On Kripke completeness of modal and superintuitionistic predicate logics with equality

\_\_\_\_>

Valentin Shehtman Dmitry Skvortsov

> TACL Prague 2017

# Introduction

Unlike the propositional case, in first-order modal (and intuitionistic) logic there is a gap between syntax and semantics. It turns out that simply axiomatizable modal logics may have complex semantic descriptions. The standard Kripke semantics does not work properly in the predicate case - "most of" modal predicate logics are Kripke-incomplete.

As the semantics of predicate logics is not clearly understandable, natural questions about properties of logics may be quite difficult.

In this talk we consider only one issue:

adding equality to a predicate logic.

#### Reference

D.Gabbay, V. Shehtman, D. Skvortsov. Quantification in Nonclassical Logic, Volume 1. Elsevier, 2009.

# Formulas

*Intuitionistic predicate formulas* are built from the following ingredients:

- the countable set of individual variables  $Var=\{v_1, v_2, ...\}$
- countable sets of n-ary predicate letters (for every  $n \ge 0$ )
- $\rightarrow$ ,  $\perp$ ,  $\lor$ ,  $\land$
- ∃,∀

*Modal predicate formulas* can also contain .

*Formulas with equality* can also contain =.

The connectives  $\neg$ ,  $\diamondsuit$  are derived.

No constants or function symbols

NOTATION for the sets of formulas: IF, IF<sup>=</sup>, MF, MF<sup>=</sup>

#### Variable and formula substitutions

[ $y_1,..., y_n / x_1,..., x_n$ ] simultaneously replaces all free occurrences of  $x_1,..., x_n$  with  $y_1,..., y_n$  (renaming bound variables if necessary) To obtain [C( $x_1,..., x_n, y_1,..., y_m$ )/P( $x_1,..., x_n$ )]A from A (1) rename all bound variables of A that coincide with the "new" parameters  $y_1,..., y_m$  of C, (2) replace every occurrence of every atom P( $z_1,..., z_n$ ) with [ $z_1,..., z_n / x_1,..., x_n$ ]C

Strictly speaking, all substitutions are defined up to congruence: formulas are congruent if they can be obtained by "legal" renaming of bound variables  $[Q(x,y,z)/P(x)] (\exists yP(y) \land P(z)) = \exists xQ(x,y,z) \land Q(z,y,z) \text{ or}$  $\exists uQ(u,y,z) \land Q(z,y,z)$ 

## **Modal logics**

An modal predicate logic (mpl) is a set L of modal formulas such that L contains

- the classical propositional tautologies
- the axiom of **K**:  $\Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q)$
- the standard predicate axioms
- L is closed under the rules
  - Modus Ponens: A, A  $\rightarrow$  B / B
  - Necessitation: A / A
  - Generalization: A /  $\forall x A$
  - Substitution: A/SA (for any formula substitution S)

# **Superintuititionistic logics**

A superintuitionistic predicate logic (spl) is a set L of intuitionistic formulas such that

- L contains the axioms of intuitionistic first-order logic **QH**
- L is closed under Modus Ponens
- L is closed under Generalization
- L is closed under (intuitionistic) formula substitutions

## **Modal/superintuitionistic logics with equality**

An modal/superintuitionistic predicate logic with equality (mpl=/spl=) is a set of formulas with equality with the same properties as mpl/spl plus

- 1. Substitutions [C/x=y] are not allowed.
- 2. L contains the standard equality axioms.

Propositional logics can be regarded as fragments of predicate logics (with only 0-ary predicate letters, without quantifiers).

### **Some notation**

- $L+\Gamma$  := the smallest logic containing (L and  $\Gamma$ )
- **K** := the minimal modal propositional logic
- **H** := intuitionistic propositional logic
- QL := the minimal predicate logic containing the propositional logic L
- $L^{=}$  := the minimal logic with equality containing the predicate logic L (without equality), the equality-expansion of L  $L \vdash A := A \in L$

<u>Def</u> A logic with equality L' is conservative over a logic without equality L (of the same type) if  $L \subseteq L'$ , but for any A in the language of  $L \subseteq L$  iff  $L' \models A$ 

but for any A in the language of L,  $L \vdash A$  iff  $L' \vdash A$ .

