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Some history and some excusesThere are many predecessors doing “something similar but in adifferent direction”. There is at least one predecessor doing more:
I J. Farley, Priestley Duality for Order-Preserving Maps into

Distributive Lattices, Order 13, 65–98, 1996.Farley’s work uses fairly advanced topology.
I Our work was done independently, out of laziness andnegligence.
I It does not require advanced techniques, beyond Priestleyduality and basic categorical notions.
I It is an example of a restricted Priestley duality as definedin B.A. Davey, A. Gair, Restricted Priestley Dualities and

Discriminator Variaties
I It can be used to investigate algebraically “the logic ofminimal negation” (and the lattice of subvarieties of thecorresponding variety of algebras).
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BDLs with order-inverting operationA bounded distributive lattice with order-inverting operation (orBDL with negation), is an algebra A = (A;∧,∨,¬, 0, 1), such that
I (A;∧,∨, 0, 1) is a bounded distributive lattice, and
I ¬ is an order-inverting operation.Let BDLN be the class of all such algebras.Lemma

The class BDLN is precisely the class of bounded distributive
lattices with a unary operation ¬ satisfying the following weak
De Morgan laws

¬x ∨ ¬y ≤ ¬(x ∧ y ),
¬(x ∨ y ) ≤ ¬x ∧ ¬y .

Thus, BDLN is a variety.
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Logic of minimal negationA sequent is a pair of multisets of terms. As usual, we begin byspecifying initial sequents:
` 1 α ` α 0 `

As structural rules, we take left and right weakening:Γ ` ∆Γ ` α,∆ Γ ` ∆Γ, α ` ∆
left and right contraction:Γ ` α, α,∆Γ ` α,∆ Γ, α, α ` ∆Γ, α ` ∆
and unrestricted cut: Γ ` α,∆ Σ, α ` ΠΓ,Σ ` ∆,Π
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Logic of minimal negationNext, the introduction rules for ∧ and ∨:Γ, α ` ∆Γ, α ∧ β ` ∆ Γ, β ` ∆Γ, α ∧ β ` ∆ Γ ` α,∆ Γ ` β,∆Γ ` α ∧ β,∆
Γ ` α,∆Γ ` α ∨ β,∆ Γ ` β,∆Γ ` α ∨ β,∆ Γ, α ` ∆ Γ, β ` ∆Γ, α ∨ β ` ∆Up to here, everything is classical. Now, for negation we assumeonly the minimal

α ` β
¬β ` ¬αinstead of the classicalΓ, α ` ∆Γ,` ¬α,∆ Γ ` β,∆Γ,¬β ` ∆
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The logic and the variety
CuriosLet L be the logic defined above.1. L is not algebraizable in the sense of Blok-Pigozzi.2. L is not order-algebraizable in the sense of Raftery.3. L is algebraizable as a sequent system, in the sense ofRebagliato-Verdú and Blok-Jónsson. Thus, BDLN is anatural semantics of L.4. BDLN is not point-regular.5. BDLN has the finite embeddability property.6. The lattice reduct of the free zero-generated algebra in

BDLN is a chain has order type ω + ω∗.7. Cut elimination holds in L.
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The dual category: objects
DefinitionThe objects are pairs (

P, N : P → O(ClopUp(P))), where1. P is a Priestley space.2. ClopUp(P) is the set of clopen up-sets of P .3. O(ClopUp(P)) is the set of downsets of ClopUp(P).4. N : P → O(ClopUp(P)) is an order-preserving map, such thatfor every X ∈ ClopUp(P), the set {p ∈ P : X ∈ N (p)} isclopen.
I {p ∈ P : X ∈ N (p)} will be ¬X .
I If P is finite, then ClopUp(P) is just the set of up-sets of P ,and (4) is satisfied by any order-preserving map.

I Example: the simplest that can be...
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The dual category: preparing for morphisms
I Any order-preserving map h : P → Q between ordered sets Pand Q can be naturally lifted to a map h−1 : P(Q)→ P(P)taking each X ∈ P(Q) to h−1(X ) ∈ P(P).
I h−1 maps up-sets to up-sets and downsets to downsets.
I The lifting can be iterated. E.g., (h−1)−1 : P(P(P))→ P(P(Q)).We will write h for this double lifting.
I h maps up-sets to up-sets and downsets to downsets.
I Let (P,N P ) and (Q,NQ ) be objects, and let h : P → Q be acontinuous map. Since h is continuous, the map

h−1 : ClopUp(Q)→ ClopUp(P) is well defined.
I Thus, h is also well defined as a map from O(ClopUp(P)) to
O(ClopUp(Q)).
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The dual category: morphisms
I Let h : P → Q be a continuous order-preserving map. Then,for any W ∈ O(ClopUp(P)), we have

h(W ) = {U ∈ ClopUp(Q) : h−1(U) ∈W }.
DefinitionA morphism from (P,N P ) to (Q,NQ ) is a continuousorder-preserving map h : P → Q such that the diagram belowcommutes.

P Q

O(ClopUp(P)) O(ClopUp(Q))
N P NQ

h

h
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Dual equivalenceTheorem
The categories BDLN (with homomorphisms) and OTNS are
dually equivalent.

Define E : OTNS→ BDLN as follows:
I For an object P ∈ OTNS, we put

E (P) = (ClopUp(P),∪,∩,¬, ∅,P)
where for every X ∈ ClopUp(P) we have

¬X = {p ∈ P : X ∈ N (p)}.
I For a morphism h ∈ Hom(P,Q), we put

E (h)(U) = h−1(U)
for every U ∈ ClopUp(P).
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Dual equivalenceDefine D : BDLN→ OTNS, as follows:
I For an algebra A ∈ BDLN, we first take the usual Priestleytopology on the set Fp(A) of all prime filters of A, and then,we put

D(A) = (
Fp(A), NA : Fp(A)→ O(ClopUp(Fp(A))))

where for every F ∈ Fp(A) we have
NA(F ) = {

{H ∈ Fp(A) : a ∈ H} : ¬a ∈ F
}
.

I For a homomorphism f ∈ Hom(A,B), we put
D(f ) = f −1

where D(f )(G ) = f −1(G ) for every G ∈ Fp(B).
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Frame conditions
I Some examples of conditions on the algebras andcorresponding conditions on dual spaces. Such things areknown as frame conditions in dualities for BAOs.

Algebra Dual space1 ¬1 = 0 ∀p ∈ P : P /∈ N (p)2 ¬0 = 1 ∀p ∈ P : P /∈ N (p)3 ¬x is the pseudo-complement of x X ∈ N (p) iff ↑p ∩ X = ∅4 ¬ is a dual endomorphism ∀p ∈ P : N (p) ∈ im(P)
where im(P) is the image of P under the natural order-embeddingof P into O(U(P)).

I The third condition corresponds to an intuitionistic negation,the fourth to a de Morgan negation (the algebras are knownas Ockham lattices).
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Lattice of subvarieties
I Level 1. There are 3 atoms: generated by the 3 algebrasbased on the 2-element chain.
I Level 2. Algebras based on the 3-element chain generate 5more join-irreducible varieties (there are 3 more: varietaljoins of the atoms).
I Level 3. Too messy to do by hand, perhaps. Conjecture:infinite.
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