### The Frame of the *p*-Adic Numbers

### Francisco Ávila

### June 27, 2017

Francisco Ávila The Frame of the *p*-Adic Numbers

・ロト ・回ト ・ヨト

< ∃⇒

### Outline





3 Continuous *p*-Adic Functions



(日)、<回)、<三)、</p>

- ∢ ⊒ ⇒

# Pointfree Topology

#### What is pointfree topology?

It is an approach to topology based on the fact that the lattice of open sets of a topological space contains considerable information about the topological space.

"...what the pointfree formulation adds to the classical theory is a remarkable combination of elegance of statement, simplicity of proof, and increase of extent." R. Ball & J. Walters-Wayland.

< ロ > < 同 > < 三 > < 三 >

# Pointfree Topology

#### What is pointfree topology?

It is an approach to topology based on the fact that the lattice of open sets of a topological space contains considerable information about the topological space.

"...what the pointfree formulation adds to the classical theory is a remarkable combination of elegance of statement, simplicity of proof, and increase of extent." R. Ball & J. Walters-Wayland.

< ロ > < 同 > < 三 > < 三 >

# Motivation

#### The lattice of open subsets of X

Let X be a topological space and  $\Omega(X)$  the family of all open subsets of X. Then  $\Omega(X)$  is a complete lattice:

• 
$$\bigvee U_i = \bigcup U_i$$
,

- $U \wedge V = U \cap V$ ,
- $\bigwedge U_i = int(\bigcap U_i)$ ,
- 1 = X,
- $0 = \emptyset$ .

Moreover,

$$U \wedge \bigvee V_i = \bigvee (U \wedge V_i).$$

Introduction

Frame of  $\mathbb{Q}_p$ Continuous *p*-Adic Functions Stone-Weierstrass Theorem



#### **Continous Functions**

If  $f : X \to Y$  is continuous, then  $f^{-1} : \Omega(Y) \to \Omega(X)$  is a lattice homomorphism. Moreover, it satisfies:

$$f^{-1}(\bigcup U_i) = \bigcup f^{-1}(U_i).$$

イロン 不同 とくほど 不同 とう

臣

# Frames and Frame Homomorphisms

#### Definition

A frame is a complete lattice L satisfying the distributivity law

$$\bigvee A \land b = \bigvee \{a \land b \mid a \in A\}$$

for any subset  $A \subseteq L$  and any  $b \in L$ .

Let L and M be frames. A frame homomorphism is a map  $h: L \rightarrow M$  satisfying

**1** 
$$h(0) = 0$$
 and  $h(1) = 1$ ,

< ロ > < 同 > < 三 > < 三 >

# Frames and Frame Homomorphisms

#### Definition

A frame is a complete lattice L satisfying the distributivity law

$$\bigvee A \land b = \bigvee \{a \land b \mid a \in A\}$$

for any subset  $A \subseteq L$  and any  $b \in L$ .

Let L and M be frames. A frame homomorphism is a map  $h: L \rightarrow M$  satisfying

**1** 
$$h(0) = 0$$
 and  $h(1) = 1$ ,

Image: A matrix and a matrix

# The category **Frm**

#### The category **Frm**

Objects: Frames. Morphisms: Frame homomorphisms.

#### Definition

A frame *L* is called *spatial* if it is isomorphic to  $\Omega(X)$  for some *X*.

・ロト ・回ト ・ヨト ・ヨト

# The category **Frm**

#### The category **Frm**

Objects: Frames. Morphisms: Frame homomorphisms.

#### Definition

A frame L is called *spatial* if it is isomorphic to  $\Omega(X)$  for some X.

・ロト ・回ト ・ヨト

# The functor $\Omega$

#### The contravariant functor $\Omega$

 $egin{aligned} \Omega: \mathbf{Top} &
ightarrow \mathbf{Frm} \ & X &\mapsto & \Omega(X) \ & f &\mapsto & \Omega(f), \ \text{where } \Omega(f)(U) = f^{-1}(U). \end{aligned}$ 

#### Definition

A topological space X is *sober* if  $\overline{\{x\}}^c$  are the only meet-irreducibles in  $\Omega(X)$ .

# The functor $\Omega$

#### The contravariant functor $\Omega$

$$egin{aligned} \Omega: \mathbf{Top} &
ightarrow \mathbf{Frm} \ & X &\mapsto & \Omega(X) \ & f &\mapsto & \Omega(f), \ \text{where } \Omega(f)(U) = f^{-1}(U). \end{aligned}$$

#### Definition

A topological space X is *sober* if  $\overline{\{x\}}^c$  are the only meet-irreducibles in  $\Omega(X)$ .

