Undefinability of standard sequent calculi for Paraconsistent logics

Michele Pra Baldi (with S.Bonzio)

Topology, Algebra and Categories in Logic.
Prague, June 26, 2017

Outline

(1) Kleene Logics
(2) The starting point: PWK
(3) Deductive calculi for paraconsistent Kleene logics
(0) Our results

Kleene tables

Strong Kleene tables:

\wedge	0	$\frac{1}{2}$	1
0	0	0	0
$\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{1}{2}$
1	0	$\frac{1}{2}$	1

\vee	0	$\frac{1}{2}$	1
0	0	$\frac{1}{2}$	1
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1
1	1	1	1

\neg	
1	0
$\frac{1}{2}$	$\frac{1}{2}$
0	1

Kleene tables

Strong Kleene tables:

$$
\begin{array}{c|ccc}
\wedge & 0 & \frac{1}{2} & 1 \\
\hline 0 & 0 & 0 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} \\
1 & 0 & \frac{1}{2} & 1
\end{array}
$$

\vee	0	$\frac{1}{2}$	1
0	0	$\frac{1}{2}$	1
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1
1	1	1	1

\neg	
1	0
$\frac{1}{2}$	$\frac{1}{2}$
0	1

Weak Kleene tables:

\wedge	0	$\frac{1}{2}$	1
0	0	$\frac{1}{2}$	0
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
1	0	$\frac{1}{2}$	1

\vee	0	$\frac{1}{2}$	1
0	0	$\frac{1}{2}$	1
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
1	1	$\frac{1}{2}$	1

Kleene's family

Kleene's family

- Strong Kleene logic: $\langle\mathbf{S K},\{1\}\rangle$

Kleene's family

- Strong Kleene logic: $\langle\mathbf{S K},\{1\}\rangle$
- The Logic of Paradox, LP: $\left\langle\mathrm{SK},\left\{1, \frac{1}{2}\right\}\right\rangle$

Kleene's family

- Strong Kleene logic: $\langle\mathbf{S K},\{1\}\rangle$
- The Logic of Paradox, LP: $\left\langle\mathrm{SK},\left\{1, \frac{1}{2}\right\}\right\rangle$
- Bochvar's logic: $\langle\mathbf{W K},\{1\}\rangle$

Kleene＇s family

－Strong Kleene logic：$\langle\mathrm{SK},\{1\}\rangle$
－The Logic of Paradox，LP：$\left\langle\mathrm{SK},\left\{1, \frac{1}{2}\right\}\right\rangle$

- Bochvar＇s logic：〈WK，\｛1\}〉
- Paraconsistent Weak Kleene logic，PWK：〈WK，$\left.\left\{1, \frac{1}{2}\right\}\right\rangle$

Paraconsistent Week Kleene

- The language: $\wedge, \vee, \neg, 0,1$

Paraconsistent Week Kleene

- The language: $\wedge, \vee, \neg, 0,1$
- The algebra WK

Paraconsistent Week Kleene

- The language: $\wedge, \vee, \neg, 0,1$
- The algebra WK

\wedge	0	$\frac{1}{2}$	1
0	0	$\frac{1}{2}$	0
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
1	0	$\frac{1}{2}$	1

\vee	0	$\frac{1}{2}$	1
0	0	$\frac{1}{2}$	1
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
1	1	$\frac{1}{2}$	1

\neg	
1	0
$\frac{1}{2}$	$\frac{1}{2}$
0	1

- The matrix: $\mathbf{P W K}=\langle\mathbf{W K},\{1,1 / 2\}\rangle$

Paraconsistent Week Kleene

- The language: $\wedge, \vee, \neg, 0,1$
- The algebra WK

\wedge	0	$\frac{1}{2}$	1
0	0	$\frac{1}{2}$	0
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
1	0	$\frac{1}{2}$	1

\vee	0	$\frac{1}{2}$	1
0	0	$\frac{1}{2}$	1
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
1	1	$\frac{1}{2}$	1

