \cdot -h_2$.
- A bowtie is the sum of an angle and its opposite.

Angles and bowties...

Definition

Given two intersecting lines L₁ and L₂ by an angle we understand a region x such that for h₁ ∈ L₁ and h₂ ∈ L₂ we have x = h₁ ⋅ h₂:

$$x ext{ is an angle} \stackrel{\mathrm{df}}{\longleftrightarrow} \exists_{L_1,L_2 \in \mathfrak{L}} \left(L_1 \nexists L_2 \land \exists_{h_1 \in L_1} \exists_{h_2 \in L_2} x = h_1 \cdot h_2 \right).$$

- An angle x is opposite to an angle y iff there are $h_1, h_2 \in \mathbf{H}$ such that $x = h_1 \cdot h_2$ and $y = -h_1 \cdot -h_2$.
- A bowtie is the sum of an angle and its opposite.

Angles and bowties...

Definition

Given two intersecting lines L₁ and L₂ by an angle we understand a region x such that for h₁ ∈ L₁ and h₂ ∈ L₂ we have x = h₁ ⋅ h₂:

$$x ext{ is an angle} \stackrel{ ext{df}}{\longleftrightarrow} \exists_{L_1,L_2 \in \mathfrak{L}} \left(L_1 \nexists L_2 \land \exists_{h_1 \in L_1} \exists_{h_2 \in L_2} x = h_1 \cdot h_2
ight).$$

- An angle x is opposite to an angle y iff there are $h_1, h_2 \in \mathbf{H}$ such that $x = h_1 \cdot h_2$ and $y = -h_1 \cdot -h_2$.
- A bowtie is the sum of an angle and its opposite.

... and stripes

Definition

If $L_1 = \{h_1, -h_1\}$ and $L_2 = \{h_2, -h_2\}$ are parallel, yet distinct, lines and h_1 and h_2 are their disjoint sides, then $-h_1 \cdot -h_2$ is stripe.

Examples in the intended model

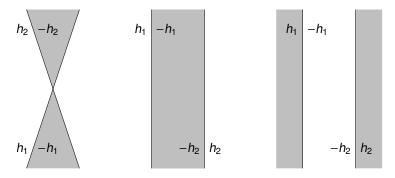


Figure: Fragments of a bowtie, a stripe and the complement of a stripe. These are all possible non-zero forms of the disjoint union of two distinct half-planes in the intended model. Any of the two shaded triangular areas of the bowtie is an angle.

Specific axioms for half-planes

$$\begin{aligned} h_1 \cdot h_2 &\leq (h_3 \cdot h_4) + (-h_3 \cdot -h_4) \longrightarrow \\ h_3 &= h_4 \lor h_1 \cdot h_2 \leq h_3 \cdot h_4 \lor h_1 \cdot h_2 \leq -h_3 \cdot -h_4 \,. \end{aligned}$$
(H4)

Specific axioms for half-planes

$$\begin{aligned} h_1 \cdot h_2 &\leq (h_3 \cdot h_4) + (-h_3 \cdot -h_4) \longrightarrow \\ h_3 &= h_4 \lor h_1 \cdot h_2 \leq h_3 \cdot h_4 \lor h_1 \cdot h_2 \leq -h_3 \cdot -h_4. \end{aligned}$$
(H4)

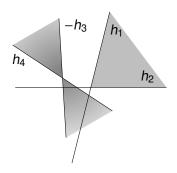


Figure: A geometrical interpretation of (H4).

G. Gerla, R. Gruszczyński Point-free affine geometry

Specific axioms for half-planes

$$\begin{aligned} h_1 \cdot h_2 &\leq (h_3 \cdot h_4) + (-h_3 \cdot -h_4) \longrightarrow \\ h_3 &= h_4 \lor h_1 \cdot h_2 \leq h_3 \cdot h_4 \lor h_1 \cdot h_2 \leq -h_3 \cdot -h_4. \end{aligned}$$
(H4)

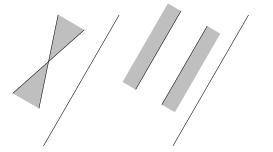


Figure: These two situations are excluded by the special case of (H4).

