Projective WS5-Algebras

Alex Citkin

TACL, June, 2017

Alex Citkin TACL, June, 2017 1 / 28

Outline

Why WS5-algebras?

Free WS5-algebra of Rank 1.

Projective Finitely Presented WS5-Algebras.

Primitive Quasivarieties of WS5-algebras.

Some Generalizations

Alex Citkin TACL, June, 2017 2 / 28

Logic **WS5** and it's Extentions

For modal intuitionistic logics, the logic **WS5** plays a role similar to the role played by the classical logic for superintuitionistic propositional logics. This similarity became even more apparent after in [Bezhanishvili, 2001]) Glivenko's Theorem had been extended to MIPC.

Logic **WS5** and it's Extentions

For modal intuitionistic logics, the logic **WS5** plays a role similar to the role played by the classical logic for superintuitionistic propositional logics. This similarity became even more apparent after in [Bezhanishvili, 2001]) Glivenko's Theorem had been extended to MIPC.

Logic **WS5** an its extensions can also be viewed as a meta-logics for corresponding multiple-conclusion superintuitionistic logics. This correspondence preserves a lot of important properties (like decidability, finite axiomatizability, local tabularity, etc.)

WS5-Algebras

The algebraic models for WS5: the Heyting algebras equipped with \square and the open elements form a Boolean algebra - the WS5-algebras, that is algebras $\mathbf{A} = (\mathbf{A}; \wedge, \vee, \rightarrow, \mathbf{1}, \mathbf{0}, \square)$, where $(\mathbf{A}; \wedge, \vee, \rightarrow, \mathbf{1}, \mathbf{0})$ is a Heyting algebra and \square satisfies the following conditions

- (M0) $\Box \mathbf{1} \approx \mathbf{1}$;
- $(M1) \quad \Box x \rightarrow x \approx 1;$
- (*M*2) \Box ($x \rightarrow y$) \rightarrow ($\Box x \rightarrow \Box y$) \approx **1**;
- (M3) $\Box x \rightarrow \Box \Box x \approx 1$;
- (*M*4) $\neg \Box \neg \Box x \approx \Box x$.

WS5-Algebras

The algebraic models for WS5: the Heyting algebras equipped with \square and the open elements form a Boolean algebra - the WS5-algebras, that is algebras $\mathbf{A}=(\mathbf{A};\wedge,\vee,\rightarrow,\mathbf{1},\mathbf{0},\square)$, where $(\mathbf{A};\wedge,\vee,\rightarrow,\mathbf{1},\mathbf{0})$ is a Heyting algebra and \square satisfies the following conditions

$$\begin{array}{ll} (\textit{M0}) & \Box \mathbf{1} \approx \mathbf{1}; \\ (\textit{M1}) & \Box x \rightarrow x \approx \mathbf{1}; \\ (\textit{M2}) & \Box (x \rightarrow y) \rightarrow (\Box x \rightarrow \Box y) \approx \mathbf{1}; \\ (\textit{M3}) & \Box x \rightarrow \Box \Box x \approx \mathbf{1}; \\ (\textit{M4}) & \neg \Box \neg \Box x \approx \Box x. \end{array}$$

 \mathcal{M} denotes the variety of all **WS5**-algebras.

WS5-Algebras

The algebraic models for WS5: the Heyting algebras equipped with \square and the open elements form a Boolean algebra - the **WS5**-algebras, that is algebras $\mathbf{A} = (\mathbf{A}; \wedge, \vee, \rightarrow, \mathbf{1}, \mathbf{0}, \square)$, where $(A; \land, \lor, \rightarrow, 1, 0)$ is a Heyting algebra and \square satisfies the following conditions

$$\begin{array}{ll} (M0) & \Box \mathbf{1} \approx \mathbf{1}; \\ (M1) & \Box x \to x \approx \mathbf{1}; \\ (M2) & \Box (x \to y) \to (\Box x \to \Box y) \approx \mathbf{1}; \\ (M3) & \Box x \to \Box \Box x \approx \mathbf{1}; \\ (M4) & \neg \Box \neg \Box x \approx \Box x. \end{array}$$

 \mathcal{M} denotes the variety of all **WS5**-algebras.

