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Summary

We generalize Belluce β functor from MV-algebras to distributive
lattices

we obtain a functor γ from monadic MV-algebras to Q-distributive
lattices (hence to Q-spaces via Cignoli duality)

and we introduce a subcategory of Q-spaces related to γ (monadic
Q-spaces).

γ is a tool for the spectrum problem for monadic MV-algebras.
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Introduction

Motivation: many valued logic
Idea: truth values change from {0,1} to [0,1]
({0,1},∧,∨,¬,0,1) is a Boolean algebra
what structure can we put on [0,1]?
There are many possibilities, but the MV-algebra structure is
particularly appealing (e.g. all logical connectives are continuous)
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The MV-algebra [0,1]

As negation we have ¬x = 1− x (the Liar tells half the truth)
As disjunction we have x ⊕ y = min(1, x + y) (not idempotent, cfr.
Ulam games with lies)
Conjunction x � y is defined via De Morgan duality.
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Logic

Infinite valued Łukasiewicz logic is a first order logic interpreted on the
MV-algebra [0,1].
MV-algebras (introduced by Chang) are the algebraic counterpart of
propositional infinite valued Łukasiewicz logic.
Now full first order Łukasiewicz logic is not axiomatizable (Scarpellini)
However, monadic first order Łukasiewicz logic is axiomatizable
(Rutledge)
This motivates monadic MV-algebras (introduced by Rutledge himself,
apparently before the Scarpellini result)
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MV-algebras

They are structures A = (X ,⊕,¬,0,1), where

(X ,⊕,0) is an abelian monoid;
¬¬x = x ;
¬0 = 1;
x ⊕ 1 = 1;
¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x (Mangani’s axiom).
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The Łukasiewicz product

The derived operation

x � y = ¬(¬x ⊕ ¬y)

is the De Morgan dual of the sum ⊕.
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The partial order of an MV-algebra

We let x ≤ y if y = x ⊕ z for some z.

This is a lattice with
x ∨ y = ¬(¬x ⊕ y)⊕ y

and
x ∧ y = ¬(¬x ∨ ¬y).

A linearly ordered MV-algebra is called an MV-chain.
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Ideals

An ideal of an MV-algebra A is a set I ⊆ A such that
x , y ∈ I implies x ⊕ y ∈ I
x ∈ I and y ≤ x imply y ∈ I.

An ideal I is prime if I 6= A and whenever x ∧ y ∈ I we have x ∈ I or
y ∈ I.
Ideals and prime ideals can be also defined in lattices.
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Filters

A filter of an MV-algebra A is a set F ⊆ A such that

x , y ∈ F implies x � y ∈ F
x ∈ F and y ≥ x imply y ∈ F .

A filter F is prime if F 6= A and whenever x ∨ y ∈ F we have x ∈ F or
y ∈ F .
Filters and prime filters can be also defined in lattices.
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The prime spectrum of a lattice

Given a lattice L, Spec(L) is the set of all prime filters of L whose
topology (Zariski topology) is generated by the opens
Ua = {F ∈ Spec(L)|a ∈ F}.
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The importance of [0,1]

Theorem (Di Nola embedding)
Every MV algebra embeds in a power of an ultrapower of [0,1].

Corollary
[0,1] generates the variety of MV algebras.
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Finite MV-algebras

The finite chains are Sn = {0,1/n,2/n, . . . ,n − 1/n,1}.
Every finite MV-algebra is a finite product of chains.
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The spectrum problem for MV-algebras

We do not have a good topological characterization of spectra of
MV-algebras
(we have it as ordered sets thanks to Cignoli-Torrens, and we have it
for countable MV-algebras thanks to Wehrung).
One of the tools devised for this problem is Belluce functor, which
replaces the MV-algebras with “simpler” objects.
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The Belluce β functor

Given MV-algebra A we define the equivalence x ≡ y if x and y belong
to the same prime ideals.
Define β(A) = A/ ≡, which has a natural structure of a lattice.
Moreover, the prime spectra of A and β(A) are homeomorphic.
β can be extended to a functor from MV-algebras to bounded
distributive lattices by letting β(f )(β(x)) = β(f (x)).
If we consider filters rather than ideals, we obtain a dual functor β∗.
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The category MMV of Monadic MV-algebras

Monadic MV-algebras are structures (A,∃), where A is an MV-algebra,
∃ : A→ A and

x ≤ ∃x
∃(x ∨ y) = ∃x ∨ ∃y
∃¬(∃x) = ¬∃x
∃(∃x ⊕ ∃y) = ∃x ⊕ ∃y
∃(x � x) = ∃x � ∃x
∃(x ⊕ x) = ∃x ⊕ ∃x .