### **Kripke frame semantics for predicate logics**

- A propositional Kripke frame F=(W, R) ( $W \neq \emptyset, R \subseteq W^2$ )
- A predicate Kripke frame:  $\Phi = (F,D)$ , where
- $D=(D_u)_{u\in W}$  is an expanding family of non-empty sets: if  $u \in V$ , then  $D_u \subseteq D_v$
- D<sub>u</sub> is the domain at the world u (consists of existing individuals).
- In intuitionistic frames R is reflexive transitive (or even a partial order)



A Kripke model over  $\Phi$  is a collection of classical models:  $M=(\Phi,\theta)$ , where  $\theta=(\theta_u)_{u\in W}$  is a valuation  $\theta_u(P)$  is an n-ary relation on  $D_u$  for each n-ary predicate letter P For every modal formula A(x<sub>1</sub>,..., x<sub>n</sub>) and d<sub>1</sub>,..., d<sub>n</sub>∈ D<sub>u</sub> consider a D<sub>u</sub>-sentence A(d<sub>1</sub>,..., d<sub>n</sub>).
<u>Def</u> Forcing (truth) relation M,u ⊨ B
between the worlds u and D<sub>u</sub>-sentences B is defined by
induction:

- $M,u \models P(d_1,..., d_n) \text{ iff } (d_1,..., d_n) \in \Theta_u(P)$
- $M,u \models a = b$  iff a equals b
- $M,u \models \square B$  iff for any v, uRv implies  $M,v \models B$
- M,u  $\models \forall x B$  iff for any  $d \in D_u$  M,u  $\models [d/x]B$

etc. (the other cases are clear)

## **Intuitionistic Kripke models**

 $M=(\Phi,\theta)$ , where  $\Phi$  is intuitionistic,  $\theta=(\theta_u)_{u\in W}$  is a stable valuation:  $uRv \Rightarrow \theta_u(P) \subseteq \theta_v(P)$ 

Forcing relation M,u ⊩B

- M,u  $\Vdash P(d_1,...,d_n)$  iff  $(d_1,...,d_n) \in \Theta_u(P)$
- $M,u \Vdash a = b$  iff a equals b
- $M, u \Vdash B \rightarrow C$  iff

for any v, uRv & M,v ⊩ B implies M,v ⊩ C

- M,u  $\Vdash \exists x B$  iff for some  $d \in D_u$  M,u  $\Vdash [d/x]B$
- M,u  $\Vdash \forall x B$ iff

for any  $v \in R(u)$  for any  $d \in D_v M, v \Vdash [d/x]B$ 

etc.

<u>Def</u> (truth in a Kripke model; validity in a frame)  $M \models A(x_1,...,x_n)$  iff for any  $u \in W M, u \models \forall x_1...\forall x_n A(x_1,...,x_n)$ 

 $\Phi \models A$  iff for any M over  $\Phi$ ,  $M \models A$ 

Similarly in the intuitionistic case.

Soundness theorem

(1)  $ML(\Phi):= \{A \in MF \mid \Phi \models A\}$  is an mpl

(2)  $ML^{=}(\Phi) := \{A \in MF^{=} | \Phi \models A\}$  is an mpl=

(3)  $IL(\Phi):= \{A \in IF \mid \Phi \Vdash A\}$  is an spl

(4)  $\mathbf{IL}^{=}(\Phi) := \{A \in IF^{=} | \Phi \Vdash A\}$  is an spl=

Logics of this form are called *Kripke-complete* 

Kripke frame semantics with equality

Kripke frames with equality (KFE)

 $\Phi = (F, D, \approx)$ , where

 $\approx = (\approx_{\scriptscriptstyle \! u})_{\scriptscriptstyle \! u \in W}$  is a family of expanding equivalence

relations on the domains:

if u R v, then  $\approx {}_{u} \subseteq \approx {}_{v}$ 

Kripke models with equality should respect the equivalence relations:

if P is n-ary, a<sub>1</sub>,..., a<sub>n</sub>, b<sub>1</sub>,..., b<sub>n</sub> are individuals and

 $(a_1,..., a_n) \in \Theta_u(P)$ ,  $a_1 \approx_u b_1, ..., a_n \approx_u b_n$ , then

 $(b_1,..., b_n) \in \theta_u(P)$ 

The definition of forcing changes only for the equality:

 $M,u \models a = b$  iff  $a \approx_u b$ 

<u>Soundness theorem</u>  $ML^{=}(\Phi) := \{A \in MF^{=} | \Phi \models A\}$  is an mpl=

and similarly for the intuitionistic case.