Points

Definition

Given lines L_1, \ldots, L_k by a net determined by them we understand the following set:

$$(L_1\ldots L_k)\coloneqq \{g_1\cdot\ldots\cdot g_k\mid \forall_{i\leqslant k}\ g_i\in L_i\}.$$

Lines L_1, \ldots, L_k split a region x into m parts iff the set:

$$\{x \cdot a \mid a \in (L_1 \dots L_k) \land x \cdot a \neq \mathbf{0}\}$$

has exactly *m* elements.

Points

Definition

- If $L_1, \ldots, L_k \in \mathfrak{L}$, an arbitrary element of the Cartesian product $L_1 \times \ldots \times L_k$ will be called an *H*-sequence.
- An *H*-sequence $\langle h_1, \ldots, h_k \rangle$ is positive iff $h_1 \cdot \ldots \cdot h_k \neq 0$, otherwise it is non-positive.
- Two H-sequences ⟨g₁,..., g_k⟩ and ⟨g^{*}₁,..., g^{*}_k⟩ are opposite iff for all i ≤ n, g^{*}_i is the complement of g_i.

Points

Definition

- If $L_1, \ldots, L_k \in \mathfrak{Q}$, an arbitrary element of the Cartesian product $L_1 \times \ldots \times L_k$ will be called an *H*-sequence.
- An *H*-sequence $\langle h_1, \ldots, h_k \rangle$ is positive iff $h_1 \cdot \ldots \cdot h_k \neq \mathbf{0}$, otherwise it is non-positive.
- Two H-sequences ⟨g₁,..., g_k⟩ and ⟨g^{*}₁,..., g^{*}_k⟩ are opposite iff for all i ≤ n, g^{*}_i is the complement of g_i.

Points

Definition

- If $L_1, \ldots, L_k \in \mathfrak{Q}$, an arbitrary element of the Cartesian product $L_1 \times \ldots \times L_k$ will be called an *H*-sequence.
- An *H*-sequence $\langle h_1, \ldots, h_k \rangle$ is positive iff $h_1 \cdot \ldots \cdot h_k \neq \mathbf{0}$, otherwise it is non-positive.
- Two H-sequences (g₁,..., g_k) and (g₁^{*},..., g_k^{*}) are opposite iff for all i ≤ n, g_i^{*} is the complement of g_i.

Points

Definition

A pseudopoint is any net (L_1L_2) such that all its four *H*-sequences are positive, equivalently one could define a pseudopoint as an unordered pair of non-parallel lines.

For any pseudopoint (L_1L_2) , the lines L_1 and L_2 will be called its determinants. In case we have two pseudopoints (L_1L_2) and (L_1L_3) we say that they share a determinant L_1 .

Points

Definition

Lines L_1 , L_2 and L_3 are tied iff $L_1 \times L_2 \times L_3$ contains two different non-positive and opposite *H*-sequences.

Definition

A pseudopoint (L_1L_2) lies on L_3 iff L_1, L_2 and L_3 are tied.

Definition

Psedopoints (L_1L_2) and (L_3L_4) are collocated (in symbols: $(L_1L_2) \sim (L_3L_4)$) iff (L_1L_2) lies on both L_3 and L_4 .

Points

Definition

Lines L_1 , L_2 and L_3 are tied iff $L_1 \times L_2 \times L_3$ contains two different non-positive and opposite *H*-sequences.

Definition

A pseudopoint (L_1L_2) lies on L_3 iff L_1, L_2 and L_3 are tied.

Definition

Psedopoints (L_1L_2) and (L_3L_4) are collocated (in symbols: $(L_1L_2) \sim (L_3L_4)$) iff (L_1L_2) lies on both L_3 and L_4 .

Points

Definition

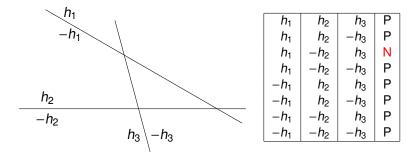
Lines L_1 , L_2 and L_3 are tied iff $L_1 \times L_2 \times L_3$ contains two different non-positive and opposite *H*-sequences.