・ロト ・回ト ・ヨト

### Points in a frame

#### Motivation

The points x in a space X are in a one-one correspondence with the continuous mappings  $f_x : \{*\} \to X$  given by  $* \mapsto x$  and with the frame homomorphisms  $f_x^{-1} : \Omega(X) \to \Omega(\{*\}) \cong \mathbf{2}$  whenever X is sober.

#### Definition

A point in a frame *L* is a frame homomorphism  $h: L \rightarrow \mathbf{2}$ .

### Points in a frame

#### Motivation

The points x in a space X are in a one-one correspondence with the continuous mappings  $f_x : \{*\} \to X$  given by  $* \mapsto x$  and with the frame homomorphisms  $f_x^{-1} : \Omega(X) \to \Omega(\{*\}) \cong \mathbf{2}$  whenever X is sober.

#### Definition

A point in a frame *L* is a frame homomorphism  $h: L \rightarrow \mathbf{2}$ .

# The functor $\boldsymbol{\Sigma}$

#### The Spectrum of a Frame

Let *L* be a frame and for  $a \in L$  set  $\Sigma_a = \{h : L \to 2 \mid h(a) = 1\}$ . The family  $\{\Sigma_a \mid a \in L\}$  is a topology on the set of all frame homomorphisms  $h : L \to 2$ . This topological space, denoted by  $\Sigma L$ , is the *spectrum* of *L*.

#### The functor $\Sigma$

$$\begin{split} \Sigma : \mathbf{Frm} &\to \mathbf{Top} \\ L &\mapsto \Sigma L \\ f &\mapsto \Sigma(f), \text{ where } \Sigma(f)(h) = h \circ f. \end{split}$$

イロン 不同 とうほう 不同 とう

# The functor $\boldsymbol{\Sigma}$

#### The Spectrum of a Frame

Let *L* be a frame and for  $a \in L$  set  $\Sigma_a = \{h : L \to 2 \mid h(a) = 1\}$ . The family  $\{\Sigma_a \mid a \in L\}$  is a topology on the set of all frame homomorphisms  $h : L \to 2$ . This tensols reach an event does not does not be an extreme of *L*.

This topological space, denoted by  $\Sigma L$ , is the *spectrum* of L.

#### The functor $\Sigma$

$$\begin{split} \Sigma : &\mathsf{Frm} \to \mathsf{Top} \\ & L & \mapsto & \Sigma L \\ & f & \mapsto & \Sigma(f), \text{ where } \Sigma(f)(h) = h \circ f. \end{split}$$

# The Spectrum Adjunction

#### Theorem (see, e.g., *Frame and Locales*, Picado & Pultr [9])

The functors  $\Omega$  and  $\Sigma$  form an adjoint pair.

#### Remark

The category of *sober spaces* and continuous functions is dually equivalent to the full subcategory of **Frm** consisting of *spatial frames*.

・ロト ・回ト ・ヨト ・ヨト

# The Spectrum Adjunction

#### Theorem (see, e.g., *Frame and Locales*, Picado & Pultr [9])

The functors  $\Omega$  and  $\Sigma$  form an adjoint pair.

#### Remark

The category of *sober spaces* and continuous functions is dually equivalent to the full subcategory of **Frm** consisting of *spatial frames*.

### Frame of $\mathbb R$

#### Definition (Joyal [6] and Banaschewski [1])

The frame of the reals is the frame  $\mathcal{L}(\mathbb{R})$  generated by all ordered pairs (p, q), with  $p, q \in \mathbb{Q}$ , subject to the following relations:

$$(\mathsf{R1}) \ (p,q) \land (r,s) = (p \lor r,q \land s).$$

(R2) 
$$(p,q) \lor (r,s) = (p,s)$$
 whenever  $p \le r < q \le s$ .

(R3) 
$$(p,q) = \bigvee \{ (r,s) \mid p < r < s < q \}.$$

(R4)  $1 = \bigvee \{ (p,q) \mid p,q \in \mathbb{Q} \}.$ 

#### Remark

Banaschewski studied this frame with a particular emphasis on the pointfree extension of the ring of continuous real functions and proved pointfree version of the Stone-Weierstrass Theorem.

### Frame of $\mathbb R$

#### Definition (Joyal [6] and Banaschewski [1])

The frame of the reals is the frame  $\mathcal{L}(\mathbb{R})$  generated by all ordered pairs (p, q), with  $p, q \in \mathbb{Q}$ , subject to the following relations:

$$(\mathsf{R1}) \ (p,q) \land (r,s) = (p \lor r,q \land s).$$

(R2) 
$$(p,q) \lor (r,s) = (p,s)$$
 whenever  $p \le r < q \le s$ .

