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Motivation

Coalgebras encompass a wide variety of dynamical systems.

Their behaviour can be universally characterised using the theory of coalgebras.

However, in real life, the complexity of dynamical systems often makes bisimilarity
is a too strict concept.

Consequently, the focus should be on quantitative behaviour (e.g. ordered,
fuzzy, or probabilistic behavior):

(bi)similarity pseudometric that measures how similar two systems are
from the point of view of their behaviours

These can be properly captured using coalgebras based on quantale-enriched
categories.

A. Balan (UPB) A multi-valued framework for coalgebraic logics TACL 1 / 9



Coalgebras and their logics – the abstract recipe

The coalgebraic data:

I Category C

I Functor T : C → C

I T -coalgebra
c : X → TX

I T -coalgebra morphism

f : (X , c)→ (X ′, c ′)

X
c //

f
��

TX

Tf
��

X ′
c′ // TX ′

Coalg(T )

op

Alg(L)

C

op

T

op

<<

D

The logical data:

I Contravariant adjunction

S a P : D → Cop

I Functor L : D → D

I Natural transformation

δ : LP → PT op
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This talk

Today’s purpose: to look for a contravariant adjunction (to be used in the future
for logics) for coalgebras over quantale-enriched categories.

Let V denote a commutative integral quantale.

Let V -cat be the category of V -categories and V -functors.

An ideal picture:

base for
coalgebras

// Spacesop
//

oo >

��

Algebras

��

base for
logics

oo

Coalgebraic side V -catop
[−,V ]

//
oo

[−,V ]

> V -cat Logical side

I For V = 2, this is relatively well understood.

I What about for other quantale V ? For V = ([0, 1],⊗, 1), for example?
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A hint from positive coalgebraic logics

I The simplest case: the quantale 2

Posetop ⊥ // DLat
oo

I Posets: antisymmetric 2-enriched categories.

I Distributive lattices: antisymmetric finitely complete and cocomplete
2-categories such that finite limits distribute over finite colimits.

I Move from 2 to an arbitrary quantale V – a naive approach:

I Replace posets by antisymmetric V -categories.

I Replace distributive lattices by finitely complete and cocomplete
V -categories such that finite conical limits distribute over finite
conical colimits.

I Does it work? A minimal requirement: the quantale V itself should have a
distributive lattice reduct.
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The contravariant adjunction – step I

I Consider the finitely complete and cocomplete V -categories such that

finite conical limits distribute over finite conical colimits (?)

with left and right exact V -functors between them.

I Recall that finite colimits/limits can be completely described in terms of
tensors/cotensors and finite joins/meets with respect to the underlying order
of a V -category.

I Hence each A as above is in particular a distributive lattice by (?), and
each f : A → Y left and right exact is a morphism of distributive lattices.

I Tensors and cotensors are encoded by a family of adjoint pair of maps
r �− a t (r ,−) on the underlying distributive lattice of A , and lex/rex
V -functors preserve them.
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The contravariant adjunction – step I

I In view of the previous features, call the resulting structure a distributive
lattice with V -operators (dlao(V )). In detail:

I (A,∧,∨, 0, 1) is a bounded distributive lattice.

I A is endowed with a family of adjoint maps

r �− a t (r ,−) : A→ A , r ∈ V

satisfying the following:

I 1� a = a

I (r ⊗ r ′)� a = r � (r ′ � a)

I For each family (ri )i∈I in V with
∨

i∈I ri = r ,

ri � a ≤ r � a ∀ i ∈ I

ri � a ≤ b , ∀ i ∈ I =⇒ r � a ≤ b

I Morphisms of dlao(V ) are those preserving all operations.

I Hence we obtain a category DLatAO(V ) (more precisely a V -cat-category)
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The contravariant adjunction – step II

I The dual of DLatAO(V ) can be obtained by restricted Priestley duality:

I Objects of DLatAO(V )op are Priestley spaces (X , τ,≤), endowed with a
family of binary relations (Rr )r∈V satisfying

I x ′ ≤ x and Rr (x , y) and y ≤ y ′ imply Rr (x
′, y ′)

I R1 =≤
I Rr ◦ Rr ′ = Rr⊗r ′

I R∨
i∈I ri

=
⋃

i∈I Rri

and several topological conditions.

