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What is quantum logic?

Crucial example:

The lattice of closed subspaces of a separable Hilbert space H
x ∧ y = x ∩ y

x ′ = the closure of {u | u ⊥ v for all v ∈ x}
x ∨ y = (x ′ ∧ y ′)′
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Orthomodular lattice

More generally [Birkhoff, von Neumann 1936]:

Definition

An orthomodular lattice is a bounded lattice with an
orthocomplementation ′ satisfying

x 6 y ⇒ y ′ 6 x ′

x ′′ = x

x ′ is the lattice-theoretical complement of x :

x ∧ x ′ = 0
x ∨ x ′ = 1

x 6 y ⇒ y = x ∨ (x ′ ∧ y) (orthomodular law)
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What can the algebraic properties say about linear
subspaces?

Whether x = y ,

x ≤ y , x = y ′, x ⊥ y (i.e., x ≤ y ′).

In all these (and some other) cases, x , y generate a finite
Boolean subalgebra; we say that x , y commute; in symbols,
x C y .
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Jeannine Gabriëls*, Stephen Gagola III**, and Mirko Navara* Sasaki projection x ∧ (x′ ∨ y) = φx (y) = x ∗ y



What can the algebraic properties say about linear
subspaces?

Whether x = y , x ≤ y , x = y ′,

x ⊥ y (i.e., x ≤ y ′).

In all these (and some other) cases, x , y generate a finite
Boolean subalgebra; we say that x , y commute; in symbols,
x C y .
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Jeannine Gabriëls*, Stephen Gagola III**, and Mirko Navara* Sasaki projection x ∧ (x′ ∨ y) = φx (y) = x ∗ y



What else can the algebraic properties say about linear
subspaces?

Can we determine the angle ∠(x , y)?

Yes if ∠(x , y) ∈ {0, π/2}; then x , y commute.

Not in general.

We can describe at least the orthogonal projection of y to x ,

x ∧ (x ′ ∨ y) = φx(y) = x ∗ y

φx ... Sasaki projection,
∗ ... Sasaki operation.

x C y =⇒ φx(y) = x ∧ y
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Sasaki (binary) operation

The Sasaki operation is neither commutative nor associative, it
satisfies

idempotence x ∗ x = x
neutral element 1 ∗ x = x ∗ 1 = x
absorption element 0 ∗ x = x ∗ 0 = 0

The Sasaki operation and its dual, Sasaki hook, may be better
candidates for the conjunction and disjunction of a quantum logic
than the meet and join [Pykacz 2015].
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Weaker forms of associativity

The only OML operations in x .y which are associative are
x ∧ y , x ∨ y , x , y , 0, 1

Theorem (Alternative algebra)

An OML with the Sasaki operation forms an alternative algebra,
i.e.,

x ∗ (x ∗ y) = (x ∗ x) ∗ y (left identity)
(y ∗ x) ∗ x = y ∗ (x ∗ x) (right identity)
x ∗ (y ∗ x) = (x ∗ y) ∗ x (flexible identity)

Theorem (Moufang–like identities)

(x ∗ y ∗ x) ∗ z = (x ∗ y) ∗ (x ∗ z)(
z ∗ (x ∗ y)

)
∗ x = z ∗ (x ∗ y ∗ x)(

(x ∗ y) ∗ z
)
∗ x = (x ∗ y) ∗ (z ∗ x)
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Properties of Sasaki projection

It preserves joins

φx(y ∨ z) = φx(y) ∨ φx(z) ,

=⇒ monotonicity.

The dual of a monotonic mapping θ is

θ(y) = (θ(y ′))′ .
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Composition of Sasaki projections

φpφq 6= φqφp in general

φpφq = φqφp = φp∧q ⇐⇒ p C q

φpφq = φqφp = φp ⇐⇒ p 6 q
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Relation to Baer *-semigroups

Φ(L) ... the set of all Sasaki projections
S(L) ... the set of all their finite compositions

Each ξ = φxn · · ·φx2φx1 ∈ S(L) has a unique adjoint

ξ∗(y) = min{z ∈ L | ξ(z) ≥ y} ,

which is ξ∗ = φx1φx2 · · ·φxn ∈ S(L).