Note that the axioms imply ∃∃x = ∃x and the range of ∃ is an
MV-subalgebra.
∀ : A→ A is defined as ∀a = ¬(∃¬a).
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Monadic Boolean algebras (Halmos)

Recall that Boolean algebras are idempotent MV-algebras (x ⊕ x = x)
In the same vein, Monadic Boolean algebras are structures (A, ∃),
where A is a Boolean algebra, ∃ : A→ A and

x ≤ ∃x
∃(x ∨ y) = ∃x ∨ ∃y
∃x ∧ ∃y = ∃(x ∧ ∃y).

Monadic Boolean algebras are dual to Boolean spaces with Boolean
equivalence relations.
We do not have, instead, a duality for the full category of monadic
MV-algebras (not even of MV-algebras).
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Monadic Boolean algebras are dual to Boolean spaces with Boolean
equivalence relations.
We do not have, instead, a duality for the full category of monadic
MV-algebras (not even of MV-algebras).
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Structure of monadic MV-algebras

If (A,∃) is a monadic MV-algebra then A0 = {x |∃x = x} is an
MV-subalgebra of A which is m-relatively complete, that is,

for every a ∈ A the infimum inf{b ∈ A0|b ≥ a} exists in A0

if a ∈ A, x ∈ A0, x ≥ a� a then there is v ∈ A0 with v ≥ a and
x ≥ v � v
if a ∈ A, x ∈ A0, x ≥ a⊕ a then there is v ∈ A0 with v ≥ a and
x ≥ v ⊕ v .

Conversely, every mrc-subalgebra A0 of A gives a quantifier by letting
∃a = inf{b ∈ A0|b ≥ a}.
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Monadic ideals

A monadic ideal of (A, ∃) is an MV-algebra ideal closed under ∃.
There is an isomorphism between:

the lattice of monadic ideals of (A, ∃);
the lattice of congruences of (A,∃);
the lattice of ideals of ∃A.
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Birkhoff subdirect representation

Theorem
(Rutledge) Every monadic MV-algebra (A,∃) is a subdirect product of
monadic MV-algebras (Ai , ∃i) where ∃iAi is totally ordered.

Topological spaces of monadic MV-algebras G. Lenzi



The totally ordered case is trivial

Lemma
If A0 is an m-relatively complete totally ordered MV-subalgebra of an
MV-algebra A, then A0 is a maximal totally ordered subalgebra of A.

Corollary
If (A,∃) is totally ordered then A = ∃A.
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An example of monadic MV-algebra

A diagonal construction:
A = [0,1]n

∃(x1, . . . , xn) = (m,m, . . . ,m)
where m = max{x1, . . . , xn}.
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The finite case

Theorem
If (A,∃) is a finite monadic MV-algebra with totally ordered ∃A, then
A = (∃A)n and ∃(x1, . . . , xn) = (m,m, . . . ,m), where
m = max{x1, . . . , xn}.

More generally, if A = Sn1 × . . .× Snk is finite, then monadic structures
can be found by considering homogeneous partitions of {1, . . . , k}, that
is partitions where two equivalent indices correspond to equal chains.
On each block of the partition, one can perform the diagonal
construction.
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Dualities

In duality theory, “abstract” algebraic objects are put in
correspondence with “concrete” geometric or topological objects.
The theory of lattices gives a huge amount of examples. Here we will
only recall some of them.

