Sasaki projections and related operations

Jeannine Gabriëls*, Stephen Gagola III**, and Mirko Navara*

* Czech Technical University in Prague
** University of the Witwatersrand, Johannesburg

TACL, Prague 2017

What is quantum logic?

Crucial example:

- The lattice of closed subspaces of a separable Hilbert space \mathcal{H}
- $x \wedge y=x \cap y$
- $x^{\prime}=$ the closure of $\{\mathbf{u} \mid \mathbf{u} \perp \mathbf{v}$ for all $\mathbf{v} \in x\}$
- $x \vee y=\left(x^{\prime} \wedge y^{\prime}\right)^{\prime}$

Orthomodular lattice

More generally [Birkhoff, von Neumann 1936]:

Definition

An orthomodular lattice is a bounded lattice with an orthocomplementation ' satisfying

- $x \leqslant y \Rightarrow y^{\prime} \leqslant x^{\prime}$
- $x^{\prime \prime}=x$
- x^{\prime} is the lattice-theoretical complement of x :

$$
\begin{aligned}
& x \wedge x^{\prime}=\mathbf{0} \\
& x \vee x^{\prime}=\mathbf{1}
\end{aligned}
$$

- $x \leqslant y \Rightarrow y=x \vee\left(x^{\prime} \wedge y\right) \quad$ (orthomodular law)

What can the algebraic properties say about linear subspaces?

What can the algebraic properties say about linear subspaces?

- Whether $x=y$,

What can the algebraic properties say about linear subspaces?

- Whether $x=y, \quad x \leq y$,

What can the algebraic properties say about linear subspaces?

- Whether $x=y, \quad x \leq y, \quad x=y^{\prime}$,

What can the algebraic properties say about linear subspaces?

- Whether $x=y, \quad x \leq y, \quad x=y^{\prime}, \quad x \perp y$ (i.e., $x \leq y^{\prime}$).

What can the algebraic properties say about linear subspaces?

- Whether $x=y, \quad x \leq y, \quad x=y^{\prime}, \quad x \perp y$ (i.e., $\left.x \leq y^{\prime}\right)$.
- In all these (and some other) cases, x, y generate a finite Boolean subalgebra;

What can the algebraic properties say about linear subspaces?

- Whether $x=y, \quad x \leq y, \quad x=y^{\prime}, \quad x \perp y$ (i.e., $\left.x \leq y^{\prime}\right)$.
- In all these (and some other) cases, x, y generate a finite Boolean subalgebra; we say that x, y commute; in symbols, $x \mathrm{C} y$.

What else can the algebraic properties say about linear subspaces?

What else can the algebraic properties say about linear subspaces?

- Can we determine the angle $\angle(x, y)$?

What else can the algebraic properties say about linear subspaces?

- Can we determine the angle $\angle(x, y)$?
- Yes if $\angle(x, y) \in\{0, \pi / 2\}$; then x, y commute.

What else can the algebraic properties say about linear subspaces?

- Can we determine the angle $\angle(x, y)$?
- Yes if $\angle(x, y) \in\{0, \pi / 2\}$; then x, y commute.
- Not in general.

What else can the algebraic properties say about linear subspaces?

- Can we determine the angle $\angle(x, y)$?
- Yes if $\angle(x, y) \in\{0, \pi / 2\}$; then x, y commute.
- Not in general.
- We can describe at least the orthogonal projection of y to x,

$$
x \wedge\left(x^{\prime} \vee y\right)=\phi_{x}(y)=x * y
$$

$\phi_{x} \ldots$ Sasaki projection,

* ... Sasaki operation.

