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Generalizing first-order logic

Trivial Observation: Every set is the union of its finite subsets.

In fancier language, the category Set is locally finite presentable.

This fact is key to the semantics of first-order logic, which describes
structures by how they are built as directed colimits of finite pieces.

Dually, profinite structures are built as codirected limits of finite pieces.

Question: What’s the right analogue of first-order logic, or “cologic”, for
describing profinite structures?
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Generalizing first-order logic - The plan

In attempting to answer this question, we’ll take a more abstract approach.

The plan:

Given a locally finitely presentable category D, define the notions of
D-signature Σ and Σ-structure: an object of D with extra algebraic
and relational structure.

Define the logic FO(D,Σ) of Σ-structures in D.

Explain how FO(D,Σ) can be interpreted in an ordinary multi-sorted
first-order setting.

Given a category D whose dual is locally finitely presentable (e.g. a
category of profinite structures), the cologic for Σ-costructures
(objects of D with extra coalgebraic and corelational structure) is
FO(Dop,Σ).

Describe applications/connections with other work.
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LFP categories

Recall:

An object c in a category D is finitely presentable if the functor
HomD(c,−) preserves directed colimits.

(Gabriel & Ulmer) A category D is locally finitely presentable if:

It is cocomplete.
Every object is a directed colimit of finitely presentable objects.
The full subcategory C of finitely presentable objects is essentially
small, i.e. there is a small full subcategory A containing a
representative of every isomorphism class in C.

We fix an LFP category D and choose a category of representatives A.
We call:

objects of D domains.

objects of C variable contexts.

objects of A arities.

The classical case: D = Set, C = FinSet, A = ω.
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LFP categories - Examples

More LFP categories:

SetX , for any set X; DB, for any LFP D and small category B.

StrL, the category of L-structures; Grp; Ring; Poset; Cat; ModT ,
where T is a first-order universal Horn theory.

Lex(Cop, Set), the finite-limit preserving presheaves on C, for any
small category C with finite colimits.

ind−C, the free cocompletion of C under directed colimits, for any
small category C with finite colimits.

Categories whose duals are LFP:

pro−C, the free completion of C under codirected limits, for any small
category C with finite limits.

ProFinSet ∼= Stone ∼= Boolop; ProFinGrp.
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Signatures and structures

Definition

A D-signature Σ consists of, for every arity n ∈ A,

A set Rn, called the n-ary relation symbols.

An object Fn ∈ D, called the n-ary operations.

Definition

Given a D-signature Σ, a Σ-structure is an object M in D, together with,
for every arity n ∈ A,

A map of sets Rn → P(HomD(n,M)). The image of an n-ary
relation symbol R is an “n-ary relation” RM ⊆ HomD(n,M).

(Kelly & Power) A map of sets HomD(n,M)→ HomD(Fn, D). The
image of an n-tuple a : n→M is a map â : Fn →M .

The classical case: An n-ary relation is a subset of HomSet(n,M) ∼= Mn.
If Fn is the set of n-ary function symbols, and a an n-tuple, â(f) = f(a).
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The classical case: An n-ary relation is a subset of HomSet(n,M) ∼= Mn.
If Fn is the set of n-ary function symbols, and a an n-tuple, â(f) = f(a).
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Zero

It is a fact that C is always closed under finite colimits in D. In particular,
A contains an initial object, 0:

HomD(0,M) = {∗}.

F0 = the constants. The map ∗̂ : F0 →M is the interpretation of the
constants.

R0 = the proposition symbols. The interpretetation of a proposition
symbol RM ⊆ {∗} is either “true” (inhabited) or “false” (empty).
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The term algebra

Σ a signature with algebraic part F = (Fn)n∈A.
(Adámek, Milius, & Moss) A Σ-structure can be viewed as an algebra for
the polynomial functor HF : D → D, defined by

HF(M) =
∐
n∈A

∐
HomD(n,M)

Fn

HF is a finitary functor (i.e. it preserves directed colimits), so it
automatically has an initial algebra T (0), as well as a free algebra T (x)
(which we call the term algebra) on any object x.

Definition

Let x ∈ C and n ∈ A. An n-term in context x is an arrow n→ T (x).