I Morphisms in DLatAO(V )op are monotone continuous maps f : X → Y
such that

I Rr (x , y) =⇒ Rr (fx , fy)

I Rr (u, fx)⇐⇒ (∃x ′ ∈ X . u ≤ fx ′ and Rr (x
′, x))

I Rr (fx , u)⇐⇒ (∃x ′ ∈ X .Rr (x , x
′) and fx ′ ≤ u)
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The contravariant adjunction – step II

I Denote by RelPriest(V ) the resulting category. Hence

RelPriest(V )op ∼= DLatAO(V )

I Each relational Priestley space X becomes a V -category by

X (x , y) =
∨
{r | Rr (x , y)}

I Assume that V is completely distributive and recall that each relational
Priestley space is in particular compact Hausdorff.

I For completely distributive V , the V -cat-ification UV of the ultrafilter
monad is a monad on V -cat, hence we may speak of compact V -categories
as UV -algebras.

I The V -category structure and the compact Hausdorff structure on X are
compatible, in the sense that the convergence map assigning to each
ultrafilter on X its limit point is a V -functor.
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Conclusion

RelPriest(V )op ∼=

��

DLatAO(V )

��

compact Hausdorff
V -categories,

hence antisymmetric and
Cauchy complete

finitely complete
and cocomplete

V -categories with
distributivity condition (?)

I We have obtained a duality between spaces and algebras, both carrying
underlying V -category structure.

I The duality above is yet unsatisfactory, as it is not obtained by “homming”
into V .

I In [Băbuş&Kurz’16], a duality between completely distributive V -categories
and atomic Cauchy complete V -categories was provided. How are the two
dualities related?
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Thank you for your

attention!
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On the structure of V -categories
[B, Kurz, Velebil – CALCO2015]

Fact: The discrete functor D : Set→ V -cat is dense: each V -category
can be canonically expressed as a colimit of discrete ones.

First, notice that each V -category A determines the following data:

I A, the underlying set of objects of the V -category A

I Ar = {(a, b) ∈ A× A | r ≤ A (a, b)}, the r -level set

I d r
0 , d

r
1 : Ar → A the usual projection maps

For each category A , the above data can be organised as to describe a
diagram (a V -cat-functor) FA : N→ Set, hence a diagram of discrete
V -categories

N
FA→ Set

D→ V -cat

Then the colimit of DFA weighted by a convenient fixed presheaf φ is A .
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On functors for V -cat-coalgebras
[B, Kurz, Velebil – CALCO2015]

In order to understand endofunctors (and their coalgebras) on V -cat, look
first at endofunctors on Set, then ask:

How to move from Set to V -cat?

Fact: Functors T : Set→ Set can be
canonically extended to V -cat-functors
TV : V -cat→ V -cat.

Here canonically means TV = LanD(DT ).

Call TV the V -cat-ification of T .

Set
D //

T
��

V -cat

TV
��

Set
D // V -cat

How? The construction of the extension applies DT to the “V -nerve”
FA of a V -category A , and then takes the appropriate “quotient”
(colimit) φ ? (DTFA ).
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On functors for V -cat-coalgebras
[B, Kurz, Velebil – CALCO2015]

An easier recipe: if T preserves weak pullbacks, then its V -cat-ification
can be computed using Barr’s relation lifting.

TV A (a, b) =
∨
r

{r | (a, b) ∈ RelT (Ar )}

Example: for V completely distributive, the V -cat-ification of the
powerset functor P gives the familiar Pompeiu-Hausdorff metric:

Let A be a V -category. Then PV A is the V -category with objects PX ,
and V -homs

PV A (a, b) =
( ∧
a∈a

∨
b∈b

A (a, b)
)∧( ∧

b∈b

∨
a∈a

A (a, b)
)

We can even do better: completely characterise the V -cat-endofunctors
which arise as V -cat-ifications, namely as being those which preserve all
colimits φ ? DFA and also the discrete V -categories.
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