The subdirectly irreducible (s.i.) **WS5**-algebras are exactly the **WS5**-algebras having two open elements: $\mathbf{0}$ and $\mathbf{1}$.

4 / 28

Free WS5-algebra of Rank 1

Free Algebras of Rank 1 in Finitely Approximated Variety

Let $\mathcal V$ be a variety of algebras of an arbitrary type. Assume that $\mathcal V$ is finitely approximated, that is, $\mathcal V$ is generated by its finite s.i. algebras.

Free Algebras of Rank 1 in Finitely Approximated Variety

Let $\mathcal V$ be a variety of algebras of an arbitrary type. Assume that $\mathcal V$ is finitely approximated, that is, $\mathcal V$ is generated by its finite s.i. algebras.

Every free algebra $\mathbf{F}_{\mathcal{V}}(n)$ is finitely approximated, that is, $\mathbf{F}_{\mathcal{V}}(n)$ is a subdirect product of finite s.i. algebras. Hence, in order to construct $\mathbf{F}_{\mathcal{V}}(1)$, it is enough

- ullet to take finite s.i. single-generated algebras that generate ${\cal V}$
- to construct the direct product of them
- to take a subalgebra of the direct product generated by the element each projection of which is a generator of the respective factor.

Free Algebras of Rank 1 in Finitely Approximated Variety

Let $\mathcal V$ be a variety of algebras of an arbitrary type. Assume that $\mathcal V$ is finitely approximated, that is, $\mathcal V$ is generated by its finite s.i. algebras.

Every free algebra $\mathbf{F}_{\mathcal{V}}(n)$ is finitely approximated, that is, $\mathbf{F}_{\mathcal{V}}(n)$ is a subdirect product of finite s.i. algebras. Hence, in order to construct $\mathbf{F}_{\mathcal{V}}(1)$, it is enough

- ullet to take finite s.i. single-generated algebras that generate ${\cal V}$
- to construct the direct product of them
- to take a subalgebra of the direct product generated by the element each projection of which is a generator of the respective factor.

For instance, if \mathcal{H} is a variety of all Heyting algebras, in order to construct $\mathbf{F}_{\mathcal{H}}(1)$, one can take a direct product \mathbf{P} all s.i. finite single-generated algebras $\mathbf{Z}_{2i+1}, i>1$ and take a subalgebra \mathbf{Z} generated by the element $(\mathbf{g}_3,\mathbf{g}_5,\dots)$, where \mathbf{g}_{2i+1} is a generator of \mathbf{Z}_{2i+1} .

S.i. **WS5**-algebra is single-generated if and only if its h-reduct is a single-generated Heyting algebra.

S.i. **WS5**-algebra is single-generated if and only if its h-reduct is a single-generated Heyting algebra.

Single-generated algebras having more then one generator.

S.i. **WS5**-algebra is single-generated if and only if its h-reduct is a single-generated Heyting algebra.

Single-generated algebras having more then one generator.

We leave the following single-generated algebras

We have a set $\{\mathbf{Z}_k, k>0\}$ of s.i. **WS5**-algebras generating \mathcal{M} , and each algebra \mathbf{Z}_k is generated by g_k . Hence, the subalgebra \mathbf{Z} of

$$\mathsf{P} := \prod_{k>0} \mathsf{Z}_k$$

generated by element

$$\mathbf{g}=(g_1,g_2,\dots). \tag{1}$$

is isomorphic to $\mathbf{F}_{\mathcal{M}}(1)$.

Degrees of Elements

Leveled Elements

Definition

Let k > 0 and $m \in \{0, 1, ..., \omega\}$. An element $\mathbf{a} \in \mathbf{P}$ is called (k, m)-leveled, if for all $i \geq k$,

$$\pi_i(\mathbf{a}) = \mathbf{g}_i^m$$
.

An element $\mathbf{a} \in \mathbf{P}$ is (k, m)-leveled if, starting from k-th component, each component of \mathbf{a} is equal to the same degree of the respective generator, that is, \mathbf{a} is of form

$$(\mathbf{a}_1,\ldots,\mathbf{a}_{k-1},\mathbf{g}_k^m,\mathbf{g}_{k+1}^m,\ldots)$$

Leveled Elements

Definition

Let k > 0 and $m \in \{0, 1, ..., \omega\}$. An element $\mathbf{a} \in \mathbf{P}$ is called (k, m)-leveled, if for all $i \geq k$,

$$\pi_i(\mathbf{a}) = \mathbf{g}_i^m$$
.