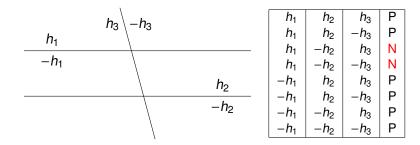
Definition

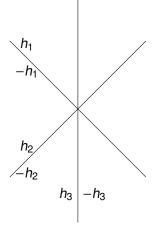
A pseudopoint (L_1L_2) lies on L_3 iff L_1, L_2 and L_3 are tied.

Definition

Psedopoints (L_1L_2) and (L_3L_4) are collocated (in symbols: $(L_1L_2) \sim (L_3L_4)$) iff (L_1L_2) lies on both L_3 and L_4 .







h_1	h ₂	h ₃	Ρ
h_1	h ₂	$-h_3$	Р
h_1	$-h_2$	h ₃	Ν
h_1	$-h_2$	$-h_3$	Р
$-h_1$	h_2	h ₃	Р
$ -h_1 $	h ₂	$-h_3$	Ν
$ -h_1 $	$-h_2$	h ₃	Р
-h ₁	$-h_2$	$-h_3$	Р

Points

Definition

Collocation of pseudopoints is an equivalence relation, therefore points can be defined as its equivalence classes:

$$\Pi := \pi/_{\sim} \,. \tag{df} \, \Pi)$$

Incidence relation

Definition

 $\alpha \in \Pi$ is incident with a line *L* iff there is a pseudopoint $(L_1L_2) \in \alpha$ such that (L_1L_2) lies on *L*.

Betweenness relation

Definition

- $\alpha \in \Pi$ lies in the half-plane *h* iff there is $(L_1L_2) \in \alpha$ such that for every $x \in (L_1L_2)$, $x \cdot h \neq \mathbf{0}$.
- A line L = {h, h} lies between points α and β iff α lies in h and β lies in h.

Definition

Points α , β and γ are collinear iff some three pseudpoints from, respectively, α , β and γ share a determinant *L*.

Betweenness relation

Definition

- $\alpha \in \Pi$ lies in the half-plane *h* iff there is $(L_1L_2) \in \alpha$ such that for every $x \in (L_1L_2)$, $x \cdot h \neq \mathbf{0}$.
- A line L = {h, − h} lies between points α and β iff α lies in h and β lies in − h.

Definition

Points α , β and γ are collinear iff some three pseudpoints from, respectively, α , β and γ share a determinant *L*.

Betweenness relation

Definition

- $\alpha \in \Pi$ lies in the half-plane *h* iff there is $(L_1L_2) \in \alpha$ such that for every $x \in (L_1L_2)$, $x \cdot h \neq \mathbf{0}$.
- A line L = {h, − h} lies between points α and β iff α lies in h and β lies in − h.

Definition

Points α , β and γ are collinear iff some three pseudpoints from, respectively, α , β and γ share a determinant *L*.

Betweenness relation

Definition

A point γ is between points α and β iff:

- α, β and γ are collinear and
- γ is incident with a line *L* which lies between α and β .

Śniatycki's Theorem

Theorem

Consider an H-structure:

 $\langle \mathbf{R}, \leq, \mathbf{H} \rangle$.

Individual notions of point and line and relational notions of incidence and betweenness are definable in such a way that the corresponding structure $\langle \Pi, \mathfrak{L}, \epsilon, \mathbf{B} \rangle$ satisfies all axioms of a system of geometry of betweenness and incidence.

Outline

G. Gerla, R. Gruszczyński Point-free affine geometry

Basic notions

We now turn our attentions to structures $\langle \mathbf{R}, \leq, \mathbf{O} \rangle$ such that:

- elements of **R** are called regions,
- $\leq \subseteq \mathbf{R}^2$ is part of relation,
- $O \subseteq R$ and its elements are called ovals.

First axioms

 $\langle \mathbf{R}, \leq \rangle$ is a complete atomless Boolean lattice. (00) **O** is an algebraic closure system in $\langle \mathbf{R}, \leq \rangle$ containing **0**. (01) **O**⁺ is dense in $\langle \mathbf{R}, \leq \rangle$. (02)

The hull operator

Definition

hull: $\mathbf{R} \longrightarrow \mathbf{R}$ is the operation given by:

$$\operatorname{hull}(x) := \bigwedge \{a \in \mathbf{O} \mid x \leq a\}.$$
 (df hull)

For $x \in \mathbf{R}$ the object hull(x) will be called the oval generated by x.