Calculate! (Leibniz)
Topologize! (Stone)
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Priestley spaces

Priestley discovered a duality between the category of bounded
distributive lattices and the category of Priestley spaces, extending
Stone duality for Boolean algebras.
A Priestley space is a structure (X ,R), where X is a compact
topological space and R is an order relation on X such that, for all
x , y ∈ X , either xRy or there is a clopen up-set V with x ∈ V and
y /∈ V .
We denote by P(X ) the set of clopen up-sets of X .
A morphism of Priestley spaces is a continuous, order preserving map.
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Priestley duality

The dual of L is (Spec(L),⊆) where Spec(L) is the prime spectrum of
L equipped with the patch topology (the one generated by {P|a ∈ P}
and {P|a /∈ P} for a ∈ L).
The dual of (X ,R) is P(X ).
In both senses, the duality on morphisms is given by the inverse image.
What if quantifiers are added?
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The category QD of Q-distributive lattices

Intuitively, Q-distributive lattices are negation-free monadic Boolean
algebras.
Q-distributive lattices (Cignoli) are structures (L, ∃) where L is a
bounded distributive lattice, ∃ : L→ L and

∃0 = 0
a ∧ ∃a = a
∃(a ∧ ∃b) = ∃a ∧ ∃b
∃(a ∨ b) = ∃a ∨ ∃b
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The category QD∗ of Q-spaces

Cignoli found a dual category to Q-distributive lattices: Q-spaces.
A Q-space (Cignoli) is a structure (X ,R,E) where (X ,R) is a Priestley
space and E is an equivalence on X such that

For every U ∈ P(X ) we have E(U) ∈ P(X )

The equivalence classes of E are closed in X .

A morphism of Q spaces (X ,R,E) and (Y ,S,F ) is a map f : X → Y
which is continuous, order preserving and such that
E(f−1(V )) = f−1(F (V )) for every V ∈ P(Y ).
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The functor Q∗ from QD to QD∗

We define Q∗(L,∃) = (Spec(L),⊆,E(L, ∃)) where:
Spec(L) is the prime spectrum of L, i.e. the set of prime filters of L
the topology on Spec(L) is the patch topology
⊆ is the inclusion relation in Spec(L) (so (Spec(L),⊆) is a
Priestley space)
E(L, ∃) = {(F ,G) ∈ Spec(L)2|F ∩ ∃L = G ∩ ∃L}.

Given a morphism of Q-distributive lattices h : A→ B, we define Q∗(h)
by
Q∗(h)(P) = h−1(P) for every P ∈ Spec(B).
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The functor Q from QD∗ to QD

We define Q(X ,R,E) = (P(X ),E).
Given f : (X ,R,E)→ (Y ,S,F ), we define Q(f ) by Q(f )(V ) = f−1(V )
for every V ∈ P(Y ).

The pair (Q,Q∗) is a duality between QD and QD∗ (Cignoli).
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The functor γ from MMV to QD

γ is an extension of Belluce β functor.

In fact, γ(A,∃) = (A/ ≡′,∃′) where x ≡′ y if x and y belong to the
same prime ideals of A,
and ∃x and ∃y belong to the same prime ideals;
moreover ∃′[a] = [∃a] where [a] is the equivalence class of a modulo
≡′.

γ becomes a functor from MMV-algebras to Q-distributive lattices by
γ(f )(γ(x)) = γ(f (x)).
Like for β, the prime spectra of (A,∃) and γ(A,∃) are homeomorphic.
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The codomain of γ

From the theory of prime spectra of MV-algebras it follows that the
co-domain of the functor γ is given by the dual completely normal
distributive lattices, that is (Wehrung)
for every a,b there are x , y such that a ≥ b ∧ x , b ≥ a ∧ y and
x ∨ y = 1.
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Summing up

By composing γ with Q∗, we obtain a functor from monadic
MV-algebras to Q-spaces,
actually monadic Q-spaces which we define right now.
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The category of monadic Q-spaces

A monadic Q-space is a Q-space (X ,R,E) such that

R(x) is a chain for every x
RE(x) = ER(x)
R−1E(x) = ER−1(x)
R(x) ∩ E(x) = R−1(x) ∩ E(x) = {x}.

A morphism of monadic Q-spaces is a strongly isotone mapping of
Q-spaces.
Recall that a monotonic map f : X → Y between spaces (X ,R,E) and
(Y ,S,F ) is strongly isotone if
R(f (x)) = f (S(x)) for every x ∈ X .
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If you want to know more...

Antonio Di Nola: adinola@unisa.it

Revaz Grigolia: revaz.grigolia@tsu.ge

Giacomo Lenzi: gilenzi@unisa.it
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Thank you!
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