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Francisco Ávila The Frame of the p-Adic Numbers



Introduction
Frame of Qp

Continuous p-Adic Functions
Stone-Weierstrass Theorem

Pointfree Topology

What is pointfree topology?
It is an approach to topology based on the fact that the lattice of
open sets of a topological space contains considerable information
about the topological space.
“...what the pointfree formulation adds to the classical theory is a
remarkable combination of elegance of statement, simplicity of
proof, and increase of extent.” R. Ball & J. Walters-Wayland.
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Motivation

The lattice of open subsets of X
Let X be a topological space and Ω(X ) the family of all open
subsets of X . Then Ω(X ) is a complete lattice:∨

Ui =
⋃

Ui ,
U ∧ V = U ∩ V ,∧

Ui = int
(⋂

Ui
)
,

1 = X ,
0 = ∅.

Moreover,
U ∧

∨
Vi =

∨(
U ∧ Vi

)
.
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Cont. I

Continous Functions
If f : X → Y is continuous, then f −1 : Ω(Y )→ Ω(X ) is a lattice
homomorphism. Morover, it satisfies:

f −1(⋃Ui
)

=
⋃

f −1(Ui ).
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Frames and Frame Homomorphisms

Definition
A frame is a complete lattice L satisfying the distributivity law∨

A ∧ b =
∨
{a ∧ b | a ∈ A}

for any subset A ⊆ L and any b ∈ L.

Let L and M be frames. A frame homomorphism is a map
h : L→ M satisfying

1 h(0) = 0 and h(1) = 1,
2 h(a ∧ b) = h(a) ∧ h(b),

3 h
(∨

i∈J ai
)

=
∨{

h(ai ) : i ∈ J
}
.
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The category Frm

The category Frm
Objects: Frames.
Morphisms: Frame homomorphisms.

Definition
A frame L is called spatial if it is isomorphic to Ω(X ) for some X .
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The functor Ω

The contravariant functor Ω

Ω :Top→ Frm
X 7→ Ω(X )

f 7→ Ω(f ), where Ω(f )(U) = f −1(U).

Definition
A topological space X is sober if {x}c are the only
meet-irreducibles in Ω(X ).
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Points in a frame

Motivation
The points x in a space X are in a one-one correspondence with
the continuous mappings fx : {∗} → X given by ∗ 7→ x and with
the frame homomorphisms f −1

x : Ω(X )→ Ω({∗}) ∼= 2 whenever
X is sober.

Definition
A point in a frame L is a frame homomorphism h : L→ 2.
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The functor Σ

The Spectrum of a Frame
Let L be a frame and for a ∈ L set Σa = {h : L→ 2 | h(a) = 1}.
The family {Σa | a ∈ L} is a topology on the set of all frame
homomorphisms h : L→ 2.
This topological space, denoted by ΣL, is the spectrum of L.

The functor Σ

Σ :Frm→ Top
L 7→ ΣL
f 7→ Σ(f ), where Σ(f )(h) = h ◦ f .
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The Spectrum Adjunction

Theorem (see, e.g., Frame and Locales, Picado & Pultr [9])
The functors Ω and Σ form an adjoint pair.

Remark
The category of sober spaces and continuous functions is dually
equivalent to the full subcategory of Frm consisting of spatial
frames.
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Frame of R

Definition (Joyal [6] and Banaschewski [1])
The frame of the reals is the frame L(R) generated by all ordered
pairs (p, q), with p, q ∈ Q, subject to the following relations:

(R1) (p, q) ∧ (r , s) = (p ∨ r , q ∧ s).

(R2) (p, q) ∨ (r , s) = (p, s) whenever p ≤ r < q ≤ s.

(R3) (p, q) =
∨
{(r , s) | p < r < s < q}.

(R4) 1 =
∨
{(p, q) | p, q ∈ Q}.