(R3) 
$$(p,q) = \bigvee \{ (r,s) \mid p < r < s < q \}.$$

(R4)  $1 = \bigvee \{ (p,q) \mid p,q \in \mathbb{Q} \}.$ 

#### Remark

Banaschewski studied this frame with a particular emphasis on the pointfree extension of the ring of continuous real functions and proved pointfree version of the Stone-Weierstrass Theorem.

### The *p*-adic numbers

#### p-Adic Valuation

Fix a prime number  $p \in \mathbb{Z}$ . For each  $n \in \mathbb{Z} \setminus \{0\}$ , let  $\nu_p(n)$  be the unique positive integer satisfying  $n = p^{\nu_p(n)}m$  with  $p \nmid m$ . For  $x = a/b \in \mathbb{Q} \setminus \{0\}$ , we set  $\nu_p(x) = \nu_p(a) - \nu_p(b)$ .

#### p-Adic Absolute Value

For any 
$$x \in \mathbb{Q}$$
, we define  $|x|_p = p^{-\nu_p(x)}$  if  $x \neq 0$  and we set  $|0|_p = 0$ .

### The *p*-adic numbers

#### p-Adic Valuation

Fix a prime number  $p \in \mathbb{Z}$ . For each  $n \in \mathbb{Z} \setminus \{0\}$ , let  $\nu_p(n)$  be the unique positive integer satisfying  $n = p^{\nu_p(n)}m$  with  $p \nmid m$ . For  $x = a/b \in \mathbb{Q} \setminus \{0\}$ , we set  $\nu_p(x) = \nu_p(a) - \nu_p(b)$ .

#### *p*-Adic Absolute Value

For any 
$$x \in \mathbb{Q}$$
, we define  $|x|_p = p^{-\nu_p(x)}$  if  $x \neq 0$  and we set  $|0|_p = 0$ .

#### Remark

The function  $|\cdot|_p$  satisfies  $|x + y|_p \le \max\{|x|_p, |y|_p\}$  for all  $x, y \in \mathbb{Q}$ .

イロト イヨト イヨト イヨト

э

### The *p*-adic numbers

#### p-Adic Valuation

Fix a prime number  $p \in \mathbb{Z}$ . For each  $n \in \mathbb{Z} \setminus \{0\}$ , let  $\nu_p(n)$  be the unique positive integer satisfying  $n = p^{\nu_p(n)}m$  with  $p \nmid m$ . For  $x = a/b \in \mathbb{Q} \setminus \{0\}$ , we set  $\nu_p(x) = \nu_p(a) - \nu_p(b)$ .

#### *p*-Adic Absolute Value

For any 
$$x \in \mathbb{Q}$$
, we define  $|x|_p = p^{-\nu_p(x)}$  if  $x \neq 0$  and we set  $|0|_p = 0$ .

#### Remark

# The function $|\cdot|_p$ satisfies $|x + y|_p \le \max\{|x|_p, |y|_p\}$ for all $x, y \in \mathbb{Q}$ .

# The field $\mathbb{Q}_p$

#### Facts

- $\mathbb{Q}_p$  is the completion of  $\mathbb{Q}$  with respect to  $|\cdot|_p$ .
- $\mathbb{Q}_p$  is locally compact, totally disconnected, 0-dimensional, and metrizable.

Moreover, the open balls  $S_r \langle a \rangle := \{x \in \mathbb{Q}_p : |x - a|_p < r\}$  satisfy the following:

- $b \in S_r \langle a \rangle$  implies  $S_r \langle a \rangle = S_r \langle b \rangle$ .
- $S_r\langle a \rangle \cap S_s\langle a \rangle \neq \emptyset$  iff  $S_r\langle a \rangle \subseteq S_s\langle b \rangle$  or  $S_s\langle b \rangle \subseteq S_r\langle a \rangle$ .
- $S_r\langle a \rangle$  is open and compact.
- Every ball is a disjoint union of open balls of any smaller radius.

イロト イヨト イヨト イヨト

臣

# The field $\mathbb{Q}_p$

#### Facts

- $\mathbb{Q}_p$  is the completion of  $\mathbb{Q}$  with respect to  $|\cdot|_p$ .
- $\mathbb{Q}_p$  is locally compact, totally disconnected, 0-dimensional, and metrizable.

Moreover, the open balls  $S_r \langle a \rangle := \{x \in \mathbb{Q}_p : |x - a|_p < r\}$  satisfy the following:

- $b \in S_r \langle a \rangle$  implies  $S_r \langle a \rangle = S_r \langle b \rangle$ .
- $S_r\langle a \rangle \cap S_s\langle a \rangle \neq \emptyset$  iff  $S_r\langle a \rangle \subseteq S_s\langle b \rangle$  or  $S_s\langle b \rangle \subseteq S_r\langle a \rangle$ .
- $S_r\langle a \rangle$  is open and compact.
- Every ball is a disjoint union of open balls of any smaller radius.