An element $\mathbf{a} \in \mathbf{P}$ is (k, m)-leveled if, starting from k-th component, each component of \mathbf{a} is equal to the same degree of the respective generator, that is, \mathbf{a} is of form

$$(\mathbf{a}_1,\ldots,\mathbf{a}_{k-1},\mathbf{g}_k^m,\mathbf{g}_{k+1}^m,\ldots)$$

Definition

An element $\mathbf{a} \in \mathbf{P}$ is *leveled*, if it is (k, m)-leveled for some k > 0 and $m \in \{0, 1, \dots, \omega\}$.

For instance, if **a** is a *binary element*, that is each component of **a** is **0** or **1**, then **a** is leveled if and only if it contains either a finite number of **0**-components, or a finite number of **1**-components.

For instance, if **a** is a *binary element*, that is each component of **a** is **0** or **1**, then **a** is leveled if and only if it contains either a finite number of **0**-components, or a finite number of **1**-components.

Theorem

Algebra **Z** is a subalgebra of **P** consisting of all leveled elements.

For instance, if a is a *binary element*, that is each component of a is 0 or 1, then a is leveled if and only if it contains either a finite number of 0-components, or a finite number of 1-components.

Theorem

Algebra **Z** is a subalgebra of **P** consisting of all leveled elements.

An element $a \in \mathbf{Z}$ is open if and only if a is binary, hence a is open if and only if it contains either a finite number of $\mathbf{0}$ -components, or a finite number of $\mathbf{1}$ -components.

Some Properties of $\mathbf{F}_{\mathcal{M}}(1)$

Corollary (Comp. [Grigolia, 1995, Theorem 5.2])

Algebra $\mathbf{F}_{\mathcal{M}}(1)$ is atomic and has infinitely many atoms.

Some Properties of $\mathbf{F}_{\mathcal{M}}(1)$

Corollary (Comp. [Grigolia, 1995, Theorem 5.2])

Algebra $\mathbf{F}_{\mathcal{M}}(1)$ is atomic and has infinitely many atoms.

Corollary

Heyting reduct of **Z** is not finitely generated.

Some Properties of $\mathbf{F}_{\mathcal{M}}(1)$

Corollary (Comp. [Grigolia, 1995, Theorem 5.2])

Algebra $\mathbf{F}_{\mathcal{M}}(1)$ is atomic and has infinitely many atoms.

Corollary

Heyting reduct of **Z** is not finitely generated.

Corollary

Algebra $\mathbf{F}_{\mathcal{M}}(1)$ has infinite ascending and descending chains of open elements.

An algebra **A** is *projective* in a variety $\mathcal V$ if for any algebra $\mathbf B \in \mathcal V$ and any homomorphism $\varphi: \mathbf B \longrightarrow \mathbf A$ there is an embedding $\psi: \mathbf A \longrightarrow \mathbf B$ such that $\psi \circ \phi = id_{\mathbf A}$, where $id_{\mathbf A}$ is an identity map.

An algebra ${\bf A}$ is *projective* in a variety ${\mathcal V}$ if for any algebra ${\bf B} \in {\mathcal V}$ and any homomorphism $\varphi: {\bf B} \longrightarrow {\bf A}$ there is an embedding $\psi: {\bf A} \longrightarrow {\bf B}$ such that $\psi \circ \phi = id_{\bf A}$, where $id_{\bf A}$ is an identity map.

An algebra **A** is *totally non-projective*, if it is not projective in the variety it generates (and, therefore, **A** is not projective in any variety).

An algebra ${\bf A}$ is *projective* in a variety ${\mathcal V}$ if for any algebra ${\bf B} \in {\mathcal V}$ and any homomorphism $\varphi: {\bf B} \longrightarrow {\bf A}$ there is an embedding $\psi: {\bf A} \longrightarrow {\bf B}$ such that $\psi \circ \phi = id_{\bf A}$, where $id_{\bf A}$ is an identity map.

An algebra **A** is *totally non-projective*, if it is not projective in the variety it generates (and, therefore, **A** is not projective in any variety).