Remark
Banaschewski studied this frame with a particular emphasis on the
pointfree extension of the ring of continuous real functions and
proved pointfree version of the Stone-Weierstrass Theorem.
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The p-adic numbers

p-Adic Valuation
Fix a prime number p ∈ Z. For each n ∈ Z \ {0}, let νp(n) be the
unique positive integer satisfying n = pνp(n)m with p - m.
For x = a/b ∈ Q \ {0}, we set νp(x) = νp(a)− νp(b).

p-Adic Absolute Value
For any x ∈ Q, we define |x |p = p−νp(x) if x 6= 0 and we set
|0|p = 0.

Remark
The function | · |p satisfies |x + y |p ≤ max{|x |p, |y |p} for all
x , y ∈ Q.
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Francisco Ávila The Frame of the p-Adic Numbers



Introduction
Frame of Qp

Continuous p-Adic Functions
Stone-Weierstrass Theorem

The p-adic numbers

p-Adic Valuation
Fix a prime number p ∈ Z. For each n ∈ Z \ {0}, let νp(n) be the
unique positive integer satisfying n = pνp(n)m with p - m.
For x = a/b ∈ Q \ {0}, we set νp(x) = νp(a)− νp(b).

p-Adic Absolute Value
For any x ∈ Q, we define |x |p = p−νp(x) if x 6= 0 and we set
|0|p = 0.

Remark
The function | · |p satisfies |x + y |p ≤ max{|x |p, |y |p} for all
x , y ∈ Q.
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The field Qp

Facts
Qp is the completion of Q with respect to | · |p.
Qp is locally compact, totally disconnected, 0-dimensional,
and metrizable.

Moreover, the open balls Sr 〈a〉 := {x ∈ Qp : |x − a|p < r} satisfy
the following:

b ∈ Sr 〈a〉 implies Sr 〈a〉 = Sr 〈b〉.
Sr 〈a〉 ∩ Ss〈a〉 6= ∅ iff Sr 〈a〉 ⊆ Ss〈b〉 or Ss〈b〉 ⊆ Sr 〈a〉.
Sr 〈a〉 is open and compact.
Every ball is a disjoint union of open balls of any smaller
radius.
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The frame of Qp

Definition
Let L(Qp) be the frame generated by the elements Br (a), with
a ∈ Q and r ∈ |Q| := {p−n, n ∈ Z}, subject to the following
relations:

(Q1) Bs(b) ≤ Br (a) whenever |a − b|p < r and s ≤ r .
(Q2) Br (a) ∧ Bs(b) = 0 whenever |a − b|p ≥ r and s ≤ r .
(Q3) 1 =

∨{
Br (a) : a ∈ Q, r ∈ |Q|

}
.

(Q4) Br (a) =
∨{

Bs(b) : |a − b|p < r , s < r , b ∈ Q
}

.
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Properties of L(Qp)

Remarks
Br (a) = Br (b) whenever |a − b|p < r .
|a − b|p < r implies Bs(b) ≤ Br (a) or Bs(b) ≥ Br (a).

Br (a) =
∨{

Br/p(a + xpn+1) | x = 0, 1, . . . , p − 1
}

.

Theorem
Let Br (a) ∈ L(Qp) a generator. Then Br (a) is complemented
(clopen) and Br (a)′ =

∨
{Br (b) | |a − b|p ≥ r}.

Corollary
L(Qp) is 0-dimensional and completely regular.
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Francisco Ávila The Frame of the p-Adic Numbers



Introduction
Frame of Qp

Continuous p-Adic Functions
Stone-Weierstrass Theorem

Properties of L(Qp)

Remarks
Br (a) = Br (b) whenever |a − b|p < r .
|a − b|p < r implies Bs(b) ≤ Br (a) or Bs(b) ≥ Br (a).

Br (a) =
∨{

Br/p(a + xpn+1) | x = 0, 1, . . . , p − 1
}

.

Theorem
Let Br (a) ∈ L(Qp) a generator. Then Br (a) is complemented
(clopen) and Br (a)′ =

∨
{Br (b) | |a − b|p ≥ r}.

