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Motivation ° -,

Coalgebras encompass a wide variety of dynamical systems.
Their behaviour can be universally characterised using the theory of coalgebras.

However, in real life, the complexity of dynamical systems often makes bisimilarity
is a too strict concept.

Consequently, the focus should be on quantitative behaviour (e.g. ordered,
fuzzy, or probabilistic behavior):

(bi)similarity pseudometric that measures how similar two systems are
from the point of view of their behaviours

These can be properly captured using coalgebras based on quantale-enriched
categories.
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Coalgebras and their logics — the abstract recipe ° -,

The coalgebraic data:
» Category C

> Functor T:C—C T QC

A. Balan (UPB) A multi-valued framework for coalgebraic logics TACL 2/9



Coalgebras and their logics — the abstract recipe o *

The coalgebraic data:

Coalg(T)
» Category C l
> Functor T:C—C T QC

» T-coalgebra
c: X—=TX

» T-coalgebra morphism
f:(X,c) = (X', c)

X —5TX

I

X —< 5 TX
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Coalgebras and their logics — the abstract recipe

The coalgebraic data:
» Category C
» Functor T :C —C

» T-coalgebra
c: X—=TX

» T-coalgebra morphism
f:(X,c) = (X', c)

X —5TX

I

X —< X
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The logical data:

» Contravariant adjunction

SHP:.D P
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Coalgebras and their logics — the abstract recipe

The coalgebraic data:
» Category C
» Functor T :C —C

» T-coalgebra
c: X—=TX

» T-coalgebra morphism
f:(X,c) = (X', c)

X —5TX

I

X —< X

A. Balan (UPB)

Coalg(T)°® —— Alg(L)

| |

The logical data:

ToP CP 1 'D L
Ger—T—p)

» Contravariant adjunction

SHP:.D P

» Functor L : D — D

» Natural transformation

§:LP — PTP
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This talk

°
Today's purpose: to look for a contravariant adjunction (to be used in the future

for logics) for coalgebras over quantale-enriched categories

Let 7 denote a commutative integral quantale.

Let #-cat be the category of #'-categories and #-functors.
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This talk

o
Today's purpose: to look for a contravariant adjunction (to be used in the future

for logics) for coalgebras over quantale-enriched categories.

Let 7 denote a commutative integral quantale.

Let #-cat be the category of ¥ '-categories and ¥ -functors.
An ideal picture:

base for _ ______sg

op ———> base for
paces T Algebras ¢~~~ :
coalgebras | & logics
[_77/]
_
V-cat°P T V-cat
[_77/]

> For ¥ = 2, this is relatively well understood.

> What about for other quantale ¥? For ¥ = (|0, 1], ®, 1), for example?
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A hint from positive coalgebraic logics ° -,

> The simplest case: the quantale 2

°p 1 DLat

Poset

» Posets: antisymmetric 2-enriched categories.

» Distributive lattices: antisymmetric finitely complete and cocomplete
2-categories such that finite limits distribute over finite colimits.
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A hint from positive coalgebraic logics 3

> The simplest case: the quantale 2
op&——
Poset L DLat
» Posets: antisymmetric 2-enriched categories.

» Distributive lattices: antisymmetric finitely complete and cocomplete
2-categories such that finite limits distribute over finite colimits.

» Move from 2 to an arbitrary quantale ¥ — a naive approach:

> Replace posets by antisymmetric ¥ -categories.

» Replace distributive lattices by finitely complete and cocomplete
¥ -categories such that finite conical limits distribute over finite
conical colimits.

> Does it work? A minimal requirement: the quantale ¥ itself should have a
distributive lattice reduct.
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The contravariant adjunction — step | ° -,
°
» Consider the finitely complete and cocomplete ¥ -categories such that
finite conical limits distribute over finite conical colimits (%)

with left and right exact #'-functors between them.

> Recall that finite colimits/limits can be completely described in terms of
tensors/cotensors and finite joins/meets with respect to the underlying order
of a ¥'-category.