Proposition

Every **WS5**-algebra **A** that has an element **a** such that \Box **a** = \Box ¬**a** is totally non-projective.

An algebra ${\bf A}$ is *projective* in a variety ${\mathcal V}$ if for any algebra ${\bf B} \in {\mathcal V}$ and any homomorphism $\varphi: {\bf B} \longrightarrow {\bf A}$ there is an embedding $\psi: {\bf A} \longrightarrow {\bf B}$ such that $\psi \circ \phi = id_{\bf A}$, where $id_{\bf A}$ is an identity map.

An algebra **A** is *totally non-projective*, if it is not projective in the variety it generates (and, therefore, **A** is not projective in any variety).

Proposition

Every **WS5**-algebra **A** that has an element **a** such that \Box **a** = \Box ¬**a** is totally non-projective.

Corollary

Every s.i. WS5-algebra A distinct from 2 is totally non-projective.

Theorem

Let $V \subseteq M$ be a variety of **WS5**-algebras and **A** be a nontrivial finitely presented in V algebra. Then the following is equivalent

- (a) **A** is projective in V;
- (b) A does not contain an element a such that

$$\Box \mathbf{a} = \Box \neg \mathbf{a}; \tag{2}$$

(c) 2 is a homomorphic image of A.

Theorem

Let $V \subseteq M$ be a variety of **WS5**-algebras and **A** be a nontrivial finitely presented in V algebra. Then the following is equivalent

- (a) **A** is projective in V;
- (b) A does not contain an element a such that

$$\Box \mathbf{a} = \Box \neg \mathbf{a}; \tag{2}$$

(c) 2 is a homomorphic image of A.

Remark

From [Quackenbush, 1971, Theorem 5.2] it follows that if $\mathcal{V} \subseteq \mathcal{M}$ is a variety generated by a quasi-primal algebra, then a finite algebra $\mathbf{A} \in \mathcal{V}$ is projective if and only if $\mathbf{2}$ is its direct factor.

Corollary

In any subvariety $\mathcal{V} \subseteq \mathcal{M}$ every finitely presented subalgebra of $\mathbf{F}_{\mathcal{V}}(\omega)$ is projective. In particular, every finite subalgebra of $\mathbf{F}_{\mathcal{V}}(\omega)$ is projective

Corollary

In any subvariety $\mathcal{V} \subseteq \mathcal{M}$ every finitely presented subalgebra of $\mathbf{F}_{\mathcal{V}}(\omega)$ is projective. In particular, every finite subalgebra of $\mathbf{F}_{\mathcal{V}}(\omega)$ is projective

Corollary

Let $\mathcal V$ be a variety of **WS5**-algebras and $\mathbf A \in \mathcal V$ be a finitely presented algebra given by relation t=r. Then $\mathbf A$ is projective if and only if t=r is satisfiable in $\mathbf 2$.

Primitive Quasivarieties of WS5-algebras

19 / 28

Primitive Quasivarieties of **WS5**-Algebras

A quasivariety \mathcal{Q} is *primitive* or *deductive* if every its subquasivariety is a relative variety, that is, if every subquasivariety of \mathcal{Q} can be defined relative to \mathcal{Q} by a set of identities (see [Gorbunov, 1998]). The above Theorem gives us a way to characterize all primitive quasivarieties of **WS5**-algebras.

A quasivariety \mathcal{Q} is *primitive* or *deductive* if every its subquasivariety is a relative variety, that is, if every subquasivariety of \mathcal{Q} can be defined relative to \mathcal{Q} by a set of identities (see [Gorbunov, 1998]). The above Theorem gives us a way to characterize all primitive quasivarieties of **WS5**-algebras.

An algebra **A** does not have element **a** such that $\Box \mathbf{a} = \Box \neg \mathbf{a}$ if and only if quasi-identity

$$\rho := \neg \Box p \wedge \neg \Box \neg p \Rightarrow \bot$$

is valid in A.

A quasivariety \mathcal{Q} is *primitive* or *deductive* if every its subquasivariety is a relative variety, that is, if every subquasivariety of \mathcal{Q} can be defined relative to \mathcal{Q} by a set of identities (see [Gorbunov, 1998]). The above Theorem gives us a way to characterize all primitive quasivarieties of **WS5**-algebras.