The standard Kripke frames can be regarded as KFEs, where all the  $\approx_u$  are the identity relations.

#### **Kripke sheaves**

Kripke sheaves are an equivalent version of KFEs. They are obtained from KFEs by identifying equivalent individuals at every world.

<u>Def</u> A Kripke sheaf over a propositional reflexive transitive frame F=(W,R) is a triple *F*=(F,D,ρ), in which (F,D) is a predicate Kripke frame,  $\rho = (\rho_{uv})_{uRv}$  is a collection of *transition maps* ("cross-reference")  $\rho_{uv}: D_u \rightarrow D_v$  such that:

 $\rho_{uu}$  is the identity function on  $D_u$ if uRvRw, then  $\rho_{uw}$  is the composition  $\rho_{vw} \rho_{uv}$ 

Def. For an arbitrary propositional frame F=(W,R), consider the transitive reflexive closure F\*:=(W, R\*) (uR\*v iff there is an oriented path from u to v in F: uRw1...wkRv)

A Kripke sheaf over F is a triple  $\mathscr{F} = (F,D,\rho)$ , for which  $(F^*,D,\rho)$  is a Kripke sheaf over  $F^*$ .

Kripke sheaf models and forcing are defined in a straightforward way:

 $M,u \models a = b$  iff a equals b

 $M,u \models \Box B(d_1,...,d_n)$  iff

for any v, uRv implies  $M, v \models B(\rho_{uv}(d_1), ..., \rho_{uv}(d_n))$ 







<u>Theorem</u> (equivalence of KFEs and Kripke sheaves)

- For any KFE  $\Phi$  there exists a Kripke sheaf  $\mathcal{F}$  such that ML<sup>=</sup>( $\Phi$ ) = ML<sup>=</sup>( $\mathcal{F}$ )
- For any Kripke sheaf  ${\mathcal F}$  there exists a KFE  $\,\Phi$  such that

 $ML^{=}(\Phi) = ML^{=}(\mathcal{F})$ 

• Similarly for the intuitionistic case.

We need these generalizations of Kripke frame semantics, because the basic logic with equality **QK**<sup>=</sup> is Kripkeincomplete. In fact, take the formula

 $CE:=\forall x \ \forall y \ (x \neq y \rightarrow \Box \ (x \neq y) \ )$ 

It is true in every usual Kripke model, but does not belong to **QK**<sup>=</sup> (see below).

The same happens in the intuitionistic case. The axiom of *decidable equality* 

 $DE := \forall x \ \forall y \ (x = y \ \lor \ x \neq y)$ 

is true in every intuitionistic Kripke model, but does not belong to **QH**<sup>=</sup>.



This Kripke sheaf refutes CE;

its transitive closure refutes DE.

<u>Def</u> The logic (of a certain type) of a class of frames  $\mathscr{C}$  is the intersection of the logics of frames from  $\mathscr{C}$ .

A logic of a class of Kripke frames is called Kripke ( $\mathscr{K}$ )complete.

A logic of a class of Kripke sheaves (or KFEs) is called **%%**-complete.

So the logics  $QH^{=}$  (and  $QL^{=}$  for any nonclassical intermediate L),  $QK^{=}$  (and  $QL^{=}$  for any nontrivial modal L) are  $\mathcal{K}$ -incomplete.

## Problem

How to restore completeness? Is it true that:

- L is a  $\mathscr{X}$ -complete mpl  $\Rightarrow$  L<sup>=</sup>+CE is a  $\mathscr{X}$ -complete mpl=
- L is a  $\mathscr{K}$ -complete spl  $\Rightarrow$  L<sup>=</sup>+DE is a  $\mathscr{K}$ -complete spl=

# **Examples of Kripke-completeness**

- 1. Surprisingly, for logics of the form **QL** not so many examples are known:
- for standard logics L (classical results by Kripke, Gabbay, Cresswell et al.)
  - modal K, T, D, B, K4, S4, S5
  - **T**: reflexive frames
  - **D**: serial frames
  - **K4**: transitive frames
  - **B**: symmetric frames intuitionistic logic **H**
- for other cases, with more sophisticated proofs  $S4.2 = S4 + \Diamond \Box A \rightarrow \Box \Diamond A$  (Ghilardi) confluent frames

 $K4.3 = K4 + \square(\square A \land A \rightarrow B) \lor \square(\square B \land B \rightarrow A)$ non-branching transitive

