A simple restricted Priestley duality for distributive lattices with an order-inverting operation

Eli Hazel, Tomasz Kowalski

Department of Mathematics and Statistics La Trobe University

27 June 2017, TACL, Prague

Some history and some excuses

There are many predecessors doing "something similar but in a different direction". There is at least one predecessor doing more:

▶ J. Farley, *Priestley Duality for Order-Preserving Maps into Distributive Lattices*, Order 13, 65–98, 1996.

Farley's work uses fairly advanced topology.

- Our work was done independently, out of laziness and negligence.
- It does not require advanced techniques, beyond Priestley duality and basic categorical notions.
- ► It is an example of a restricted Priestley duality as defined in B.A. Davey, A. Gair, Restricted Priestley Dualities and Discriminator Variaties
- ▶ It can be used to investigate algebraically "the logic of minimal negation" (and the lattice of subvarieties of the corresponding variety of algebras).

BDLs with order-inverting operation

A bounded distributive lattice with order-inverting operation (or BDL with negation), is an algebra $A = (A; \land, \lor, \neg, 0, 1)$, such that

- ▶ $(A; \land, \lor, 0, 1)$ is a bounded distributive lattice, and
- ▶ ¬ is an order-inverting operation.

Let BDLN be the class of all such algebras.

Lemma

The class BDLN is precisely the class of bounded distributive lattices with a unary operation ¬ satisfying the following weak De Morgan laws

$$\neg x \lor \neg y \le \neg (x \land y),$$
$$\neg (x \lor y) \le \neg x \land \neg y.$$

Thus, \mathbb{BDLN} is a variety.

Logic of minimal negation

A sequent is a pair of multisets of terms. As usual, we begin by specifying initial sequents:

$$\vdash 1 \quad \alpha \vdash \alpha \quad 0 \vdash$$

As structural rules, we take left and right weakening:

$$\frac{\Gamma \vdash \Delta}{\Gamma \vdash \alpha, \Delta} \qquad \frac{\Gamma \vdash \Delta}{\Gamma, \alpha \vdash \Delta}$$

left and right contraction:

$$\frac{\Gamma \vdash \alpha, \alpha, \Delta}{\Gamma \vdash \alpha, \Delta} \qquad \frac{\Gamma, \alpha, \alpha \vdash \Delta}{\Gamma, \alpha \vdash \Delta}$$

and unrestricted cut:

$$\frac{\Gamma \vdash \alpha, \Delta \quad \Sigma, \alpha \vdash \Pi}{\Gamma, \Sigma \vdash \Delta, \Pi}$$

Logic of minimal negation

Next, the introduction rules for \land and \lor :

$$\frac{\Gamma, \alpha \vdash \Delta}{\Gamma, \alpha \land \beta \vdash \Delta}$$

$$\frac{\Gamma, \beta \vdash \Delta}{\Gamma, \alpha \land \beta \vdash \Delta}$$

$$\frac{\Gamma, \alpha \vdash \Delta}{\Gamma, \alpha \land \beta \vdash \Delta} \qquad \frac{\Gamma, \beta \vdash \Delta}{\Gamma, \alpha \land \beta \vdash \Delta} \qquad \frac{\Gamma \vdash \alpha, \Delta \quad \Gamma \vdash \beta, \Delta}{\Gamma \vdash \alpha \land \beta, \Delta}$$

$$\frac{\Gamma \vdash \alpha, \Delta}{\Gamma \vdash \alpha \lor \beta, \Delta}$$

$$\frac{\Gamma \vdash \beta, \Delta}{\Gamma \vdash \alpha \lor \beta, \Delta}$$

$$\frac{\Gamma \vdash \alpha, \Delta}{\Gamma \vdash \alpha \lor \beta, \Delta} \qquad \frac{\Gamma \vdash \beta, \Delta}{\Gamma \vdash \alpha \lor \beta, \Delta} \qquad \frac{\Gamma, \alpha \vdash \Delta \quad \Gamma, \beta \vdash \Delta}{\Gamma, \alpha \lor \beta \vdash \Delta}$$

Up to here, everything is classical. Now, for negation we assume only the minimal

$$\frac{\alpha \vdash \beta}{\neg \beta \vdash \neg \alpha}$$

instead of the classical

$$\frac{\Gamma, \alpha \vdash \Delta}{\Gamma, \vdash \neg \alpha, \Delta} \qquad \frac{\Gamma \vdash \beta, \Delta}{\Gamma, \neg \beta \vdash \Delta}$$

$$\frac{\Gamma \vdash \beta, \Delta}{\Gamma, \neg \beta \vdash \Delta}$$

The logic and the variety

Curios

Let L be the logic defined above.