> Hence each & as above is in particular a distributive lattice by (%), and
each f : & — % left and right exact is a morphism of distributive lattices.

» Tensors and cotensors are encoded by a family of adjoint pair of maps

r @ — -t (r,—) on the underlying distributive lattice of <, and lex/rex
¥'-functors preserve them.
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The contravariant adjunction — step |

> In view of the previous features, call the resulting structure a distributive

lattice with #'-operators (dlao(?)). In detail:

» (A, A,V,0,1) is a bounded distributive lattice.
» A is endowed with a family of adjoint maps
ro——Am(r,=):A=A, rev
satisfying the following:
» 1lGa=a
> (rerY0a=ro(roa)
> For each family (ri)ics in ¥ with \/

ierfi ="

r@a<r®a Viel
ra<b, Viel = roa<b

> Morphisms of dlao(¥') are those preserving all operations.

> Hence we obtain a category DLatAO(¥") (more precisely a #-cat-category)
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The contravariant adjunction — step I ° -,

> The dual of DLatAO(¥) can be obtained by restricted Priestley duality:
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The contravariant adjunction — step I .

> The dual of DLatAO(¥) can be obtained by restricted Priestley duality:

> Objects of DLatAO(¥)°P are Priestley spaces (X, 7, <), endowed with a
family of binary relations (R,),cv satisfying

» x' < xand R,(x,y) and y <y imply R,(x',y’)
> Rl = S

» RroRv = Rigr

> RVie/ r = Uiel Rrr‘

and several topological conditions.
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The contravariant adjunction — step I .

> The dual of DLatAO(¥) can be obtained by restricted Priestley duality:

> Objects of DLatAO(¥)°P are Priestley spaces (X, 7, <), endowed with a
family of binary relations (R,),cv satisfying
» x' < xand R,(x,y) and y <y imply R,(x',y’)
» R =<
» R,oRs = Rgr
> RVie/ r = Uiel Rrr‘
and several topological conditions.

> Morphisms in DLatAO(%)°P are monotone continuous maps f : X — Y
such that

> Re(xy) = Ri(fx fy)
» R(u,fx) < (3x' € X.u < &' and R.(x',x))
» R(fx,u) < (I’ € X.R(x,x") and X' < u)
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The contravariant adjunction — step I ° -,
> Denote by RelPriest(¥") the resulting category. Hence

RelPriest(7)°" = DLatAO(¥")
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The contravariant adjunction — step I
> Denote by RelPriest(¥") the resulting category. Hence

RelPriest(?)° = DLatAO(¥)
» Each relational Priestley space X becomes a ¥ -category by

2 (x,y) = \{r| R(x )}
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The contravariant adjunction — step I ° -,
> Denote by RelPriest(¥") the resulting category. Hence

RelPriest(?)° = DLatAO(¥)
» Each relational Priestley space X becomes a ¥ -category by
2 (x,y) = \/{r | Ri(x,y)}

> Assume that ¥ is completely distributive and recall that each relational
Priestley space is in particular compact Hausdorff.

» For completely distributive #, the #-cat-ification U” of the ultrafilter
monad is a monad on ¥ '-cat, hence we may speak of compact ¥ -categories
as U” -algebras.

> The ¥'-category structure and the compact Hausdorff structure on X are
compatible, in the sense that the convergence map assigning to each
ultrafilter on X its limit point is a ¥'-functor.
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. ( ]
Conclusion ° -,
([ ]
RelPriest(7")°P = DLatAO(¥)
compact Hausdorff finitely complete
¥ -categories, and cocomplete
hence antisymmetric and ¥ -categories with
Cauchy complete distributivity condition (%)

> We have obtained a duality between spaces and algebras, both carrying
underlying #'-category structure.

> The duality above is yet unsatisfactory, as it is not obtained by “homming”
into 7.