\neg	
1	0
$\frac{1}{2}$	$\frac{1}{2}$
0	1

- The matrix: $\mathbf{P W K}=\langle\mathbf{W K},\{1,1 / 2\}\rangle$
$\Gamma \vDash_{\text {PWK }} \alpha \Longleftrightarrow$ for every $v, \quad v[\Gamma] \subseteq\{1,1 / 2\} \Rightarrow v(\alpha) \in\{1,1 / 2\}$

A closer look to WK

$$
\mathbf{W K}=\left\langle\left\{0,1, \frac{1}{2}\right\}, \vee, \wedge, \neg, 0,1\right\rangle
$$

A closer look to WK

$\mathbf{W K}=\left\langle\left\{0,1, \frac{1}{2}\right\}, \vee, \wedge, \neg, 0,1\right\rangle$

$$
a \leqslant b \Longleftrightarrow a \vee b=b
$$

A closer look to WK

$$
\mathbf{W K}=\left\langle\left\{0,1, \frac{1}{2}\right\}, \vee, \wedge, \neg, 0,1\right\rangle
$$

$$
a \leqslant b \Longleftrightarrow a \vee b=b \quad \text { and } \quad a \leq b \quad \Longleftrightarrow a \wedge b=a
$$

A closer look to WK

$$
\mathbf{W K}=\left\langle\left\{0,1, \frac{1}{2}\right\}, \vee, \wedge, \neg, 0,1\right\rangle
$$

$$
a \leqslant b \quad \Longleftrightarrow a \vee b=b \quad \text { and } \quad a \leq b \quad \Longleftrightarrow a \wedge b=a
$$

$$
a \leqslant b \Longleftrightarrow \neg b \leq \neg a
$$

A closer look to WK

$$
\mathbf{W K}=\left\langle\left\{0,1, \frac{1}{2}\right\}, \vee, \wedge, \neg, 0,1\right\rangle
$$

$$
a \leqslant b \quad \Longleftrightarrow a \vee b=b \quad \text { and } \quad a \leq b \Longleftrightarrow a \wedge b=a
$$

$$
a \leqslant b \Longleftrightarrow \neg b \leq \neg a
$$

Counterexample to absorption:

$$
1 \wedge\left(1 \vee \frac{1}{2}\right)=\frac{1}{2} \neq 1
$$

Involutive bisemilattices

Definition

An involutive bisemilattice is an algebra $\mathbf{B}=\langle B, \vee, \wedge, \neg, 0,1\rangle$ of type ($2,2,1,0,0$), satisfying:

Involutive bisemilattices

Definition

An involutive bisemilattice is an algebra $\mathbf{B}=\langle B, \vee, \wedge, \neg, 0,1\rangle$ of type ($2,2,1,0,0$), satisfying:

I1 $x \vee x \approx x$;
$12 x \vee y \approx y \vee x$;
$13 x \vee(y \vee z) \approx(x \vee y) \vee z$;
$170 \vee x \approx x$;

Involutive bisemilattices

Definition

An involutive bisemilattice is an algebra $\mathbf{B}=\langle B, \vee, \wedge, \neg, 0,1\rangle$ of type ($2,2,1,0,0$), satisfying:
$11 x \vee x \approx x$;
$12 x \vee y \approx y \vee x$;
$13 x \vee(y \vee z) \approx(x \vee y) \vee z$;
$14 \neg \neg x \approx x$;
$170 \vee x \approx x$;
$181 \approx \neg 0$.

Involutive bisemilattices

Definition

An involutive bisemilattice is an algebra $\mathbf{B}=\langle B, \vee, \wedge, \neg, 0,1\rangle$ of type ($2,2,1,0,0$), satisfying:
$11 x \vee x \approx x$;
$12 x \vee y \approx y \vee x$;
$13 x \vee(y \vee z) \approx(x \vee y) \vee z$;
$14 \neg \neg x \approx x$;
$15 x \wedge y \approx \neg(\neg x \vee \neg y)$;
$170 \vee x \approx x$;
$181 \approx \neg 0$.