- 1. *L* is not algebraizable in the sense of Blok-Pigozzi.
- 2. *L* is not order-algebraizable in the sense of Raftery.
- 3. *L* is algebraizable as a sequent system, in the sense of Rebagliato-Verdú and Blok-Jónsson. Thus, BDLN is a natural semantics of *L*.
- 4. BDLN is not point-regular.
- 5. BDLN has the finite embeddability property.
- 6. The lattice reduct of the free zero-generated algebra in BDLN is a chain has order type $\omega + \omega^*$.
- 7. Cut elimination holds in *L*.

The dual category: objects

Definition

The objects are pairs $(P, \mathcal{N}: P \to \mathcal{O}(\mathsf{ClopUp}(P)))$, where

- 1. P is a Priestley space.
- 2. ClopUp(P) is the set of clopen up-sets of P.
- 3. $\mathcal{O}(\mathsf{ClopUp}(P))$ is the set of downsets of $\mathsf{ClopUp}(P)$.
- 4. $\mathcal{N}: P \to \mathcal{O}(\mathsf{ClopUp}(P))$ is an order-preserving map, such that for every $X \in \mathsf{ClopUp}(P)$, the set $\{p \in P \colon X \in \mathcal{N}(p)\}$ is clopen.
- ▶ $\{p \in P : X \in \mathcal{N}(p)\}$ will be $\neg X$.
- ► If P is finite, then ClopUp(P) is just the set of up-sets of P, and (4) is satisfied by any order-preserving map.

The dual category: objects

Definition

The objects are pairs $(P, \mathcal{N}: P \to \mathcal{O}(\mathsf{ClopUp}(P)))$, where

- 1. P is a Priestley space.
- 2. ClopUp(P) is the set of clopen up-sets of P.
- 3. $\mathcal{O}(\mathsf{ClopUp}(P))$ is the set of downsets of $\mathsf{ClopUp}(P)$.
- 4. $\mathcal{N}: P \to \mathcal{O}(\mathsf{ClopUp}(P))$ is an order-preserving map, such that for every $X \in \mathsf{ClopUp}(P)$, the set $\{p \in P \colon X \in \mathcal{N}(p)\}$ is clopen.
- ▶ $\{p \in P : X \in \mathcal{N}(p)\}$ will be $\neg X$.
- If P is finite, then ClopUp(P) is just the set of up-sets of P, and (4) is satisfied by any order-preserving map.
- ► Example: the simplest that can be...

The dual category: preparing for morphisms

- ▶ Any order-preserving map $h: P \to Q$ between ordered sets P and Q can be naturally lifted to a map $h^{-1}: \mathcal{P}(Q) \to \mathcal{P}(P)$ taking each $X \in \mathcal{P}(Q)$ to $h^{-1}(X) \in \mathcal{P}(P)$.
- ► h^{-1} maps up-sets to up-sets and downsets to downsets.
- ▶ The lifting can be iterated. E.g., $(h^{-1})^{-1}$: $\mathcal{P}(\mathcal{P}(P)) \to \mathcal{P}(\mathcal{P}(Q))$. We will write \overline{h} for this double lifting.
- ightharpoonup maps up-sets to up-sets and downsets to downsets.
- ▶ Let (P, \mathcal{N}^P) and (Q, \mathcal{N}^Q) be objects, and let $h: P \to Q$ be a continuous map. Since h is continuous, the map $h^{-1}: \mathsf{ClopUp}(Q) \to \mathsf{ClopUp}(P)$ is well defined.
- ▶ Thus, \overline{h} is also well defined as a map from $\mathcal{O}(\mathsf{ClopUp}(P))$ to $\mathcal{O}(\mathsf{ClopUp}(Q))$.