 $\mathbf{S4.3} = \mathbf{K4.3} + \Box \mathbf{A} \rightarrow \mathbf{A}$ 

 $\mathbf{K4.3} + \Box \Box \mathsf{A} \rightarrow \mathsf{A} \quad \text{density}$ 

**LC** = **H** + ( $A \rightarrow B$ )  $\lor$  ( $B \rightarrow A$ ) non-brachning

(Corsi, 1990s)

2. For other kinds of logics see our book, Ch.6.

#### **Barcan formula**

 $Ba := \diamondsuit \exists x A \rightarrow \exists x \diamondsuit A$ 

This formula is valid in a Kripke frame iff the domains *remain constant:* if uRv then  $D_u = D_v$ For he same basic cases, **QL**+Ba are also Kripke-complete

(but Ba is derivable in **QB**, **QS5**)

However, **QS4.2** + Ba is *K*-incomplete (SS 1990) <u>Def</u> A propositional modal logic is called universal if the class of its frames is universal, i.e., the class of models of a universal classical first-order theory.

A propositional logic of a single finite frame is called tabular.

<u>Theorem</u> (Tanaka - Ono, 2001; book09) *If a modal* propositional logic  $\Lambda$  is universal or tabular and K-complete, then  $L = Q\Lambda + Ba$  is also K -complete. <u>Theorem</u> (Shimura 1993) The same holds for the intuitionistic case and  $L = Q\Lambda + CD$  (the axiom of constant domains). <u>Def</u> A modal predicate logic L is *strongly K* (or *KE*) *-complete* if every L-consistent theory  $\Gamma$  is satisfied at some Kripke frame (resp. KFE). This means that  $\Gamma$  is true at some world in some Kripke model. The same for the intuitionistic case: a theory is a pair of sets of formulas. <u>Def</u> An mpl L is *conicallly expressive* if the master modality  $\square^*$  is expressible in L (eg if L is transitive).

Theorems (book 09) For any predicate logic L

- (1) If L is strongly KE-complete, then  $L^{=}$  is strongly KE-complete.
- (2) If L is KE-complete, then L<sup>=</sup> is KE-complete for any spl and conically expressive mpl
- (3) L<sup>=</sup> is conservative over Lfor any spl and conically expressive mpl
- (4) L is [strongly] KE-complete iff L<sup>=</sup> is [strongly] KE-complete.for any spl and conically expressive mpl.
- (5) If L is K [KE]-complete then L+C is K [KE]-complete.
  for any spl= and conically expressive mpl=
  for any pure equality formula C (in particular for CE and DE).

We do not know about the converse to (5).

Note that  $L^{=}+C$  may be not conservative over L.

<u>Def</u>  $L^{=c} := L^{=} + CE$  for an mpl L

 $L^{=d} := L^{=} + DE$  for an spl L

<u>Theorem 1</u> (1) Suppose L is a *K*-complete mpl of one of the following types

- L is complete w.r.t. frames over trees,
- L contains  $\Diamond \square p \rightarrow \square \Diamond p$ ,
- L contains Ba.

Then  $L^{=c}$  is also *K*-complete.

(2) Suppose L is a *K*-complete spl of one of the following types

- L is complete w.r.t. frames over trees,
- L contains J:= ¬p∨¬¬p (the *weak excluded middle*),
- L contains the constant domains axiom  $CD:= \forall x(P(x) \lor q) \rightarrow \forall xP(x) \lor q.$

Then L<sup>=d</sup> is also *K*-complete.

Note that conditions in theorem 1 are not necessary.

## Counterexamples



Consider the class KF of Kripke frames over this propositional frame F. <u>Theorem 2</u> Let L be an spl between  $QH+J_2$  and **IL**(KF). Then L<sup>=d</sup> is *K*-incomplete.  $J_2 := \exists (p \land q \land r) \rightarrow \exists (p \land q) \lor \exists (q \land r) \lor \exists (p \land r)$ (the weak De Morgan law) The idea of proof. There is a Kripke sheaf  $\Phi$  over F and a formula A such that

- $\Phi$  validates DE
- $\Phi$  refutes A
- Every predicate Kripke frame over F validates A

### **Some open problems**

- 1. Is L<sup>=</sup> conservative over L for any mpl L?
- 2. Is the Kripke-completion of  $L^{=}$  always finitely axiomatizable over L?