Involutive bisemilattices

Definition

An involutive bisemilattice is an algebra $\mathbf{B}=\langle B, \vee, \wedge, \neg, 0,1\rangle$ of type ($2,2,1,0,0$), satisfying:

```
\(11 x \vee x \approx x\);
I2 \(x \vee y \approx y \vee x\);
\(13 x \vee(y \vee z) \approx(x \vee y) \vee z\);
\(14 \neg \neg x \approx x\);
I5 \(x \wedge y \approx \neg(\neg x \vee \neg y)\);
\(16 x \wedge(\neg x \vee y) \approx x \wedge y\);
\(170 \vee x \approx x\);
\(181 \approx \neg 0\).
```


Involutive bisemilattices

Definition

An involutive bisemilattice is an algebra $\mathbf{B}=\langle B, \vee, \wedge, \neg, 0,1\rangle$ of type ($2,2,1,0,0$), satisfying:

I1 $x \vee x \approx x$;
$12 x \vee y \approx y \vee x$;
$13 x \vee(y \vee z) \approx(x \vee y) \vee z$;
$14 \neg \neg x \approx x$;
$15 x \wedge y \approx \neg(\neg x \vee \neg y)$;
$16 x \wedge(\neg x \vee y) \approx x \wedge y$;
$170 \vee x \approx x$;
$181 \approx \neg 0$.

Theorem
 $\mathbb{V}(\mathrm{WK})=\mathcal{I B S} \mathcal{L}$.

Algebraizability

- A formula-equation transformer is a map $\tau: F m \rightarrow \mathcal{P}\left(F m^{2}\right)$ (given by a set of equations in one variable).

Algebraizability

- A formula-equation transformer is a map $\tau: F m \rightarrow \mathcal{P}\left(F m^{2}\right)$ (given by a set of equations in one variable).
- An equation-formula transformer is a map $\rho: F m^{2} \rightarrow \mathcal{P}(F m)$ (given by a set of formulas in two variables).

Algebraizability

- A formula-equation transformer is a map $\tau: F m \rightarrow \mathcal{P}\left(F m^{2}\right)$ (given by a set of equations in one variable).
- An equation-formula transformer is a map $\rho: F m^{2} \rightarrow \mathcal{P}(F m)$ (given by a set of formulas in two variables).

A class of algebras \mathcal{K} is an algebraic semantics of a logic L if:

$$
\Gamma \vdash_{\mathrm{L}} \alpha \Longleftrightarrow \tau[\Gamma] \vDash_{\mathcal{K}} \tau(\alpha)
$$

Algebraizability

- A formula-equation transformer is a map $\tau: F m \rightarrow \mathcal{P}\left(F m^{2}\right)$ (given by a set of equations in one variable).
- An equation-formula transformer is a map $\rho: F m^{2} \rightarrow \mathcal{P}(F m)$ (given by a set of formulas in two variables).

A class of algebras \mathcal{K} is an algebraic semantics of a logic L if:

$$
\Gamma \vdash_{\mathrm{L}} \alpha \Longleftrightarrow \tau[\Gamma] \vDash_{\mathcal{K}} \tau(\alpha)
$$

\mathcal{K} is an equivalent algebraic semantics of L if moreover:

$$
\alpha \approx \beta=\vDash_{\mathcal{K}} \tau[\rho(\alpha, \beta)] .
$$

Algebraizability

- A formula-equation transformer is a map $\tau: F m \rightarrow \mathcal{P}\left(F m^{2}\right)$ (given by a set of equations in one variable).
- An equation-formula transformer is a map $\rho: F m^{2} \rightarrow \mathcal{P}(F m)$ (given by a set of formulas in two variables).

A class of algebras \mathcal{K} is an algebraic semantics of a logic L if:

$$
\Gamma \vdash_{\mathrm{L}} \alpha \Longleftrightarrow \tau[\Gamma] \vDash_{\mathcal{K}} \tau(\alpha)
$$

\mathcal{K} is an equivalent algebraic semantics of L if moreover:

$$
\alpha \approx \beta=\not \vDash_{\mathcal{K}} \tau[\rho(\alpha, \beta)] .
$$

L is algebraizable if it has an equivalent algebraic semantics.

PWK, $\mathcal{I B S L}$, and Algebraic Logic

Theorem

$\mathcal{I B S L}$ is not the equivalent algebraic semantics of any algebraizable logic L.

PWK, $\mathcal{I B S L}$, and Algebraic Logic

Abstract

Theorem IBSL is not the equivalent algebraic semantics of any algebraizable logic L .