By analyzing the structure of T (x), it is possible to give a more concrete
syntax for terms (depending on the category D).
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Evaluation

Given:

M an Σ-structure.

t : n→ T (x) an n-term in context x.

a : x→M an “interpretation of the variables in context x.”

We obtain a map tM (a), the “evaluation of t in M”.
Just use the universal property of T (x) and compose:

n
t
//

tM (a)

((
T (x) //M

x

a

<<

i

OO
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Syntax

Definition

Let x ∈ C be a context. An atomic formula in context x is one of the
following:

s(x) = t(x), where s and t are n-terms in context x, for some n ∈ A.

R(t(x)), where t is an n-term in context x and R is a n-ary relation
symbol, for some n ∈ A.

Definition

A formula in context x is one of the following:

An atomic formula in context x.

>(x), ⊥(x), ¬ϕ(x), ϕ(x) ∧ ψ(x), or ϕ(x) ∨ ψ(x), where ϕ(x) and
ψ(x) are formulas in context x.

∃(y|f = x)ϕ(y) or ∀(y|f = x)ϕ(y), where f : x→ y is an arrow and
ϕ(y) is a formula in context y.
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Semantics

We now define the satisfaction relation |=. Given a Σ-structure M , a
formula ϕ(x) in context x, and a : x→M :

M |= s(a) = t(a) iff sM (a) = tM (a) in HomD(n,M).

M |= R(t(a)) iff tM (a) ∈ RM ⊆ HomD(n,M).

The Boolean connectives have their usual meaning.

M |= ∃(y|f = x)ϕ(y) iff there exists b : y →M such that b ◦ f = a
and M |= ϕ(b).

M |= ∀(y|f = x)ϕ(y) iff for all b : y →M such that b ◦ f = a,
M |= ϕ(b).

y
∃/∀ b //M

x

f

OO

a

>>
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Zero again

Definition

A sentence is a formula in the initial context 0.

We write t instead of t(0) for terms in the initial context, ϕ instead of
ϕ(0) for sentences, and ∃xϕ(x) instead of ∃(x|∗ = ∗)ϕ(x) (and similarly
for the universal quantifier).

When ϕ is a sentence, there is a unique interpretation of the variables
∗ : 0→M , and we write M |= ϕ instead of M |= ϕ(∗).
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Examples

Let D = Cat.

Let x = • // • be the category with a single non-identity arrow.

Let y = • (( •hh be the category with a single inverse pair of
non-identity arrows.

Let i1 and i2 be the two functors x→ y sending the non-identity
arrow in x to each of the non-identity arrows of y.

Let P be an x-ary relation. The interpretation of P in a category A
picks out a set of maps x→ A, i.e. a set of arrows in A.

What properties do the following sentences express?

∀x ∃(y|i1 = x)>(y)

∀x (P (x) ∨ ∃(y|i1 = x)P (ti2(y)))
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Presheaf structures

Gabriel-Ulmer duality tells us that for any LFP category D,
D ∼= Lex(Aop,Set), the category of finite limit preserving functors
Aop → Set, with the equivalence given by M 7→ HomD(−,M).

Let PSh(Σ) be the ordinary first-order language consisting of:

A sort Sn for each n ∈ A.

A function symbol f̃ of sort Sn → Sm for each arrow f : m→ n.

A relation symbol R̃ of sort Sn for each n-ary relation symbol R.

A function symbol t∗ of sort Sn → Sm for each m-term in context n,
t : m→ T (n).

Given a Σ-structure M , let PSh(M) be the PSh(Σ)-structure in which
Sn = HomD(n,M), f̃(a) = a ◦ f , R̃ = RM , and t∗(a) = tM (a).
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The first-order translation

Let TPSh(Σ) be the first-order theory asserting:

n 7→ Sn is a functor Aop → Set (i.e. f̃ ◦ g = g̃ ◦ f̃ and ĩd = id).

This functor preserves limits.

Coherence conditions for the term functions t∗.

Theorem

The Gabriel-Ulmer equivalence lifts to an equivalence between the
category of Σ-structures and the category of models of TPSh(Σ).