S(L) has the structure of a Baer *-semigroup.

Its set of projections (π = π2 = π∗) with the order
θ ≤ η ⇐⇒ θη = θ is isomorphic to the original OML.

ξ∗ξ 6= ξ∗.

Theorem (Chevalier, Pulmannová 1992)

ξ∗ξ(1) = ξ∗(1).

Problem: Prove this without the advanced methods of Baer
*-semigroups.
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Jeannine Gabriëls*, Stephen Gagola III**, and Mirko Navara* Sasaki projection x ∧ (x′ ∨ y) = φx (y) = x ∗ y



Relation to Baer *-semigroups

Φ(L) ... the set of all Sasaki projections
S(L) ... the set of all their finite compositions

Each ξ = φxn · · ·φx2φx1 ∈ S(L) has a unique adjoint

ξ∗(y) = min{z ∈ L | ξ(z) ≥ y} ,

which is ξ∗ = φx1φx2 · · ·φxn ∈ S(L).

S(L) has the structure of a Baer *-semigroup.

Its set of projections (π = π2 = π∗) with the order
θ ≤ η ⇐⇒ θη = θ is isomorphic to the original OML.

ξ∗ξ 6= ξ∗.

Theorem (Chevalier, Pulmannová 1992)

ξ∗ξ(1) = ξ∗(1).

Problem: Prove this without the advanced methods of Baer
*-semigroups.
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Perspectivity

Definition

Elements a, b of an OML are called

perspective if they have a common complement;

strongly perspective if they have a common complement in
[0, a ∨ b].

Theorem

The following are equivalent:

I is a kernel of a congruence;

I is a lattice ideal closed under perspectivity;

x ∗ y ∈ I whenever x ∈ I or y ∈ I.

Here the meet ∧ cannot be used instead of Sasaki operation ∗.
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Perspectivity

Definition

Elements a, b of an OML are called

perspective if they have a common complement;

strongly perspective if they have a common complement in
[0, a ∨ b].

Question [Chevalier, Pulmannová 1992]: Are ξ(1), ξ∗(1) (strongly)
perspective? (Here ξ = φxn · · ·φx2φx1 , ξ∗ = φx1φx2 · · ·φxn .)

YES for n = 2, take (x1 ∗ x2)′ or (x1 ∗ x2)′;

YES for n = 3, take ((x2 ∗ x1) ∗ (x2 ∗ x3))′ or
((x2 ∗ x3) ∗ (x2 ∗ x1))′ (but strong perspectivity cannot be
achieved) [JG, SG, MN];

NO for n ≥ 4 [JG, SG, MN];

YES for an arbitrary n if the lattice is complete modular
[Chevalier, Pulmannová 1992];

A constructive proof is not known.
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perspective? (Here ξ = φxn · · ·φx2φx1 , ξ∗ = φx1φx2 · · ·φxn .)

YES for n = 2, take (x1 ∗ x2)′ or (x1 ∗ x2)′;

YES for n = 3, take ((x2 ∗ x1) ∗ (x2 ∗ x3))′ or
((x2 ∗ x3) ∗ (x2 ∗ x1))′ (but strong perspectivity cannot be
achieved) [JG, SG, MN];

NO for n ≥ 4 [JG, SG, MN];

YES for an arbitrary n if the lattice is complete modular
[Chevalier, Pulmannová 1992];

A constructive proof is not known.
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Conclusions

Sasaki operation and its dual form a promising alternative to
lattice operations (meet and join).

The potential of using Sasaki projections in the algebraic
foundations of orthomodular lattices is still not sufficiently
exhausted.
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Thanks

Thank you for your attention!
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