Theorem
 PWK is not protoalgebraic. Thus not algebraizable.

PWK, $\mathcal{I B S L}$, and Algebraic Logic

Theorem
 $\mathcal{I B S L}$ is not the equivalent algebraic semantics of any algebraizable logic L.

Abstract

Theorem PWK is not protoalgebraic. Thus not algebraizable.

Theorem
PWK is not selfextensional, i.e. the interderivability relation $\dashv \vdash_{\mathrm{L}}$ is not a congruence on Fm.

Deductive calculi

Deductive calculi

(1) PWK: Hilbert style (Bonzio et al.), sequent calculi (Coniglio, Corbalan)

Deductive calculi

(1) PWK: Hilbert style (Bonzio et al.), sequent calculi (Coniglio, Corbalan)
(2) LP: Hilbert style (Font), sequent calculi (Avron, Beall)

Sequent calculus for PWK

Axioms

$$
\alpha \Rightarrow \alpha
$$

Sequent calculus for PWK

Axioms

$$
\alpha \Rightarrow \alpha
$$

Structural rules

$$
\begin{aligned}
& \frac{\Gamma \Rightarrow \Delta}{\Gamma, \alpha \Rightarrow \Delta}<w \quad \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \alpha, \Delta} R W \\
& \frac{\Gamma \Rightarrow \Delta, \alpha \quad \Gamma, \alpha \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} \text { cut }
\end{aligned}
$$

Sequent calculus for PWK

Axioms

$$
\alpha \Rightarrow \alpha
$$

Structural rules

$$
\begin{gathered}
\frac{\Gamma \Rightarrow \Delta}{\Gamma, \alpha \Rightarrow \Delta}<w \quad \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \alpha, \Delta} R W \\
\frac{\Gamma \Rightarrow \Delta, \alpha}{} \quad \Gamma, \alpha \Rightarrow \Delta \\
\Gamma \Rightarrow \Delta
\end{gathered} c_{u t}
$$

Operational rules

$$
\begin{gathered}
\frac{\Gamma \Rightarrow \alpha, \Delta}{\Gamma, \neg \alpha \Rightarrow \Delta}\left\llcorner\neg \quad \frac{\Gamma, \alpha \Rightarrow \Delta}{\Gamma \Rightarrow \neg \alpha, \Delta} R\right\urcorner \\
\frac{\Gamma, \alpha \Rightarrow \Delta}{\Gamma, \alpha \vee \beta \Rightarrow \Delta \Rightarrow \Delta} L \vee \quad \frac{\Gamma \Rightarrow \alpha, \beta, \Delta}{\Gamma \Rightarrow \alpha \vee \beta, \Delta} R \vee
\end{gathered}
$$

Proviso for $L \neg: \operatorname{var}(\alpha) \subseteq \operatorname{var}(\Delta)$

Sequent calculi for LP

Avron (2014).
Axioms and structural rules as for PWK, logical rules including:

$$
\frac{\Gamma, \neg \alpha \Rightarrow \Delta \quad \Gamma, \neg \beta \Rightarrow \Delta}{\Gamma, \neg(\alpha \wedge \beta) \Rightarrow \Delta}\left\llcorner\neg \wedge \quad \frac{\Gamma, \alpha \Rightarrow \Delta}{\Gamma, \neg \neg \alpha \Rightarrow \Delta}\llcorner\neg\urcorner\right.
$$

Our starting question

Both LP and PWK have sequent calculi with some "limitations" on operational rules.

Is it possible to give standard sequent calculi for LP and PWK?

Standard Sequent Calculi

A standard Gentzen calculus for a logic L has the foll. 5 properties:
(1) Axioms: $\alpha \Rightarrow \alpha$ (α atomic).