Theorem

There is a bitranslation between FO(D,Σ)-formulas ϕ(n) in context

n ∈ A and first-order PSh(Σ)-formulas ϕ̂(xn) in a single variable of sort
Sn, such that for any Σ-structure M and any a : n→M ,

M |= ϕ(a) ⇐⇒ PSh(M) |= ϕ̂(a).
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The first-order translation

Theorem

There is a bitranslation between FO(D,Σ)-formulas ϕ(n) in context

n ∈ A and first-order PSh(Σ)-formulas ϕ̂(xn) in a single variable of sort
Sn, such that for any Σ-structure M and any a : n→M ,

M |= ϕ(a) ⇐⇒ PSh(M) |= ϕ̂(a).

Also:

Every FO(D,Σ) formula in context x is equivalent to one in some
context n ∈ A (after picking an isomorphism x ∼= n).

Every first-order PSh(Σ)-formula in variables of sorts Sn1 , . . . , Snk is
equivalent to one in a single variable of sort Sn1

∐
···

∐
nk

So FO(D,Σ) is exactly as expressive as an ordinary first-order language,
and we can import theorems (compactness, Löwenheim-Skolem, etc.) and
definitions (stability, NIP, etc.) from first-order model theory for free.
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Ultraproducts

Let U be an ultrafilter on I, and let (Mi)i∈I be an I-indexed family of
Σ-structures. The “categorical ultraproduct”

UltD((Mi)i∈I , U) = lim−→
X∈U

∏
i∈X

Mi

can be made into a Σ-structure in a natural way.
[When D = Set, this agrees with the usual definition as long as all Mi are
nonempty.]

Ultraproducts commute with the presheaf translation, so  Loś’s Theorem
automatically holds:

PSh(UltD((Mi)i∈I , U)) = UltD((PSh(Mi)i∈I), U)

This essentially comes down to the fact that for all finitely presentable n,

HomD(n,UltD((Mi)i∈I)) ∼= UltSet((HomD(n,Mi))i∈I)
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Algebras for finitary functors

A functor F : D → D is finitary if it preserves directed colimits.

(Adámek, Milius, and Moss) Any finitary functor F on an LFP
category has a presentation as a quotient of a polynomial functor H
by a set of “flat equations”. An F -algebra is the same thing as an
H-algebra which “satisfies these equations”:

n
η //

η′
// H(m) n

η //

η′
//

**

H(m)
H(a) // H(M)

α

��
n η

//

tη
**

H(m)
i
// T (m) m

∀a
//M

In our context “flat equations” are literally equational sentences:

∀m(tη(m) = tη′(m))

So FO(D,Σ) can be applied to algebras for any finitary functor.
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Cologic

Let’s finally return to profinite structures. If Dop is LFP, what does
FO(Dop,Σ) say about D?

Structures are coalgebras for cofinitary functors on D. “Corelations” and
“coformulas” express properties of “cotuples” M → n.

Example: D = Stone, n a finite discrete space, M → n is a partition of
M into n clopen sets. Quantifiers quantify over refinements of a given
partition.

M
∃/∀ //

!!

m

��
n
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Cologic - connections to other work

“Universal coalgebra” (Rutten). Coalgebras for cofinitary functors on
Stone are of some interest (see Kupke, Kurz, and Venema, e.g.). For
example, coalgebras for the Vietoris functor are exactly descriptive
general frames.

Cherlin, van den Dries, and Macintyre introduced a “cologic” of
profinite groups (e.g. Galois groups) in order to study the model
theory of PAC fields. Their description of “cologic” is essentially the
same as the first-order translation (via presheaf structures) of
FO(ProFinGrpop, ∅).

Projective Fräıssé theory (Irwin & Solecki). A corelational language Σ
on Stone spaces is the ideal context for dualized Fräıssé theory
(Panagiotopoulos). The FO(Stoneop,Σ)-theories of their limits are
characterized by “ℵ0-categoricity” and quantifier elimination.
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Future Work

1 Broaden the scope by dropping some of the finitary hypotheses which
ensure equivalence to first-order logic (and compactness). What is
the relationship between the logic of coalgebras on Set and those on
Stone (via the Stone-Čech compactification)?

2 In concrete profinite structures, both the tuples and cotuples are
interesting. Is there a nice logic which talks about both?

3 Study model theoretic properties: nontrivial FO(Stoneop,Σ)-theories
always have the strict order property and the independence property
(these are bad), but FO(ProFinGrpop,Σ)-theories can be
model-theoretically tame. What’s the deeper reason for this?
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