# The frame of $\mathbb{Q}_p$

#### Definition

Let  $\mathcal{L}(\mathbb{Q}_p)$  be the frame generated by the elements  $B_r(a)$ , with  $a \in \mathbb{Q}$  and  $r \in |\mathbb{Q}| := \{p^{-n}, n \in \mathbb{Z}\}$ , subject to the following relations:

(Q1) 
$$B_s(b) \leq B_r(a)$$
 whenever  $|a - b|_p < r$  and  $s \leq r$ .

(Q2) 
$$B_r(a) \wedge B_s(b) = 0$$
 whenever  $|a - b|_p \ge r$  and  $s \le r$ .

$$(\mathsf{Q3}) \ 1 = \bigvee \big\{ B_r(a) : a \in \mathbb{Q}, \ r \in |\mathbb{Q}| \big\}.$$

(Q4) 
$$B_r(a) = \bigvee \{ B_s(b) : |a - b|_p < r, s < r, b \in \mathbb{Q} \}.$$

・ロト ・回ト ・ヨト ・ヨト

# Properties of $\mathcal{L}(\mathbb{Q}_p)$

#### Remarks

• 
$$B_r(a) = B_r(b)$$
 whenever  $|a - b|_p < r$ .

•  $|a-b|_p < r$  implies  $B_s(b) \le B_r(a)$  or  $B_s(b) \ge B_r(a)$ .

• 
$$B_r(a) = \bigvee \{ B_{r/p}(a + xp^{n+1}) \mid x = 0, 1, \dots, p-1 \}.$$

#### Theorem

Let  $B_r(a) \in \mathcal{L}(\mathbb{Q}_p)$  a generator. Then  $B_r(a)$  is complemented (clopen) and  $B_r(a)' = \bigvee \{B_r(b) \mid |a - b|_p \ge r\}.$ 

<ロ> (四) (四) (三) (三) (三)

# Properties of $\mathcal{L}(\mathbb{Q}_p)$

#### Remarks

• 
$$B_r(a) = B_r(b)$$
 whenever  $|a - b|_p < r$ .

•  $|a-b|_p < r$  implies  $B_s(b) \le B_r(a)$  or  $B_s(b) \ge B_r(a)$ .

• 
$$B_r(a) = \bigvee \{ B_{r/p}(a + xp^{n+1}) \mid x = 0, 1, \dots, p-1 \}.$$

#### Theorem

Let  $B_r(a) \in \mathcal{L}(\mathbb{Q}_p)$  a generator. Then  $B_r(a)$  is complemented (clopen) and  $B_r(a)' = \bigvee \{B_r(b) \mid |a - b|_p \ge r\}.$ 

#### Corollary

 $\mathcal{L}(\mathbb{Q}_p)$  is 0-dimensional and completely regular.

イロン 不同 とくほど 不同 とう

# Properties of $\mathcal{L}(\mathbb{Q}_p)$

#### Remarks

• 
$$B_r(a) = B_r(b)$$
 whenever  $|a - b|_p < r$ .

•  $|a-b|_p < r$  implies  $B_s(b) \le B_r(a)$  or  $B_s(b) \ge B_r(a)$ .

• 
$$B_r(a) = \bigvee \{ B_{r/p}(a + xp^{n+1}) \mid x = 0, 1, \dots, p-1 \}.$$

#### Theorem

Let  $B_r(a) \in \mathcal{L}(\mathbb{Q}_p)$  a generator. Then  $B_r(a)$  is complemented (clopen) and  $B_r(a)' = \bigvee \{B_r(b) \mid |a - b|_p \ge r\}.$ 

#### Corollary

 $\mathcal{L}(\mathbb{Q}_p)$  is 0-dimensional and completely regular.

イロン イヨン イヨン

# The spectrum of $\mathcal{L}(\mathbb{Q}_p)$

#### Definition

For each  $x \in \mathbb{Q}$ , let  $\sigma(x)$  be the unique frame homomorphism  $\sigma(x) : \mathcal{L}(\mathbb{Q}_p) \to \mathbf{2}$  satisfying

$$\sigma(x)(B_r(a)) = egin{cases} 1 & ext{if } |a-x|_p < r \ 0 & ext{otherwise.} \end{cases}$$

・ロト ・回ト ・ヨト ・ヨト

# Cont. I

#### Lemma

For each  $x \in \mathbb{Q}_p$ , the function  $\varphi(x) : \mathcal{L}(\mathbb{Q}_p) \to \mathbf{2}$ , defined on generators by

$$\varphi(x)(B_r(a)) = \lim_{n \to \infty} \sigma(x_n)(B_r(a)),$$

where  $\{x_n\}$  is any sequence of rationals satisfying  $\lim_{n\to\infty} x_n = x$ , extends to a frame homomorphism on  $\mathcal{L}(\mathbb{Q}_p)$  (viewing **2** as a discrete space).