Standard Sequent Calculi

A standard Gentzen calculus for a logic L has the foll. 5 properties:
(1) Axioms: $\alpha \Rightarrow \alpha$ (α atomic).
(2) Premises (active) of logical rules with only subformulas of the conclusion; exactly one connective at time

Standard Sequent Calculi

A standard Gentzen calculus for a logic L has the foll. 5 properties:
(1) Axioms: $\alpha \Rightarrow \alpha$ (α atomic).
(2) Premises (active) of logical rules with only subformulas of the conclusion; exactly one connective at time
(3) No linguistic restrictions on rules

Standard Sequent Calculi

A standard Gentzen calculus for a logic L has the foll. 5 properties:
(1) Axioms: $\alpha \Rightarrow \alpha$ (α atomic).
(2) Premises (active) of logical rules with only subformulas of the conclusion; exactly one connective at time
(3) No linguistic restrictions on rules
(4) Sequents are interpreted in the object language

Standard Sequent Calculi

A standard Gentzen calculus for a logic L has the foll. 5 properties:
(1) Axioms: $\alpha \Rightarrow \alpha$ (α atomic).
(2) Premises (active) of logical rules with only subformulas of the conclusion; exactly one connective at time
(3) No linguistic restrictions on rules
(4) Sequents are interpreted in the object language
(5) Only classical structural rules, i.e. contraction, weakening and cut are (possibly) allowed.

IFIL Logics

We can generalise our question to a wider class of logics.

IIFL Logics

We can generalise our question to a wider class of logics.

Definition

$\mathbb{H F L}$ is the family of logics in the language $\{\neg, \wedge, \vee\}$ s.t.:

We can generalise our question to a wider class of logics.

Definition

$\mathbb{H} \mathbb{L}$ is the family of logics in the language $\{\neg, \wedge, \vee\}$ s.t.:
(1) Have the same theorems of classical logic.
(2) The connective \neg has a fixed point on a designated value and $k \approx \neg \neg k$.

$\mathbb{I F L}$: basic facts

Remark
 If $\mathrm{L} \in \mathbb{H} \mathbb{L} \mathbb{L}$ then L is paraconsistent, i.e. $\alpha, \neg \alpha \vdash_{\mathrm{L}} \beta$

$\mathbb{I F L}:$ basic facts

Remark

If $\mathrm{L} \in \mathbb{I F} \mathbb{L}$ then L is paraconsistent, i.e. $\alpha, \neg \alpha \nvdash_{\mathrm{L}} \beta$

Lemma

Let $\mathrm{L} \in \mathbb{H} \mathbb{L}$. Then there exists at least a designated truth value k s.t. $\neg k$ is not designated.

$\mathbb{I F L}:$ basic facts

Remark

If $\mathrm{L} \in \mathbb{I F} \mathbb{L}$ then L is paraconsistent, i.e. $\alpha, \neg \alpha \nvdash_{\mathrm{L}} \beta$

Lemma

Let $\mathrm{L} \in \mathbb{H} \mathbb{L}$. Then there exists at least a designated truth value k s.t. $\neg k$ is not designated.

Lemma

A logic $\mathrm{L} \in \mathbb{H} \mathbb{L}$ can not have a non designated value k such that $k=\neg k$.

Standard Gentzen Calculi

In a standard calculus $(L \wedge)$ and $(R \vee)$ must be of the form:

$$
\frac{\Gamma, \alpha, \beta \Rightarrow \Delta}{\Gamma, \alpha \wedge \beta \Rightarrow \Delta} L \wedge \quad \frac{\Gamma \Rightarrow \alpha, \beta, \Delta}{\Gamma \Rightarrow \alpha \vee \beta, \Delta} R \vee
$$

$\mathbb{I F L}$: rules and soundess

What does a standard $R \neg$-rule for an $\mathbb{H} \mathbb{L}$-logic look like?

$\mathbb{I F L}$: rules and soundess

What does a standard $R \neg$-rule for an $\mathbb{H F L}$-logic look like?

Any possible sound $R \neg$ rule, whose conclusion is $\Gamma \Rightarrow \Delta, \neg \alpha$, possess at least one premise of the following form:

$$
\ulcorner, \alpha \Rightarrow \Delta
$$

$\mathbb{I F L}$: rules and soundess

What does a standard $R \neg$-rule for an $\mathbb{H F L}$-logic look like?

