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Kleene’s family

Strong Kleene logic: 〈SK, {1}〉

The Logic of Paradox, LP: 〈SK, {1, 1
2}〉

Bochvar’s logic: 〈WK, {1}〉

Paraconsistent Weak Kleene logic, PWK: 〈WK, {1, 1
2}〉
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Paraconsistent Week Kleene

The language: ∧,∨,¬, 0, 1

The algebra WK
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The matrix: PWK = 〈WK, {1, 1/2}〉

Γ �PWK α ⇐⇒ for every v , v [Γ] ⊆ {1, 1/2} ⇒ v(α) ∈ {1, 1/2}
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A closer look to WK

WK = 〈{0, 1, 1
2},∨,∧,¬, 0, 1〉

a 6 b ⇐⇒ a ∨ b = b and a ≤ b ⇐⇒ a ∧ b = a

1
2 1

1 0

0 1
2

a 6 b ⇐⇒ ¬b ≤ ¬a

Counterexample to absorption:

1 ∧ (1 ∨ 1
2

) =
1
2
6= 1
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Involutive bisemilattices

Definition
An involutive bisemilattice is an algebra B = 〈B ,∨,∧,¬, 0, 1〉 of type
(2,2,1,0,0), satisfying:

I1 x ∨ x ≈ x ;
I2 x ∨ y ≈ y ∨ x ;
I3 x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z ;
I4 ¬¬x ≈ x ;
I5 x ∧ y ≈ ¬(¬x ∨ ¬y);
I6 x ∧ (¬x ∨ y) ≈ x ∧ y ;
I7 0 ∨ x ≈ x ;
I8 1 ≈ ¬0.

Theorem
V(WK) = IBSL.
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Algebraizability

A formula-equation transformer is a map τ : Fm→ P(Fm2)
(given by a set of equations in one variable).

An equation-formula transformer is a map ρ : Fm2 → P(Fm)
(given by a set of formulas in two variables).

A class of algebras K is an algebraic semantics of a logic L if:

Γ `L α ⇐⇒ τ [Γ] �K τ(α).

K is an equivalent algebraic semantics of L if moreover:

α ≈ β ��K τ [ρ(α, β)].

L is algebraizable if it has an equivalent algebraic semantics.
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PWK, IBSL, and Algebraic Logic

Theorem
IBSL is not the equivalent algebraic semantics of any algebraizable
logic L.

Theorem
PWK is not protoalgebraic. Thus not algebraizable.

Theorem
PWK is not selfextensional, i.e. the interderivability relation a`L is
not a congruence on Fm.
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Deductive calculi

1 PWK: Hilbert style (Bonzio et al.), sequent calculi (Coniglio,
Corbalan)

2 LP: Hilbert style (Font), sequent calculi (Avron, Beall)
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Sequent calculus for PWK
Axioms

α⇒ α

Structural rules
Γ⇒ ∆

LW
Γ, α⇒ ∆

Γ⇒ ∆
RW

Γ⇒ α,∆

Γ⇒ ∆, α Γ, α⇒ ∆
Cut

Γ⇒ ∆

Operational rules

Γ⇒ α,∆
L¬

Γ,¬α⇒ ∆
Γ, α⇒ ∆

R¬
Γ⇒ ¬α,∆

Γ, α⇒ ∆ Γ, β ⇒ ∆
L∨

Γ, α ∨ β ⇒ ∆
Γ⇒ α, β,∆

R∨
Γ⇒ α ∨ β,∆

Proviso for L¬ : var(α) ⊆ var(∆)
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Sequent calculi for LP

Avron (2014).
Axioms and structural rules as for PWK, logical rules including:

Γ,¬α⇒ ∆ Γ,¬β ⇒ ∆
L¬∧

Γ,¬(α ∧ β)⇒ ∆

Γ, α⇒ ∆
L¬¬

Γ,¬¬α⇒ ∆
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Our starting question

Both LP and PWK have sequent calculi with some “limitations” on
operational rules.

Is it possible to give standard sequent calculi for LP and PWK?
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Standard Sequent Calculi

A standard Gentzen calculus for a logic L has the foll. 5 properties:

1 Axioms: α⇒ α (α atomic).

2 Premises (active) of logical rules with only subformulas of the
conclusion; exactly one connective at time

3 No linguistic restrictions on rules

4 Sequents are interpreted in the object language

5 Only classical structural rules, i.e. contraction, weakening and
cut are (possibly) allowed.
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IFL Logics

We can generalise our question to a wider class of logics.

Definition
IFL is the family of logics in the language {¬,∧,∨} s.t.:

1 Have the same theorems of classical logic.

2 The connective ¬ has a fixed point on a designated value and
k ≈ ¬¬k .
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IFL: basic facts

Remark
If L ∈ IFL then L is paraconsistent, i.e. α,¬α 6`L β

Lemma
Let L ∈ IFL. Then there exists at least a designated truth value k
s.t. ¬k is not designated.

Lemma
A logic L ∈ IFL can not have a non designated value k such that
k = ¬k .
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Standard Gentzen Calculi

In a standard calculus (L∧) and (R∨) must be of the form:

Γ, α, β ⇒ ∆
L∧

Γ, α ∧ β ⇒ ∆
Γ⇒ α, β,∆

R∨
Γ⇒ α ∨ β,∆
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IFL: rules and soundess

What does a standard R¬-rule for an IFL-logic look like?

Any possible sound R¬ rule, whose conclusion is Γ⇒ ∆,¬α,
possess at least one premise of the following form:

Γ, α⇒ ∆.

That is

P1, ..., Γ, α⇒ ∆ ..., Pn

Γ⇒ ¬α,∆
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A limitative result

Theorem
Let L ∈ IFL and S be a standard Gentzen calculus for L. Then, if S
is sound, it is incomplete.

Sketch of the Proof
`L ¬(α ∧ ¬α) ∨ β and α,¬α 0L β (L ∈ IFL).
Therefore S shall derive the sequent ⇒ ¬(α ∧ ¬α) ∨ β. The derivation
shall necessarily contain a tree with a branch of the form:

α,¬α⇒ β
R∧

α ∧ ¬α⇒ β
R¬ (Lemma)

⇒ ¬(α ∧ ¬α), β
R∨

⇒ ¬(α ∧ ¬α) ∨ β

Since S is sound, the above derivation tree cannot terminate with axioms.
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Work in Progress

1 the algebraizability of the Gentzen system associated with
PWK.

2 Can the limitative result be extended?

3 Which is the strongest paraconsistent logic admitting a standard
calculus?

4 The regularization of a logic.
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Thank you!
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