# The spectrum of $\mathcal{L}(\mathbb{Q}_p)$ is homeomorphic to $\mathbb{Q}_p$

#### Theorem

The function  $\varphi : \mathbb{Q}_p \to \Sigma \mathcal{L}(\mathbb{Q}_p)$  defined by  $x \mapsto \varphi(x)$  is a homeomorphism.

#### Corollary

The frame homomorphism  $h : \mathcal{L}(\mathbb{Q}_p) \to \Omega(\mathbb{Q}_p)$  defined by  $B_r(a) \mapsto S_r(a)$  is an isomorphism.

イロン 不同 とうほう 不同 とう

# The spectrum of $\mathcal{L}(\mathbb{Q}_p)$ is homeomorphic to $\mathbb{Q}_p$

#### Theorem

The function  $\varphi : \mathbb{Q}_p \to \Sigma \mathcal{L}(\mathbb{Q}_p)$  defined by  $x \mapsto \varphi(x)$  is a homeomorphism.

#### Corollary

The frame homomorphism  $h : \mathcal{L}(\mathbb{Q}_p) \to \Omega(\mathbb{Q}_p)$  defined by  $B_r(a) \mapsto S_r(a)$  is an isomorphism.

・ロト ・四ト ・ヨト ・ヨト

# Continuous *p*-Adic Functions on a frame *L*

From the Adjunction between **Frm** and **Top** 

For a topological space X, we get a bijection

 $\operatorname{Top}(X, \mathbb{Q}_p) \cong \operatorname{Frm}(\mathcal{L}(\mathbb{Q}_p), \Omega(X)).$ 

This provides a natural extension of the classical notion of a continuous p-adic function.

#### Definition

A continuous *p*-adic function on a frame *L* is a frame homomorphism  $\mathcal{L}(\mathbb{Q}_p) \to L$ . We denote the set of all continuous *p*-adic functions on *L* by  $\mathcal{C}_p(L)$ .

# Continuous *p*-Adic Functions on a frame *L*

From the Adjunction between **Frm** and **Top** 

For a topological space X, we get a bijection

 $\operatorname{Top}(X, \mathbb{Q}_p) \cong \operatorname{Frm}(\mathcal{L}(\mathbb{Q}_p), \Omega(X)).$ 

This provides a natural extension of the classical notion of a continuous p-adic function.

#### Definition

A continuous *p*-adic function on a frame *L* is a frame homomorphism  $\mathcal{L}(\mathbb{Q}_p) \to L$ . We denote the set of all continuous *p*-adic functions on *L* by  $\mathcal{C}_p(L)$ .

### Cont. I

#### Example

Let  $\lambda \in \mathbb{Q}_p$  and consider the function  $f_{\lambda} : X \to \mathbb{Q}_p$  defined by  $f_{\lambda}(x) = \lambda$  for all  $x \in X$ . Then  $f_{\lambda} \in \mathcal{C}(X, \mathbb{Q}_p)$  and  $f_{\lambda}^{-1} : \Omega(\mathbb{Q}_p) \to \Omega(X)$  is a frame homomorphism. For any  $a \in \mathbb{Q}$  and  $r \in |\mathbb{Q}|$ , we have

$$f_{\lambda}^{-1}(S_r \langle a \rangle) = \begin{cases} \mathbb{Q}_p & \text{if } |\lambda - a|_p < r, \\ \varnothing & \text{if } |\lambda - a|_p \ge r. \end{cases}$$

Francisco Ávila The Frame of the *p*-Adic Numbers

# Cont. I

### Example

For any frame L and  $\lambda \in \mathbb{Q}_p$ , the map  $\lambda : \mathcal{L}(\mathbb{Q}_p) \to L$  defined on the generators by

$$\boldsymbol{\lambda}(B_r(\boldsymbol{a})) = \begin{cases} 1 & \text{if } |\lambda - \boldsymbol{a}|_p < r, \\ 0 & \text{if } |\lambda - \boldsymbol{a}|_p \geq r. \end{cases}$$

is a frame homomorphism.