What else can the algebraic properties say about linear

 subspaces?- Can we determine the angle $\angle(x, y)$?
- Yes if $\angle(x, y) \in\{0, \pi / 2\}$; then x, y commute.
- Not in general.
- We can describe at least the orthogonal projection of y to x,

$$
x \wedge\left(x^{\prime} \vee y\right)=\phi_{x}(y)=x * y
$$

$\phi_{x} \ldots$ Sasaki projection,

* ... Sasaki operation.
- $x \mathrm{C} y \Longrightarrow \phi_{x}(y)=x \wedge y$

Sasaki (binary) operation

The Sasaki operation is neither commutative nor associative, it satisfies

idempotence	$x * x=x$
neutral element	$\mathbf{1} * x=x * \mathbf{1}=x$
absorption element	$\mathbf{0} * x=x * \mathbf{0}=\mathbf{0}$

Sasaki (binary) operation

The Sasaki operation is neither commutative nor associative, it satisfies

$$
\begin{array}{ll}
\text { idempotence } & x * x=x \\
\text { neutral element } & \mathbf{1} * x=x * \mathbf{1}=x \\
\text { absorption element } & \mathbf{0} * x=x * \mathbf{0}=\mathbf{0}
\end{array}
$$

The Sasaki operation and its dual, Sasaki hook, may be better candidates for the conjunction and disjunction of a quantum logic than the meet and join [Pykacz 2015].

Weaker forms of associativity

The only OML operations in $x . y$ which are associative are $x \wedge y, \quad x \vee y, \quad x, \quad y, \quad \mathbf{0}, \quad \mathbf{1}$

Weaker forms of associativity

The only OML operations in $x . y$ which are associative are $x \wedge y, \quad x \vee y, \quad x, \quad y, \quad \mathbf{0}, \quad \mathbf{1}$

Theorem (Alternative algebra)

An OML with the Sasaki operation forms an alternative algebra, i.e.,

$$
\begin{array}{lll}
x *(x * y)=(x * x) * y & \text { (left identity) } \\
(y * x) * x & =y *(x * x) & \text { (right identity) } \\
x *(y * x)=(x * y) * x & \text { (flexible identity) }
\end{array}
$$

Theorem (Moufang-like identities)

$$
\begin{array}{ll}
(x * y * x) * z & =(x * y) *(x * z) \\
(z *(x * y)) * x & =z *(x * y * x) \\
((x * y) * z) * x & =(x * y) *(z * x)
\end{array}
$$

Properties of Sasaki projection

- It preserves joins

$$
\phi_{x}(y \vee z)=\phi_{x}(y) \vee \phi_{x}(z)
$$

Properties of Sasaki projection

- It preserves joins

$$
\phi_{x}(y \vee z)=\phi_{x}(y) \vee \phi_{x}(z)
$$

- \Longrightarrow monotonicity.

Properties of Sasaki projection

- It preserves joins

$$
\phi_{x}(y \vee z)=\phi_{x}(y) \vee \phi_{x}(z)
$$

- \Longrightarrow monotonicity.
- The dual of a monotonic mapping θ is

$$
\bar{\theta}(y)=\left(\theta\left(y^{\prime}\right)\right)^{\prime} .
$$

Composition of Sasaki projections

- $\phi_{p} \phi_{q} \neq \phi_{q} \phi_{p}$ in general

Composition of Sasaki projections

- $\phi_{p} \phi_{q} \neq \phi_{q} \phi_{p}$ in general
- $\phi_{p} \phi_{q}=\phi_{q} \phi_{p}=\phi_{p \wedge q} \Longleftrightarrow p \mathrm{Cq}$

Composition of Sasaki projections

- $\phi_{p} \phi_{q} \neq \phi_{q} \phi_{p}$ in general
- $\phi_{p} \phi_{q}=\phi_{q} \phi_{p}=\phi_{p \wedge q} \Longleftrightarrow p \mathrm{Cq}$
- $\phi_{p} \phi_{q}=\phi_{q} \phi_{p}=\phi_{p} \Longleftrightarrow p \leqslant q$

Relation to Baer *-semigroups

$\Phi(L) \ldots$ the set of all Sasaki projections
$S(L) \ldots$ the set of all their finite compositions

Relation to Baer *-semigroups

$\Phi(L) \ldots$ the set of all Sasaki projections
$S(L) \ldots$ the set of all their finite compositions

- Each $\xi=\phi_{x_{n}} \cdots \phi_{x_{2}} \phi_{x_{1}} \in S(L)$ has a unique adjoint

$$
\xi^{*}(y)=\min \{z \in L \mid \bar{\xi}(z) \geq y\}
$$

which is $\xi^{*}=\phi_{x_{1}} \phi_{x_{2}} \cdots \phi_{x_{n}} \in S(L)$.