An algebra **A** does not have element **a** such that $\Box \mathbf{a} = \Box \neg \mathbf{a}$ if and only if quasi-identity

$$\rho := \neg \Box p \wedge \neg \Box \neg p \Rightarrow \bot$$

is valid in A.

Corollary

An algebra **A** finitely presented in a variety $V \subseteq \mathcal{M}$ is projective if and only if $\mathbf{A} \models \rho$.

Any primitive quasivariety Q is generated by free algebra $\mathbf{F}_{\mathcal{V}}(\omega)$ of variety \mathcal{V} generated by Q.

Theorem

Let V be a variety of **WS5**-algebras and Q be a quasivariety generated by $\mathbf{F}_{V}(\omega)$. Then ρ defines Q relative to V.

Corollary

A quasivariety of **WS5**-algebras is primitive if and only if it admits quasi-identity ρ .

Remark

Quasi-identity ρ is an algebraic version of a passive inference rule

$$\Diamond p \wedge \Diamond \neg p / \bot$$

introduced for normal modal logics extending S4.3 by Rybakov (see [Rybakov, 1984]). In algebraic terms, Theorem 5 from [Rybakov, 1984] gives a characterization of primitive quasivarieties of S4.3-algebras. The passive inference rules in logics from **Ext**S4.3 are extensively studied in [Dzik & Wojtylak, 2016].

Let \mathcal{V} be a variety of algebras of an arbitrary finite similarity type. A nontrivial algebra $\mathbf{A} \in \mathcal{V}$ is *minimal* if \mathbf{A} does not contain proper subalgebras. \mathcal{V}_{min} denotes a set of all minimal algebras from \mathcal{V} .

Let $\mathcal V$ be a variety of algebras of an arbitrary finite similarity type. A nontrivial algebra $\mathbf A \in \mathcal V$ is *minimal* if $\mathbf A$ does not contain proper subalgebras. $\mathcal V_{min}$ denotes a set of all minimal algebras from $\mathcal V$.

Proposition

If an algebra ${\bf A}$ has a minimal subalgebra ${\bf M}$ as a homomorphic image, then every subalgebra of ${\bf A}$ has ${\bf M}$ as a homomorphic image too.

Let $\mathcal V$ be a variety of algebras of an arbitrary finite similarity type. A nontrivial algebra $\mathbf A \in \mathcal V$ is *minimal* if $\mathbf A$ does not contain proper subalgebras. $\mathcal V_{min}$ denotes a set of all minimal algebras from $\mathcal V$.

Proposition

If an algebra ${\bf A}$ has a minimal subalgebra ${\bf M}$ as a homomorphic image, then every subalgebra of ${\bf A}$ has ${\bf M}$ as a homomorphic image too.

We say that an algebra $\bf A$ is *mh-full* if every minimal algebra from \mathcal{V}_{min} is a homomorphic image of $\bf A$.

Let $\mathcal V$ be a variety of algebras of an arbitrary finite similarity type. A nontrivial algebra $\mathbf A \in \mathcal V$ is *minimal* if $\mathbf A$ does not contain proper subalgebras. $\mathcal V_{min}$ denotes a set of all minimal algebras from $\mathcal V$.

Proposition

If an algebra **A** has a minimal subalgebra **M** as a homomorphic image, then every subalgebra of **A** has **M** as a homomorphic image too.

We say that an algebra \mathbf{A} is *mh-full* if every minimal algebra from \mathcal{V}_{min} is a homomorphic image of \mathbf{A} .

Corollary

Every projective algebras from V is mh-full.

For instance, every finite projective Łukasiewicz algebra has the two-element Łukasiewicz algebra as a homomorphic image (comp. [Di Nola et al., 2008]).

The above Corollary gives a necessary condition of projectivity. In certain cases this condition is sufficient.

The above Corollary gives a necessary condition of projectivity. In certain cases this condition is sufficient.

Let \mathcal{V} be a variety in which

- (a) every nontrivial algebra has a minimal subalgebra;
- (b) every compact congruence is a factor congruence.

The above Corollary gives a necessary condition of projectivity. In certain cases this condition is sufficient.

Let \mathcal{V} be a variety in which

- (a) every nontrivial algebra has a minimal subalgebra;
- (b) every compact congruence is a factor congruence.