Corollary
L(Qp) is 0-dimensional and completely regular.
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The spectrum of L(Qp)

Definition
For each x ∈ Q, let σ(x) be the unique frame homomorphism
σ(x) : L(Qp)→ 2 satisfying

σ(x)(Br (a)) =

{
1 if |a − x |p < r
0 otherwise.
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Cont. I

Lemma
For each x ∈ Qp, the function ϕ(x) : L(Qp)→ 2, defined on
generators by

ϕ(x)
(
Br (a)

)
= lim

n→∞
σ(xn)(Br (a)),

where {xn} is any sequence of rationals satisfying lim
n→∞

xn = x ,
extends to a frame homomorphism on L(Qp) (viewing 2 as a
discrete space).
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The spectrum of L(Qp) is homeomorphic to Qp

Theorem
The function ϕ : Qp → ΣL(Qp) defined by x 7→ ϕ(x) is a
homeomorphism.

Corollary
The frame homomorphism h : L(Qp)→ Ω(Qp) defined by
Br (a) 7→ Sr 〈a〉 is an isomorphism.
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Continuous p-Adic Functions on a frame L

From the Adjunction between Frm and Top
For a topological space X , we get a bijection

Top(X ,Qp) ∼= Frm(L(Qp),Ω(X )).

This provides a natural extension of the classical notion of a
continuous p-adic function.

Definition
A continuous p-adic function on a frame L is a frame
homomorphism L(Qp)→ L. We denote the set of all continuous
p-adic functions on L by Cp(L).
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Cont. I

Example
Let λ ∈ Qp and consider the function fλ : X → Qp defined by
fλ(x) = λ for all x ∈ X . Then fλ ∈ C(X ,Qp) and
f −1
λ : Ω(Qp)→ Ω(X ) is a frame homomorphism.

For any a ∈ Q and r ∈ |Q|, we have

f −1
λ

(
Sr 〈a〉

)
=

{
Qp if |λ− a|p < r ,
∅ if |λ− a|p ≥ r .
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Cont. I

Example
For any frame L and λ ∈ Qp, the map λ : L(Qp)→ L defined on
the generators by

λ
(
Br (a)

)
=

{
1 if |λ− a|p < r ,
0 if |λ− a|p ≥ r .

is a frame homomorphism.
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Operations in Cp(L)

Example
For f , g ∈ C(X ,Qp), a ∈ Q, r ∈ |Q|,

(f + g)−1(Sr 〈b〉
)

=
⋃

q∈Q

{
f −1(Sr 〈q〉

)
∩ g−1(Sr 〈a − q〉

)}
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Cont. I

Definition
For f , g ∈ Cp(L), a ∈ Q, r ∈ |Q|, we define

(f + g)
(
Br (a)

)
=

=
∨{

f
(
Bs1 (b1)

)
∧ g
(
Bs2 (b2)

)
|Bs1〈b1〉+ Bs2〈b2〉 ⊆ Br 〈a〉

}
where Bs1〈b1〉+ Bs2〈b2〉 =

{
x + y | x ∈ Bs1〈b1〉, y ∈ Bs2〈b2〉

}
,

and

(f · g)
(
Br (a)

)
=

=
∨{

f
(
Bs1 (b1)

)
∧ g
(
Bs2 (b2)

)
|Bs1〈b1〉 · Bs2〈b2〉 ⊆ Br 〈a〉

}
where Bs1〈b1〉 · Bs2〈b2〉 =

{
x · y | x ∈ Bs1〈b1〉, y ∈ Bs2〈b2〉

}
.
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Cp(L) is a Qp-algebra

Theorem
For any frame L,

(
Cp(L),+, ·

)
, with the above operations, is a

commutative ring with unity.

Corollary
For any frame L, Cp(L) is a Qp-algebra.
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Idempotents in Cp(L)

Motivation
The idempotents of C(X ,Qp) are exactly the Qp-characteristic
functions of clopen subsets of X .