Lines in the oval setting

Definition

By a line we understand a two element set $L = \{a, b\}$ of disjoint ovals, such that for any set of disjoint ovals $\{c, d\}$ with $a \le c$ and $b \le d$ it is the case that a = c and b = d:

$$X \in \mathfrak{L} \stackrel{\text{df}}{\longleftrightarrow} \exists_{a,b \in \mathbf{O}^+} \left(a \perp b \land X = \{a,b\} \land \\ \forall_{c,d \in \mathbf{O}^+} (c \perp d \land a \leqslant c \land b \leqslant d \longrightarrow a = c \land b = d) \right).$$
(df \mathfrak{L})

For a line $L = \{a, b\}$ the elements of L will be called the sides of L.

Lines in the oval setting

Definition

Two lines $L_1 = \{a, b\}$ and $L_2 = \{c, d\}$ are paralell iff there is a side of L_1 which is disjoint from a side of L_2 :

$$L_1 \parallel L_2 \stackrel{\mathrm{df}}{\longleftrightarrow} \exists_{a \in L_1} \exists_{b \in L_2} a \perp b. \qquad (\mathrm{df} \parallel)$$

In case L_1 is not parallel to L_2 we say that L_1 and L_2 intersect and write $L_1 \not\parallel L_2$.

Half-planes in the oval setting

Definition

A region x is a half-plane iff $x, -x \in \mathbf{O}^+$; the set of all half-planes will be denoted by '**H**':

$$x \in \mathbf{H} \stackrel{\mathrm{df}}{\longleftrightarrow} \{x, -x\} \subseteq \mathbf{O}^+$$
. (df **H**)

Half-planes and lines in oval setting

Definition

Let B_1, \ldots, B_n be non-empty spheres in \mathbb{R}^2 such that for $1 \leq i \neq j \leq n$: Cl $B_i \cap$ Cl $B_j = \emptyset$. Consider the subspace \mathscr{B}_n of \mathbb{R}^2 induced by $B_1 \cup \ldots \cup B_n$. Put:

• $r\mathscr{B}_n := \{x \mid x \text{ is a regular open element of } \mathscr{B}_n\}$

• **O** := {
$$a \in r\mathscr{B}_n \mid a = \bigcup_{1 \le i \le n} B_n \lor \exists_{1 \le i \le n} \exists_{b \in Conv} a = B_i \cap b$$
}

We will call $\mathbb{B}_n := \langle r \mathscr{B}_n, \subseteq, \mathbf{O} \rangle$ the *n*-sphere structure.

Lines and half-planes in the oval setting

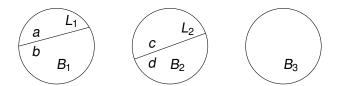


Figure: The structure \mathbb{B}_3 .

Lines and half-planes in the oval setting

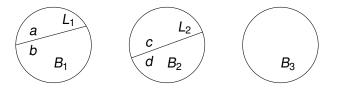


Figure: The structure \mathbb{B}_3 .

Fact

For every $n \in \mathbb{N}$, \mathbb{B}_n is a complete Boolean lattice and the axioms (01) and (02) are satisfied in \mathbb{B}_n .

Lines and half-planes in the oval setting

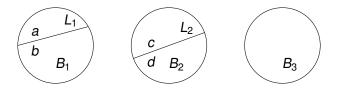


Figure: The structure \mathbb{B}_3 .

Fact

For every $n \in \mathbb{N}$, the set of lines of \mathbb{B}_n contains sets $\{B_i \cap h, B_i \cap -h\}$, where *h* is a half-plane in the prototypical structure \mathbb{R}^2 and both $B_i \cap h$ and $B_i \cap -h$ are non-empty. Two lines contained in different balls are always parallel.

Lines and half-planes in the oval setting

Figure: The structure \mathbb{B}_1 .

Fact

In \mathbb{B}_1 the set of lines is equal to the set of all unordered pairs of the form $\{B_1 \cap h, B_1 \cap -h\}$. The sides of a line in \mathbb{B}_1 are half-planes in this structure.