Any possible sound $R \neg$ rule, whose conclusion is $\Gamma \Rightarrow \Delta, \neg \alpha$, possess at least one premise of the following form:

$$
\Gamma, \alpha \Rightarrow \Delta
$$

That is

$$
\begin{gathered}
P_{1}, \ldots, \quad \Gamma, \alpha \Rightarrow \Delta \ldots, \quad P_{n} \\
\hline \Gamma \Rightarrow \neg \alpha, \Delta
\end{gathered}
$$

A limitative result

Theorem

Let $L \in \mathbb{I F} \mathbb{L}$ and \mathcal{S} be a standard Gentzen calculus for L. Then, if \mathcal{S} is sound, it is incomplete.

A limitative result

Theorem

Let $L \in \mathbb{I F} \mathbb{L}$ and \mathcal{S} be a standard Gentzen calculus for L. Then, if \mathcal{S} is sound, it is incomplete.

Sketch of the Proof

$\vdash_{\mathrm{L}} \neg(\alpha \wedge \neg \alpha) \vee \beta$ and $\alpha, \neg \alpha \nvdash_{\mathrm{L}} \beta(\mathrm{L} \in \mathbb{I F} \mathbb{L})$.
Therefore \mathcal{S} shall derive the sequent $\Rightarrow \neg(\alpha \wedge \neg \alpha) \vee \beta$.

A limitative result

Theorem

Let $L \in \mathbb{I F L}$ and \mathcal{S} be a standard Gentzen calculus for L. Then, if \mathcal{S} is sound, it is incomplete.

Sketch of the Proof

$\vdash_{\mathrm{L}} \neg(\alpha \wedge \neg \alpha) \vee \beta$ and $\alpha, \neg \alpha \nvdash_{\mathrm{L}} \beta(\mathrm{L} \in \mathbb{I F} \mathbb{L})$.
Therefore \mathcal{S} shall derive the sequent $\Rightarrow \neg(\alpha \wedge \neg \alpha) \vee \beta$. The derivation shall necessarily contain a tree with a branch of the form:

$$
\begin{aligned}
& \frac{\alpha, \neg \alpha \Rightarrow \beta}{\alpha \wedge \neg \alpha \Rightarrow \beta} R \wedge \\
\Rightarrow & \neg(\alpha \wedge \neg \alpha), \beta \\
\Rightarrow & \neg(\alpha \wedge \neg \alpha) \vee \beta \\
\Rightarrow & \text { (Lemma) }
\end{aligned}
$$

A limitative result

Theorem

Let $L \in \mathbb{I F L}$ and \mathcal{S} be a standard Gentzen calculus for L. Then, if \mathcal{S} is sound, it is incomplete.

Sketch of the Proof

$\vdash_{\mathrm{L}} \neg(\alpha \wedge \neg \alpha) \vee \beta$ and $\alpha, \neg \alpha \nvdash_{\mathrm{L}} \beta(\mathrm{L} \in \mathbb{I F} \mathbb{L})$.
Therefore \mathcal{S} shall derive the sequent $\Rightarrow \neg(\alpha \wedge \neg \alpha) \vee \beta$. The derivation shall necessarily contain a tree with a branch of the form:

$$
\begin{aligned}
& \frac{\alpha, \neg \alpha \Rightarrow \beta}{\alpha \wedge \neg \alpha \Rightarrow \beta} R \wedge \\
\Rightarrow & \neg(\alpha \wedge \neg \alpha), \beta \\
\Rightarrow & \neg(\alpha \wedge \neg \alpha) \vee \beta \\
\Rightarrow & \text { (Lemma) }
\end{aligned}
$$

Since \mathcal{S} is sound, the above derivation tree cannot terminate with axioms.

Work in Progress

(1) the algebraizability of the Gentzen system associated with PWK.

Work in Progress

(1) the algebraizability of the Gentzen system associated with PWK.
(2) Can the limitative result be extended?

Work in Progress

(1) the algebraizability of the Gentzen system associated with PWK.
(2) Can the limitative result be extended?
(3) Which is the strongest paraconsistent logic admitting a standard calculus?

Work in Progress

(1) the algebraizability of the Gentzen system associated with PWK.
(2) Can the limitative result be extended?
(3) Which is the strongest paraconsistent logic admitting a standard calculus?
(0) The regularization of a logic.

Thank you!