The dual category: morphisms

▶ Let $h: P \to Q$ be a continuous order-preserving map. Then, for any $W \in \mathcal{O}(\mathsf{ClopUp}(P))$, we have $\overline{h}(W) = \{U \in \mathsf{ClopUp}(Q): h^{-1}(U) \in W\}.$

Definition

A morphism from (P, \mathcal{N}^P) to (Q, \mathcal{N}^Q) is a continuous order-preserving map $h \colon P \to Q$ such that the diagram below commutes.

$$P \xrightarrow{h} Q$$

$$\downarrow \mathcal{N}^{P} \downarrow \qquad \qquad \downarrow \mathcal{N}^{Q}$$

$$\mathcal{O}(\mathsf{ClopUp}(P)) \xrightarrow{\overline{h}} \mathcal{O}(\mathsf{ClopUp}(Q))$$

Dual equivalence

Theorem

The categories BDLN (with homomorphisms) and \mathbb{OTNS} are dually equivalent.

Define $E: \mathbb{OTNS} \to \mathsf{BDLN}$ as follows:

lacktriangle For an object $\mathcal{P}\in\mathbb{OTNS}$, we put

$$E(\mathcal{P}) = (Clop \cup p(P), \cup, \cap, \neg, \emptyset, P)$$

where for every $X \in \text{ClopUp}(P)$ we have

$$\neg X = \{ p \in P \colon X \in \mathcal{N}(p) \}.$$

▶ For a morphism $h \in \text{Hom}(\mathcal{P}, \mathcal{Q})$, we put

$$E(h)(U) = h^{-1}(U)$$

for every $U \in \text{ClopUp}(P)$.

Dual equivalence

Define $D: BDLN \to \mathbb{OTNS}$, as follows:

▶ For an algebra $A \in BDLN$, we first take the usual Priestley topology on the set $\mathcal{F}_p(A)$ of all prime filters of A, and then, we put

$$D(\mathsf{A}) = \big(\mathcal{F}_p(\mathsf{A}), \ \mathcal{N}_\mathsf{A} \colon \mathcal{F}_p(\mathsf{A}) \to \mathcal{O}(\mathsf{ClopUp}(\mathcal{F}_p(\mathsf{A})))\big)$$

where for every $F \in \mathcal{F}_p(A)$ we have

$$\mathcal{N}_{A}(F) = \{ \{ H \in \mathcal{F}_{p}(A) \colon a \in H \} \colon \neg a \in F \}.$$

▶ For a homomorphism $f \in \text{Hom}(A, B)$, we put

$$D(f) = f^{-1}$$

where $D(f)(G) = f^{-1}(G)$ for every $G \in \mathcal{F}_p(B)$.

Frame conditions

► Some examples of conditions on the algebras and corresponding conditions on dual spaces. Such things are known as frame conditions in dualities for BAOs.

	Algebra	Dual space
1	$ ag{1} = 0$	$\forall p \in P \colon P \notin \mathcal{N}(p)$
2	$\neg 0 = 1$	$\forall p \in P \colon P \notin \mathcal{N}(p)$
3	$\neg x$ is the pseudo-complement of x	$X \in \mathcal{N}(p)$ iff $\uparrow p \cap X = \emptyset$
4	¬ is a dual endomorphism	$\forall p \in P : \mathcal{N}(p) \in im(P)$

where im(P) is the image of P under the natural order-embedding of P into $\mathcal{O}(\mathcal{U}(P))$.

Frame conditions

► Some examples of conditions on the algebras and corresponding conditions on dual spaces. Such things are known as frame conditions in dualities for BAOs.

	Algebra	Dual space
1	$\neg 1 = 0$	$\forall p \in P \colon P \notin \mathcal{N}(p)$
2	$\neg 0 = 1$	$\forall p \in P \colon P \notin \mathcal{N}(p)$
3	$\neg x$ is the pseudo-complement of x	$X \in \mathcal{N}(p)$ iff $\uparrow p \cap X = \emptyset$
4	¬ is a dual endomorphism	$\forall p \in P \colon \mathcal{N}(p) \in \mathit{im}(P)$

where im(P) is the image of P under the natural order-embedding of P into $\mathcal{O}(\mathcal{U}(P))$.

► The third condition corresponds to an intuitionistic negation, the fourth to a de Morgan negation (the algebras are known as Ockham lattices).

Lattice of subvarieties

- ► Level 1. There are 3 atoms: generated by the 3 algebras based on the 2-element chain.
- ► Level 2. Algebras based on the 3-element chain generate 5 more join-irreducible varieties (there are 3 more: varietal joins of the atoms).
- ► Level 3. Too messy to do by hand, perhaps. Conjecture: infinite.