Relation to Baer *-semigroups

$\Phi(L) \ldots$ the set of all Sasaki projections $S(L) \ldots$ the set of all their finite compositions

- Each $\xi=\phi_{x_{n}} \cdots \phi_{x_{2}} \phi_{x_{1}} \in S(L)$ has a unique adjoint

$$
\xi^{*}(y)=\min \{z \in L \mid \bar{\xi}(z) \geq y\}
$$

which is $\xi^{*}=\phi_{x_{1}} \phi_{x_{2}} \cdots \phi_{x_{n}} \in S(L)$.

- $S(L)$ has the structure of a Baer ${ }^{*}$-semigroup.

Relation to Baer *-semigroups

$\Phi(L)$... the set of all Sasaki projections $S(L) \ldots$ the set of all their finite compositions

- Each $\xi=\phi_{x_{n}} \cdots \phi_{x_{2}} \phi_{x_{1}} \in S(L)$ has a unique adjoint

$$
\xi^{*}(y)=\min \{z \in L \mid \bar{\xi}(z) \geq y\}
$$

which is $\xi^{*}=\phi_{x_{1}} \phi_{x_{2}} \cdots \phi_{x_{n}} \in S(L)$.

- $S(L)$ has the structure of a Baer ${ }^{*}$-semigroup.
- Its set of projections ($\pi=\pi^{2}=\pi^{*}$) with the order $\theta \leq \eta \Longleftrightarrow \theta \eta=\theta$ is isomorphic to the original OML.

Relation to Baer *-semigroups

$\Phi(L)$... the set of all Sasaki projections
$S(L) \ldots$ the set of all their finite compositions

- Each $\xi=\phi_{x_{n}} \cdots \phi_{x_{2}} \phi_{x_{1}} \in S(L)$ has a unique adjoint

$$
\xi^{*}(y)=\min \{z \in L \mid \bar{\xi}(z) \geq y\}
$$

which is $\xi^{*}=\phi_{x_{1}} \phi_{x_{2}} \cdots \phi_{x_{n}} \in S(L)$.

- $S(L)$ has the structure of a Baer *-semigroup.
- Its set of projections ($\pi=\pi^{2}=\pi^{*}$) with the order $\theta \leq \eta \Longleftrightarrow \theta \eta=\theta$ is isomorphic to the original OML. $\xi^{*} \xi \neq \xi^{*}$.

Relation to Baer *-semigroups

$\Phi(L) \ldots$ the set of all Sasaki projections $S(L) \ldots$ the set of all their finite compositions

- Each $\xi=\phi_{x_{n}} \cdots \phi_{x_{2}} \phi_{x_{1}} \in S(L)$ has a unique adjoint

$$
\xi^{*}(y)=\min \{z \in L \mid \bar{\xi}(z) \geq y\}
$$

which is $\xi^{*}=\phi_{x_{1}} \phi_{x_{2}} \cdots \phi_{x_{n}} \in S(L)$.

- $S(L)$ has the structure of a Baer *-semigroup.
- Its set of projections ($\pi=\pi^{2}=\pi^{*}$) with the order $\theta \leq \eta \Longleftrightarrow \theta \eta=\theta$ is isomorphic to the original OML.
$\xi^{*} \xi \neq \xi^{*}$.

Theorem (Chevalier, Pulmannová 1992)

$\xi^{*} \xi(\mathbf{1})=\xi^{*}(\mathbf{1})$.

Relation to Baer *-semigroups

$\Phi(L)$... the set of all Sasaki projections
$S(L) \ldots$ the set of all their finite compositions

- Each $\xi=\phi_{x_{n}} \cdots \phi_{x_{2}} \phi_{x_{1}} \in S(L)$ has a unique adjoint

$$
\xi^{*}(y)=\min \{z \in L \mid \bar{\xi}(z) \geq y\}
$$

which is $\xi^{*}=\phi_{x_{1}} \phi_{x_{2}} \cdots \phi_{x_{n}} \in S(L)$.

- $S(L)$ has the structure of a Baer ${ }^{*}$-semigroup.
- Its set of projections ($\pi=\pi^{2}=\pi^{*}$) with the order $\theta \leq \eta \Longleftrightarrow \theta \eta=\theta$ is isomorphic to the original OML.
$\xi^{*} \xi \neq \xi^{*}$.