Lines and half-planes in the oval setting

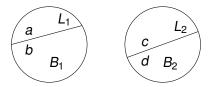


Figure: The structure \mathbb{B}_2 .

Fact

 B_1 and B_2 are the only half-planes of \mathbb{B}_2 and thus $\{B_1, B_2\}$ is the only line of \mathbb{B}_2 whose sides are half-planes. This line is parallel to every other line. In general, in \mathbb{B}_n for $n \ge 2$ any pair $\{B_i, B_j\}$ with $i \ne j$ is a line parallel to every line in \mathbb{B}_n .

Lines and half-planes in the oval setting

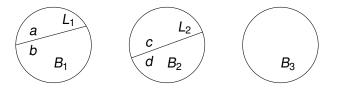


Figure: The structure \mathbb{B}_3 .

Fact

There are no half-planes in \mathbb{B}_n for $n \ge 3$, and thus there are no lines whose sides are half-planes.

Specific axioms

Definition

A finite partition of the universe **1** is a set $\{x_1, \ldots, x_n\} \subseteq \mathbf{R}$ whose elements are pairwise disjoint and such that $\bigvee \{x_1, \ldots, x_n\} = \mathbf{1}$. For a partition $P = \{x_1, \ldots, x_n\}$ and $x \in \mathbf{R}$ by the partition of x induced by P we understand the following set:

$$\{x \cdot x_i \mid 1 \leq i \leq n \land x \cdot x_i \neq \mathbf{0}\}.$$

The sides of a line form a partition of 1; equivalently: the sides of a line are half-planes.

Specific axioms

Definition

A finite partition of the universe **1** is a set $\{x_1, \ldots, x_n\} \subseteq \mathbf{R}$ whose elements are pairwise disjoint and such that $\bigvee \{x_1, \ldots, x_n\} = \mathbf{1}$. For a partition $P = \{x_1, \ldots, x_n\}$ and $x \in \mathbf{R}$ by the partition of x induced by P we understand the following set:

$$\{x \cdot x_i \mid 1 \leq i \leq n \wedge x \cdot x_i \neq \mathbf{0}\}.$$

The sides of a line form a partition of **1**; equivalently: the sides of a line are half-planes.

(03)

Specific axioms

For any $a, b, c \in \mathbf{O}$ which are not aligned there is a line which separates a from hull(b + c). (04)

Specific axioms

If distinct lines L_1 and L_2 both cross an oval a, then they split a in at least three parts. (05)

Figure: L_1 and L_2 split the oval into 3 parts, while L_3 and L_4 split it into 4 parts.

Specific axioms

If distinct lines L_1 and L_2 both cross an oval a, then they split a in at least three parts. (05)

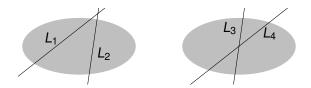


Figure: L_1 and L_2 split the oval into 3 parts, while L_3 and L_4 split it into 4 parts.

Specific axioms

No half-plane is part of any stripe and any angle. (06)

The purpose of (06) is to prove that parallelity of lines is transitive.

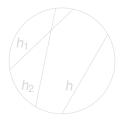


Figure: In Beltramy-Klein model: *h* is a part of the angle $h_2 \cdot -h_1$.

Specific axioms

No half-plane is part of any stripe and any angle. (06)

The purpose of (06) is to prove that parallelity of lines is transitive.

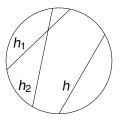


Figure: In Beltramy-Klein model: *h* is a part of the angle $h_2 \cdot -h_1$.

O-structures

Definition

A triple $\langle \mathbf{R}, \leq, \mathbf{O} \rangle$ is an O-structure iff $\langle \mathbf{R}, \leq, \mathbf{O} \rangle$ satisfies axioms (00)–(06).

Main theorems

Theorem

Let $\mathfrak{D} = \langle \mathbf{R}, \leq, \mathbf{O} \rangle$ be an O-structure and $\mathfrak{D}' \coloneqq \langle \mathbf{R}, \leq, \mathbf{O}, \mathbf{H} \rangle$ be the structure obtained from \mathfrak{D} by defining **H** as the set of all ovals whose complements are ovals. Then \mathfrak{D}' satisfies all axioms for H-structures.