・ロト ・回ト ・ヨト

# Operations in $C_p(L)$

### Example

For 
$$f, g \in \mathcal{C}(X, \mathbb{Q}_p)$$
,  $a \in \mathbb{Q}$ ,  $r \in |\mathbb{Q}|$ ,  
 $(f+g)^{-1}(S_r \langle b \rangle) = \bigcup_{q \in \mathbb{Q}} \{f^{-1}(S_r \langle q \rangle) \cap g^{-1}(S_r \langle a - q \rangle)\}$ 

Francisco Ávila The Frame of the *p*-Adic Numbers

・ロト ・四ト ・ヨト ・ヨト

æ

# Cont. I

### Definition

For 
$$f, g \in C_p(L)$$
,  $a \in \mathbb{Q}$ ,  $r \in |\mathbb{Q}|$ , we define  
 $(f+g)(B_r(a)) =$   
 $= \bigvee \left\{ f(B_{s_1}(b_1)) \land g(B_{s_2}(b_2)) | B_{s_1}\langle b_1 \rangle + B_{s_2}\langle b_2 \rangle \subseteq B_r\langle a \rangle \right\}$   
where  $B_{s_1}\langle b_1 \rangle + B_{s_2}\langle b_2 \rangle = \{x+y | x \in B_{s_1}\langle b_1 \rangle, y \in B_{s_2}\langle b_2 \rangle \}$ ,

### $\mathsf{and}$

$$(f \cdot g)(B_r(a)) = = \bigvee \left\{ f(B_{s_1}(b_1)) \land g(B_{s_2}(b_2)) | B_{s_1} \langle b_1 \rangle \cdot B_{s_2} \langle b_2 \rangle \subseteq B_r \langle a \rangle \right\} \text{ where } B_{s_1} \langle b_1 \rangle \cdot B_{s_2} \langle b_2 \rangle = \left\{ x \cdot y \, | \, x \in B_{s_1} \langle b_1 \rangle, \, y \in B_{s_2} \langle b_2 \rangle \right\}.$$

・ロト ・御 ト ・ ヨ ト ・ ヨ ト

æ

# $\mathcal{C}_p(L)$ is a $\mathbb{Q}_p$ -algebra

#### Theorem

For any frame L,  $(C_p(L), +, \cdot)$ , with the above operations, is a commutative ring with unity.

#### Corollary

For any frame *L*,  $C_p(L)$  is a  $\mathbb{Q}_p$ -algebra.

イロン 不同 とくほど 不同 とう

æ

# $\mathcal{C}_p(L)$ is a $\mathbb{Q}_p$ -algebra

#### Theorem

For any frame L,  $(C_p(L), +, \cdot)$ , with the above operations, is a commutative ring with unity.

### Corollary

For any frame L,  $C_p(L)$  is a  $\mathbb{Q}_p$ -algebra.

# Idempotents in $C_p(L)$

#### Motivation

The idempotents of  $\mathcal{C}(X, \mathbb{Q}_p)$  are exactly the  $\mathbb{Q}_p$ -characteristic functions of clopen subsets of X.

### Idempotents in $\mathcal{C}(X, \mathbb{Q}_p)$

Let  $U \subseteq X$  be clopen and  $\phi_U : X \to \mathbb{Q}_p$  be defined by  $\phi_U(x) = 1$  if  $x \in U$ , and  $\phi_U(x) = 0$  otherwise. Then

$$\phi_u^{-1}(S_r\langle a\rangle) = \begin{cases} \mathbb{Q}_p & \text{if } 0 \in S_r\langle a\rangle \text{ and } 1 \in S_r\langle a\rangle \\ U & \text{if } 0 \notin S_r\langle a\rangle \text{ and } 1 \in S_r\langle a\rangle \\ U^c & \text{if } 0 \in S_r\langle a\rangle \text{ and } 1 \notin S_r\langle a\rangle \\ \varnothing & \text{otherwise.} \end{cases}$$

# Idempotents in $C_p(L)$

#### Motivation

The idempotents of  $\mathcal{C}(X, \mathbb{Q}_p)$  are exactly the  $\mathbb{Q}_p$ -characteristic functions of clopen subsets of X.

### Idempotents in $\mathcal{C}(X, \mathbb{Q}_p)$

Let  $U \subseteq X$  be clopen and  $\phi_U : X \to \mathbb{Q}_p$  be defined by  $\phi_U(x) = 1$  if  $x \in U$ , and  $\phi_U(x) = 0$  otherwise. Then

$$\phi_u^{-1}(S_r\langle a\rangle) = \begin{cases} \mathbb{Q}_p & \text{if } 0 \in S_r\langle a\rangle \text{ and } 1 \in S_r\langle a\rangle \\ U & \text{if } 0 \notin S_r\langle a\rangle \text{ and } 1 \in S_r\langle a\rangle \\ U^c & \text{if } 0 \in S_r\langle a\rangle \text{ and } 1 \notin S_r\langle a\rangle \\ \varnothing & \text{otherwise.} \end{cases}$$