Theorem (Chevalier, Pulmannová 1992)

$\xi^{*} \xi(\mathbf{1})=\xi^{*}(\mathbf{1})$.
Problem: Prove this without the advanced methods of Baer *-semigroups.

Perspectivity

Definition

Elements a, b of an OML are called

- perspective if they have a common complement;

Perspectivity

Definition

Elements a, b of an OML are called

- perspective if they have a common complement;
- strongly perspective if they have a common complement in $[0, a \vee b]$.

Perspectivity

Definition

Elements a, b of an OML are called

- perspective if they have a common complement;
- strongly perspective if they have a common complement in $[\mathbf{0}, a \vee b]$.

Theorem

The following are equivalent:

- I is a kernel of a congruence;

Perspectivity

Definition

Elements a, b of an OML are called

- perspective if they have a common complement;
- strongly perspective if they have a common complement in $[\mathbf{0}, a \vee b]$.

Theorem

The following are equivalent:

- I is a kernel of a congruence;
- \mathcal{I} is a lattice ideal closed under perspectivity;

Perspectivity

Definition

Elements a, b of an OML are called

- perspective if they have a common complement;
- strongly perspective if they have a common complement in $[\mathbf{0}, a \vee b]$.

Theorem

The following are equivalent:

- I is a kernel of a congruence;
- \mathcal{I} is a lattice ideal closed under perspectivity;
- $x * y \in \mathcal{I}$ whenever $x \in \mathcal{I}$ or $y \in \mathcal{I}$.

Perspectivity

Definition

Elements a, b of an OML are called

- perspective if they have a common complement;
- strongly perspective if they have a common complement in $[0, a \vee b]$.

Theorem

The following are equivalent:

- I is a kernel of a congruence;
- \mathcal{I} is a lattice ideal closed under perspectivity;
- $x * y \in \mathcal{I}$ whenever $x \in \mathcal{I}$ or $y \in \mathcal{I}$.

Here the meet \wedge cannot be used instead of Sasaki operation $*$.

Perspectivity

Definition

Elements a, b of an OML are called

- perspective if they have a common complement;
- strongly perspective if they have a common complement in $[0, a \vee b]$.

Question [Chevalier, Pulmannová 1992]: Are $\xi(\mathbf{1}), \xi^{*}(\mathbf{1})$ (strongly) perspective? (Here $\xi=\phi_{x_{n}} \cdots \phi_{x_{2}} \phi_{x_{1}}, \xi^{*}=\phi_{x_{1}} \phi_{x_{2}} \cdots \phi_{x_{n}}$.)

Perspectivity

Definition

Elements a, b of an OML are called

- perspective if they have a common complement;
- strongly perspective if they have a common complement in $[0, a \vee b]$.

Question [Chevalier, Pulmannová 1992]: Are $\xi(\mathbf{1}), \xi^{*}(\mathbf{1})$ (strongly) perspective? (Here $\xi=\phi_{x_{n}} \cdots \phi_{x_{2}} \phi_{x_{1}}, \xi^{*}=\phi_{x_{1}} \phi_{x_{2}} \cdots \phi_{x_{n}}$.)

- YES for $n=2$, take $\left(x_{1} * x_{2}\right)^{\prime}$ or $\left(x_{1} * x_{2}\right)^{\prime}$;

Perspectivity

Definition

Elements a, b of an OML are called

- perspective if they have a common complement;
- strongly perspective if they have a common complement in $[0, a \vee b]$.

Question [Chevalier, Pulmannová 1992]: Are $\xi(\mathbf{1}), \xi^{*}(\mathbf{1})$ (strongly) perspective? (Here $\xi=\phi_{x_{n}} \cdots \phi_{x_{2}} \phi_{x_{1}}, \xi^{*}=\phi_{x_{1}} \phi_{x_{2}} \cdots \phi_{x_{n}}$.)