> In [B3bus&Kurz'16], a duality between completely distributive ¥ -categories
and atomic Cauchy complete ¥ '-categories was provided. How are the two
dualities related?
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Thank you for your

attention!
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On the structure of 7'-categories ° -,
[B, Kurz, Velebil - CALCO2015]

Fact: The discrete functor D : Set — ¥-cat is dense: each ¥ '-category
can be canonically expressed as a colimit of discrete ones.
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On the structure of 7'-categories .
[B, Kurz, Velebil - CALCO2015]

Fact: The discrete functor D : Set — ¥-cat is dense: each ¥ '-category
can be canonically expressed as a colimit of discrete ones.
First, notice that each ¥ '-category ./ determines the following data:

» A, the underlying set of objects of the ¥ '-category <7
» A, ={(a,b) e Ax A|r<.d/(a,b)}, the r-level set
» dj,d{ : A, — A the usual projection maps
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On the structure of 7'-categories .
[B, Kurz, Velebil - CALCO2015] °

Fact: The discrete functor D : Set — ¥-cat is dense: each ¥ '-category
can be canonically expressed as a colimit of discrete ones.
First, notice that each ¥ '-category ./ determines the following data:

» A, the underlying set of objects of the ¥ '-category <7
» A, ={(a,b) e Ax A|r<.d/(a,b)}, the r-level set
» dj,d{ : A, — A the usual projection maps

For each category <7, the above data can be organised as to describe a
diagram (a ¥-cat-functor) F, : N — Set, hence a diagram of discrete
¥ -categories

N Fg Set 2> Y-cat

Then the colimit of DF,, weighted by a convenient fixed presheaf ¢ is 7.
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On functors for #-cat-coalgebras * -,
[B, Kurz, Velebil — CALCO2015] °

In order to understand endofunctors (and their coalgebras) on #-cat, look
first at endofunctors on Set, then ask:

How to move from Set to ¥-cat?
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( ]
On functors for #-cat-coalgebras .
[B, Kurz, Velebil - CALCO2015] °

In order to understand endofunctors (and their coalgebras) on #-cat, look
first at endofunctors on Set, then ask:

How to move from Set to ¥-cat?

Fact: Functors T : Set — Set can be Set — Py v cat
canonically extended to #-cat-functors Tl

-
Ty : ¥-cat — V-cat. v

~

Set —2 ¥-cat
Here canonically means Ty = Lanp(DT).

Call T the ¥-cat-ification of T.

A. Balan (UPB) A multi-valued framework for coalgebraic logics TACL 2/3



On functors for #-cat-coalgebras 3

[B, Kurz, Velebil - CALCO2015] °
In order to understand endofunctors (and their coalgebras) on #-cat, look

first at endofunctors on Set, then ask:

How to move from Set to ¥-cat?

Fact: Functors T : Set — Set can be Set — Py v cat
canonically extended to #-cat-functors Tl -
Ty : ¥-cat — V-cat. v

~

Set _b, Y-cat

Here canonically means Ty = Lanp(DT).

Call T the ¥-cat-ification of T.

How? The construction of the extension applies DT to the “¥-nerve”
F.s of a ¥-category f, and then takes the appropriate “quotient”
(colimit) ¢ x (DTF<7).
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On functors for #-cat-coalgebras .
[B, Kurz, Velebil - CALCO2015] °

An easier recipe: if T preserves weak pullbacks, then its #-cat-ification
can be computed using Barr’s relation lifting.

Ty o/ (a,b) = \/{r | (a,b) € Relr(A,)}

r

Example: for ¥ completely distributive, the ¥#-cat-ification of the
powerset functor P gives the familiar Pompeiu-Hausdorff metric:

Let & be a ¥-category. Then Py .o/ is the ¥'-category with objects PX,
and ¥-homs

Pyt (a,0) =\ \ #(a,b) \ (' #(a b))

aca beb beb aca

We can even do better: completely characterise the #-cat-endofunctors
which arise as ¥-cat-ifications, namely as being those which preserve all
colimits ¢ x DF,, and also the discrete ¥ -categories.
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