Theorem

If \mathfrak{D}' is the extension of an O-structure \mathfrak{D} , then individual notions of point and line and relational notions of incidence and betweenness are definable from the operations and notions of \mathfrak{D}' in such a way that all the axioms of a system of affine geometry are satisfied by the corresponding structure $\langle \mathbf{P}, \mathfrak{L}, \epsilon, \mathbf{B} \rangle$.

Main theorems

Theorem

Let $\mathfrak{D} = \langle \mathbf{R}, \leq, \mathbf{O} \rangle$ be an O-structure and $\mathfrak{D}' \coloneqq \langle \mathbf{R}, \leq, \mathbf{O}, \mathbf{H} \rangle$ be the structure obtained from \mathfrak{D} by defining **H** as the set of all ovals whose complements are ovals. Then \mathfrak{D}' satisfies all axioms for H-structures.

Theorem

If \mathfrak{D}' is the extension of an O-structure \mathfrak{D} , then individual notions of point and line and relational notions of incidence and betweenness are definable from the operations and notions of \mathfrak{D}' in such a way that all the axioms of a system of affine geometry are satisfied by the corresponding structure $\langle \mathbf{P}, \mathfrak{L}, \epsilon, \mathbf{B} \rangle$.

A proof of (H4)

We prove more general statement according to which for any $a \in \mathbf{O}$:

$$a \leq (h_3 \cdot h_4) + (-h_3 \cdot - h_4) \longrightarrow h_3 = h_4 \lor a \leq h_3 \cdot h_4 \lor a \leq -h_3 \cdot - h_4,$$

and use the fact that for any half planes h_1 and h_2 , $h_1 \cdot h_2 \in \mathbf{O}$. The case in which $a = \mathbf{0}$ is trivial. In case $h_3 = -h_4$ we have that:

$$(h_3 \cdot h_4) + (-h_3 \cdot - h_4) = (-h_4 \cdot h_4) + (h_4 \cdot - h_4) = \mathbf{0}.$$

Thus we assume that (a) $h_3 \neq -h_4$. Let:

$$a \leq (h_3 \cdot h_4) + (-h_3 \cdot - h_4) \tag{(\bullet)}$$

and (b) $h_3 \neq h_4$. At the same time assume towards contradiction that:

$$a \leq h_3 \cdot h_4$$
 and $a \leq -h_3 \cdot -h_4$. (‡)

A proof of (H4)

By (a) and (b) lines $L_3 = \{h_3, -h_3\}$ and $L_4 = \{h_4, -h_4\}$ are distinct. From (•) and (‡) we get that $a \cdot h_3 \cdot h_4 \neq \mathbf{0} \neq a \cdot -h_3 \cdot -h_4$, so both L_3 and L_4 cross *a* and according to axiom (05) they split *a* into at least three parts. Yet (•) entails that:

$$\mathbf{a} \cdot - h_3 \cdot h_4 \leqslant ((h_3 \cdot h_4) + (-h_3 \cdot - h_4)) \cdot - h_3 \cdot h_4 = \mathbf{0}$$

and

$$\mathbf{a} \cdot h_3 \cdot - h_4 \leq ((h_3 \cdot h_4) + (-h_3 \cdot - h_4)) \cdot h_3 \cdot - h_4 = \mathbf{0}$$

and in consequence the set:

$$\{a \cdot x \mid x \in (L_3L_4) \land a \cdot x \neq \mathbf{0}\}$$

has exactly two elements, a contradiction.

Giangiacomo Gerla and Rafał Gruszczyński, **Point-free geometry, ovals and half-planes**, *Review of Symbolic Logic*, Volume 10, Issue 2 (2017), pp. 237–258

Aleksander Śniatycki, **An axiomatics of non-Desarguean** geometry based on the half-plane as the primitive notion, *Dissertationes Mathematicae*, no. LIX, PWN, Warszawa, 1968

Research supported by National Science Center, Poland, grant *Applications of mereology in systems of point-free geometry*, no. 2014/13/B/HS1/00766.

The End

G. Gerla, R. Gruszczyński Point-free affine geometry