# Cont. I

### Theorem

Let *L* be a frame and let  $u \in L$  be clopen. Then the function  $\chi_u : \mathcal{L}(\mathbb{Q}_p) \to L$  defined on generators by

$$\chi_u(B_r(a)) = \begin{cases} 1 & \text{if } |a|_p < r \text{ and } |1 - a|_p < r, \\ u & \text{if } |a|_p \ge r \text{ and } |1 - a|_p < r, \\ u' & \text{if } |a|_p < r \text{ and } |1 - a|_p \ge r, \\ 0 & \text{otherwise.} \end{cases}$$

### is a frame homomorphism.

Introduction Frame of Q<sub>p</sub> Continuous p-Adic Functions Stone-Weierstrass Theorem

# Cont. II

### Theorem

Let *L* be a frame. Then  $f \in C_p(L)$  is an idempotent if and only if  $f = \chi_u$  for some clopen element  $u \in L$ .

イロン 不同 とくほど 不同 とう

臣

# A norm in $C_p(L)$

### Motivation

If X is compact Hausdorff, then  $||f|| = \sup\{|f(x)|_p\}$  is a norm. Note that

$$\begin{split} ||f|| &= p^{-n} \iff f(x) \in \mathcal{S}_{p^{-n+1}}\langle 0 \rangle \text{ for all } x \in X \\ \iff f^{-1}(\mathcal{S}_{p^{-n+1}}\langle 0 \rangle) = X. \end{split}$$

#### Theorem

Let L be a compact regular frame. For each  $h \in C_p(L)$ , define

$$||h|| = \inf \{ p^{-n} : n \in \mathbb{Z}, h(B_{p^{-n+1}}(0)) = 1 \}.$$

Then,  $|| \cdot ||$  is a norm on  $C_p(L)$ .

イロト イヨト イヨト イヨト

臣

# A norm in $C_p(L)$

### Motivation

If X is compact Hausdorff, then  $||f|| = \sup\{|f(x)|_p\}$  is a norm. Note that

$$\begin{split} ||f|| &= p^{-n} \iff f(x) \in \mathcal{S}_{p^{-n+1}}\langle 0 \rangle \text{ for all } x \in X \\ \iff f^{-1}(\mathcal{S}_{p^{-n+1}}\langle 0 \rangle) = X. \end{split}$$

#### Theorem

Let *L* be a compact regular frame. For each  $h \in C_p(L)$ , define

$$||h|| = \inf \{p^{-n} : n \in \mathbb{Z}, h(B_{p^{-n+1}}(0)) = 1\}.$$

Then,  $|| \cdot ||$  is a norm on  $C_p(L)$ .

# About the Stone-Weierstrass Theorem

### Dieudonné [2] (1944)

The ring  $\mathbb{Q}_p[X]$  of polynomials with coefficients in  $\mathbb{Q}_p$  is dense in the ring  $\mathcal{C}(F, \mathbb{Q}_p)$  of continuous functions on a compact subset F of  $\mathbb{Q}_p$  with values in  $\mathbb{Q}_p$ .

### Kaplansky [7] (1950)

If  $\mathbb{F}$  is a nonarchimedean valued field and X is a compact Hausdorff space, then any unitary subalgebra  $\mathcal{A}$  of  $\mathcal{C}(X, \mathbb{F})$  which separates points is uniformly dense in  $\mathcal{C}(X, \mathbb{F})$ .

# About the Stone-Weierstrass Theorem

### Dieudonné [2] (1944)

The ring  $\mathbb{Q}_p[X]$  of polynomials with coefficients in  $\mathbb{Q}_p$  is dense in the ring  $\mathcal{C}(F, \mathbb{Q}_p)$  of continuous functions on a compact subset F of  $\mathbb{Q}_p$  with values in  $\mathbb{Q}_p$ .

### Kaplansky [7] (1950)

If  $\mathbb{F}$  is a nonarchimedean valued field and X is a compact Hausdorff space, then any unitary subalgebra  $\mathcal{A}$  of  $\mathcal{C}(X, \mathbb{F})$  which separates points is uniformly dense in  $\mathcal{C}(X, \mathbb{F})$ .

< ロ > < 同 > < 三 > < 三 >

# **Point-Separation**

### Definition

Let  $\mathbb{F}$  be a field. A unitary subalgebra  $\mathcal{A} \in \mathcal{C}(X, \mathbb{F})$  is said to *separate points* if, for any pair of distinct points x and y, there is a function  $f_{\alpha}$  such that  $f_{\alpha}(x) = 0$  and  $f_{\alpha}(y) = 1$ .