Idempotents in C(X ,Qp)

Let U ⊆ X be clopen and φU : X → Qp be defined by φU(x) = 1
if x ∈ U, and φU(x) = 0 otherwise. Then

φ−1
u
(
Sr 〈a〉

)
=


Qp if 0 ∈ Sr 〈a〉 and 1 ∈ Sr 〈a〉
U if 0 /∈ Sr 〈a〉 and 1 ∈ Sr 〈a〉
Uc if 0 ∈ Sr 〈a〉 and 1 /∈ Sr 〈a〉
∅ otherwise.
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Cont. I

Theorem
Let L be a frame and let u ∈ L be clopen. Then the function
χu : L(Qp)→ L defined on generators by

χu
(
Br (a)

)
=


1 if |a|p < r and |1− a|p < r ,
u if |a|p ≥ r and |1− a|p < r ,
u′ if |a|p < r and |1− a|p ≥ r ,
0 otherwise.

is a frame homomorphism.
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Cont. II

Theorem
Let L be a frame. Then f ∈ Cp(L) is an idempotent if and only if
f = χu for some clopen element u ∈ L.
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A norm in Cp(L)

Motivation
If X is compact Hausdorff, then ||f || = sup{|f (x)|p} is a norm.
Note that

||f || = p−n ⇐⇒ f (x) ∈ Sp−n+1〈0〉 for all x ∈ X
⇐⇒ f −1(Sp−n+1〈0〉

)
= X .

Theorem
Let L be a compact regular frame. For each h ∈ Cp(L), define

||h|| = inf
{
p−n : n ∈ Z, h

(
Bp−n+1(0)

)
= 1

}
.

Then, || · || is a norm on Cp(L).
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Let L be a compact regular frame. For each h ∈ Cp(L), define

||h|| = inf
{
p−n : n ∈ Z, h

(
Bp−n+1(0)

)
= 1

}
.

Then, || · || is a norm on Cp(L).

Francisco Ávila The Frame of the p-Adic Numbers



Introduction
Frame of Qp

Continuous p-Adic Functions
Stone-Weierstrass Theorem

About the Stone-Weierstrass Theorem

Dieudonné [2] (1944)
The ring Qp[X ] of polynomials with coefficients in Qp is dense in
the ring C(F ,Qp) of continuous functions on a compact subset F
of Qp with values in Qp.

Kaplansky [7] (1950)
If F is a nonarchimedean valued field and X is a compact
Hausdorff space, then any unitary subalgebra A of C(X ,F) which
separates points is uniformly dense in C(X ,F).
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Point-Separation

Definition
Let F be a field. A unitary subalgebra A ∈ C(X ,F) is said to
separate points if, for any pair of distinct points x and y , there is a
function fα such that fα(x) = 0 and fα(y) = 1.

Theorem (Kaplansky [7] and [10])
Let X be a compact Hausdorff (0-dimensional) space and let
A ⊆ C(X ,Qp) be a unitary subalgebra. Then A separates points
iff for any clopen subset U ⊆ X , the Qp-characteristic function φU

belongs to the closure of A in C(X ,Qp).
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Point-Separation Pointfree

Remark
If L is a compact regular frame, then it is spatial and

Top(ΣL,Qp) ∼= Frm(L(Qp), L).

Definition
Let L be a compact 0-dimensional frame. We say that a unitary
subalgebra A of Cp(L) separates points if its closure contains the
idempotents of Cp(L).
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Remark
If L is a compact regular frame, then it is spatial and

Top(ΣL,Qp) ∼= Frm(L(Qp), L).

Definition
Let L be a compact 0-dimensional frame. We say that a unitary
subalgebra A of Cp(L) separates points if its closure contains the
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Stone-Weierstrass Theorem in Pointfree Topology

Theorem
Let L be a compact 0-dimensional frame and let A be a unitary
subalgebra of Cp(L) which separates points. Then A is uniformly
dense in Cp(L).
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Thank you!
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