- YES for $n=2$, take $\left(x_{1} * x_{2}\right)^{\prime}$ or $\left(x_{1} * x_{2}\right)^{\prime}$;
- YES for $n=3$, take $\left(\left(x_{2} * x_{1}\right) *\left(x_{2} * x_{3}\right)\right)^{\prime}$ or $\left(\left(x_{2} * x_{3}\right) *\left(x_{2} * x_{1}\right)\right)^{\prime}$ (but strong perspectivity cannot be achieved) [JG, SG, MN];

Perspectivity

Definition

Elements a, b of an OML are called

- perspective if they have a common complement;
- strongly perspective if they have a common complement in $[0, a \vee b]$.

Question [Chevalier, Pulmannová 1992]: Are $\xi(\mathbf{1}), \xi^{*}(\mathbf{1})$ (strongly) perspective? (Here $\xi=\phi_{x_{n}} \cdots \phi_{x_{2}} \phi_{x_{1}}, \xi^{*}=\phi_{x_{1}} \phi_{x_{2}} \cdots \phi_{x_{n}}$.)

- YES for $n=2$, take $\left(x_{1} * x_{2}\right)^{\prime}$ or $\left(x_{1} * x_{2}\right)^{\prime}$;
- YES for $n=3$, take $\left(\left(x_{2} * x_{1}\right) *\left(x_{2} * x_{3}\right)\right)^{\prime}$ or $\left(\left(x_{2} * x_{3}\right) *\left(x_{2} * x_{1}\right)\right)^{\prime}$ (but strong perspectivity cannot be achieved) [JG, SG, MN];
- NO for $n \geq 4$ [JG, SG, MN];

Perspectivity

Definition

Elements a, b of an OML are called

- perspective if they have a common complement;
- strongly perspective if they have a common complement in $[0, a \vee b]$.

Question [Chevalier, Pulmannová 1992]: Are $\xi(\mathbf{1}), \xi^{*}(\mathbf{1})$ (strongly) perspective? (Here $\xi=\phi_{x_{n}} \cdots \phi_{x_{2}} \phi_{x_{1}}, \xi^{*}=\phi_{x_{1}} \phi_{x_{2}} \cdots \phi_{x_{n}}$.)

- YES for $n=2$, take $\left(x_{1} * x_{2}\right)^{\prime}$ or $\left(x_{1} * x_{2}\right)^{\prime}$;
- YES for $n=3$, take $\left(\left(x_{2} * x_{1}\right) *\left(x_{2} * x_{3}\right)\right)^{\prime}$ or $\left(\left(x_{2} * x_{3}\right) *\left(x_{2} * x_{1}\right)\right)^{\prime}$ (but strong perspectivity cannot be achieved) [JG, SG, MN];
- NO for $n \geq 4$ [JG, SG, MN];
- YES for an arbitrary n if the lattice is complete modular [Chevalier, Pulmannová 1992];

Perspectivity

Definition

Elements a, b of an OML are called

- perspective if they have a common complement;
- strongly perspective if they have a common complement in $[0, a \vee b]$.

Question [Chevalier, Pulmannová 1992]: Are $\xi(\mathbf{1}), \xi^{*}(\mathbf{1})$ (strongly) perspective? (Here $\xi=\phi_{x_{n}} \cdots \phi_{x_{2}} \phi_{x_{1}}, \xi^{*}=\phi_{x_{1}} \phi_{x_{2}} \cdots \phi_{x_{n}}$.)

- YES for $n=2$, take $\left(x_{1} * x_{2}\right)^{\prime}$ or $\left(x_{1} * x_{2}\right)^{\prime}$;
- YES for $n=3$, take $\left(\left(x_{2} * x_{1}\right) *\left(x_{2} * x_{3}\right)\right)^{\prime}$ or $\left(\left(x_{2} * x_{3}\right) *\left(x_{2} * x_{1}\right)\right)^{\prime}$ (but strong perspectivity cannot be achieved) [JG, SG, MN];
- NO for $n \geq 4$ [JG, SG, MN];
- YES for an arbitrary n if the lattice is complete modular [Chevalier, Pulmannová 1992];
A constructive proof is not known.

Conclusions

- Sasaki operation and its dual form a promising alternative to lattice operations (meet and join).

Conclusions

- Sasaki operation and its dual form a promising alternative to lattice operations (meet and join).
- The potential of using Sasaki projections in the algebraic foundations of orthomodular lattices is still not sufficiently exhausted.

Thank you for your attention!