### Theorem (Kaplansky [7] and [10])

Let X be a compact Hausdorff (0-dimensional) space and let  $\mathcal{A} \subseteq \mathcal{C}(X, \mathbb{Q}_p)$  be a unitary subalgebra. Then  $\mathcal{A}$  separates points iff for any clopen subset  $U \subseteq X$ , the  $\mathbb{Q}_p$ -characteristic function  $\phi_U$  belongs to the closure of  $\mathcal{A}$  in  $\mathcal{C}(X, \mathbb{Q}_p)$ .

# **Point-Separation**

### Definition

Let  $\mathbb{F}$  be a field. A unitary subalgebra  $\mathcal{A} \in \mathcal{C}(X, \mathbb{F})$  is said to *separate points* if, for any pair of distinct points x and y, there is a function  $f_{\alpha}$  such that  $f_{\alpha}(x) = 0$  and  $f_{\alpha}(y) = 1$ .

### Theorem (Kaplansky [7] and [10])

Let X be a compact Hausdorff (0-dimensional) space and let  $\mathcal{A} \subseteq \mathcal{C}(X, \mathbb{Q}_p)$  be a unitary subalgebra. Then  $\mathcal{A}$  separates points iff for any clopen subset  $U \subseteq X$ , the  $\mathbb{Q}_p$ -characteristic function  $\phi_U$  belongs to the closure of  $\mathcal{A}$  in  $\mathcal{C}(X, \mathbb{Q}_p)$ .

ヘロト ヘヨト ヘヨト ヘヨト

# Point-Separation Pointfree

#### Remark

If L is a compact regular frame, then it is spatial and  $\mathbf{Top}(\Sigma L, \mathbb{Q}_p) \cong \mathbf{Frm}(\mathcal{L}(\mathbb{Q}_p), L).$ 

#### Definition

Let *L* be a compact 0-dimensional frame. We say that a unitary subalgebra  $\mathcal{A}$  of  $\mathcal{C}_{p}(L)$  separates points if its closure contains the idempotents of  $\mathcal{C}_{p}(L)$ .

# Point-Separation Pointfree

#### Remark

If L is a compact regular frame, then it is spatial and  $\mathbf{Top}(\Sigma L, \mathbb{Q}_p) \cong \mathbf{Frm}(\mathcal{L}(\mathbb{Q}_p), L).$ 

### Definition

Let *L* be a compact 0-dimensional frame. We say that a unitary subalgebra  $\mathcal{A}$  of  $\mathcal{C}_p(L)$  separates points if its closure contains the idempotents of  $\mathcal{C}_p(L)$ .

・ロト ・回ト ・ヨト ・ヨト

# Stone-Weierstrass Theorem in Pointfree Topology

#### Theorem

Let *L* be a compact 0-dimensional frame and let *A* be a unitary subalgebra of  $C_p(L)$  which separates points. Then *A* is uniformly dense in  $C_p(L)$ .

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Frame of } \mathbb{Q}_p \\ \mbox{Continuous $p$-Adic Functions} \\ \mbox{Stone-Weierstrass Theorem} \end{array}$ 

### Thank you!

Francisco Ávila The Frame of the *p*-Adic Numbers

Ð,

## B. Banaschewski.

*The real numbers in pointfree topology.* Textos de Matemática, Universidade de Coimbra, 1997.

## J. Dieudonné.

Sur les fonctions continues p-adique. Bull. Amer. Math. Soc., 68:79–95, 1944.

F. Q. Gouvêa.

p-adic Numbers: An Introduction.

Springer-Verlag, 1991.

J. Gutiérrez-García and J. Picado and A. Pultr. Notes on Point-free Real Functions and Sublocales. *Textos de Matematica*, 22:167–200, 2015.

< 17 k

## K. Hensel.

Über eine neue Begründung der Theorie der algebraischen Zahlen.

*Journal für die reine und angewandte Mathematik*, 128:1–32, 1905.



A. Joyal.

Nouveaux fondaments de l'analyse.

Lecture Notes, Montréal (Unpublished), 1973 and 1974.

## I. Kaplansky.

The Weierstrass theorem in Fields with Valuation. *Proc. Amer. Math. Soc.*, 1:356–357,1950.

L. Narici and E. Beckenstein and G. Bachmann. Functional Analysis and Valuation Theory. Marcel Dekker, New York, NY, 1971.

### J. Picado and A. Pultr.

*Frames and Locales: Topology without points.* Springer Basel, Frontiers in Mathematics, 2012.

## J. B. Prolla.

Approximation of Vector Valued Functions. North-Holland, Amsterdam, Netherlands, 1977.