Theorem

A finitely presented in $\mathcal V$ algebra is projective if and only if it is mh-full.

The above Corollary gives a necessary condition of projectivity. In certain cases this condition is sufficient.

Let $\mathcal V$ be a variety in which

- (a) every nontrivial algebra has a minimal subalgebra;
- (b) every compact congruence is a factor congruence.

Theorem

A finitely presented in V algebra is projective if and only if it is mh-full.

Corollary

Every finitely-presented subalgebra of $\mathbf{F}_{\mathcal{V}}(\omega)$ is projective. In particular, every finite subalgebra of $\mathbf{F}_{\mathcal{V}}(\omega)$ is projective.

The above criterion holds in every ms-full discriminator variety, for in discriminator varieties every compact congruence is principal and each principal congruence is a factor congruence (see e.g. [Andréka et al., 1991]).

The above criterion holds in every ms-full discriminator variety, for in discriminator varieties every compact congruence is principal and each principal congruence is a factor congruence (see e.g. [Andréka et al., 1991]).

If $\mathbf{F}_{\omega}(\mathcal{V})$ has a finite nontrivial subalgebra and all nontrivial algebras from \mathcal{V} do not have trivial subalgebras, then \mathcal{V} is ms-full. For instance, the criterion holds in every double-pointed discriminator variety \mathcal{V} as long as $\mathbf{F}_{\omega}(\mathcal{V})$ has finite subalgebras.

The above criterion holds in every ms-full discriminator variety, for in discriminator varieties every compact congruence is principal and each principal congruence is a factor congruence (see e.g. [Andréka et al., 1991]).

If $\mathbf{F}_{\omega}(\mathcal{V})$ has a finite nontrivial subalgebra and all nontrivial algebras from \mathcal{V} do not have trivial subalgebras, then \mathcal{V} is ms-full. For instance, the criterion holds in every double-pointed discriminator variety \mathcal{V} as long as $\mathbf{F}_{\omega}(\mathcal{V})$ has finite subalgebras.

For instance, the criterion holds in the discriminator varieties of

- Heyting algebras with pseudocomplementation;
- double Heyting algebras;
- Heyting algebras with involution (simmetrical Heyting algebras);
- **WS5**-algebras with compatible operations if $\{0,1\}$ forms a subalgebra of a free algebra.

Corollary

(comp. [Dzik & Wojtylak, 2016, Corollary 3.1] for S4.3) Suppose $\mathcal V$ is an ms-full discriminator variety and $\mathbf A$ is a finitely presented algebra defined in $\mathcal V$ by relation t=r. Then the following is equivalent

- (a) **A** is projective in V;
- (b) t = r is satisfiable in every minimal algebra from V;
- (c) t = r is unifiable in $\mathbf{F}_{\mathcal{V}}(\omega)$.

Thank You

Thank You

Alex Citkin Some Generalizations TACL, June, 2017 28 / 28

Free algebras in discriminator varieties.

Algebra Universalis, 28(3), 401–447.

🔋 Bezhanishvili, G. (2001).

Glivenko type theorems for intuitionistic modal logics.

Studia Logica, 67(1), 89–109.

Di Nola, A., Grigolia, R., & Lettieri, A. (2008).

Projective MV-algebras.

International Journal of Approximate Reasoning, 47, 323–332.

Dzik, W. & Wojtylak, P. (2016).

Modal consequence relations extending S4.3: an application of projective unification.

Notre Dame J. Form. Log., 57(4), 523-549.

Gorbunov, V. A. (1998).

Algebraic theory of quasivarieties.

Siberian School of Algebra and Logic. New York: Consultants Bureau.

Translated from the Russian.

Grigolia, R. (1995).

Free and projective Heyting and monadic Heyting algebras. In Non-classical logics and their applications to fuzzy subsets (Linz, 1992), volume 32 of Theory Decis. Lib. Ser. B Math. Statist. Methods (pp. 33-52). Dordrecht: Kluwer Acad. Publ.

Quackenbush, R. W. (1971).

Demi-semi-primal algebras and Mal'cev-type conditions. Math. Z., 122, 166–176.

Rybakov, V. V. (1984).

Admissible rules for logics containing S4.3.

Sibirsk. Mat. Zh., 25(5), 141-145.