Bunched hypersequent calculi for distributive substructural logics and extensions of BI

Agata Ciabattoni and Revantha Ramanayake

Technische Universität Wien, Austria

TACL 2017 (Prague)

26-30 June 2017

The Lambek calculus with exchange FL_{e}

$$
\begin{aligned}
& p \Rightarrow p \quad \perp, \left.\Gamma \Rightarrow D \quad \Rightarrow 1 \quad \Gamma \Rightarrow \top \quad \frac{A_{1}, A_{2}, \Gamma \Rightarrow D}{A_{1} \otimes A_{2}, \Gamma \Rightarrow D} \otimes \right\rvert\, \\
& \frac{\Gamma \Rightarrow A \quad \Delta \Rightarrow B}{\Gamma, \Delta \Rightarrow A \otimes B} \otimes \mathrm{r} \quad \frac{\Gamma \Rightarrow A \quad B, \Delta \Rightarrow D}{A \rightarrow B, \Gamma, \Delta \Rightarrow D} \rightarrow 1 \quad \frac{A, \Gamma \Rightarrow B}{\Gamma \Rightarrow A \rightarrow B} \rightarrow r \\
& \frac{A_{i}, \Gamma \Rightarrow D}{A_{1} \wedge A_{2}, \Gamma \Rightarrow D} \wedge I \quad \frac{\Gamma \Rightarrow A \quad \Gamma \Rightarrow B}{\Gamma \Rightarrow A \wedge B} \wedge r \quad \frac{\Gamma, A, B, \Delta \Rightarrow D}{\Gamma, B, A, \Delta \Rightarrow D} \mathrm{e} \\
& \frac{A, \Gamma \Rightarrow D \quad B, \Gamma \Rightarrow D}{A \vee B, \Gamma \Rightarrow D} \vee I \quad \frac{\Gamma \Rightarrow A_{i}}{\Gamma \Rightarrow A_{1} \vee A_{2}} \vee r
\end{aligned}
$$

- The antecedent is a comma-separated list of formulae
- Cut-elimination holds so we omit the cut rule.
- This calculus has the subformula property: every formula occurring in the premise of a rule instance is a subformula of some formula in the conclusion.
- The subformula property is the point. It restricts the formulae that can appear in a sequent/derivation to subformulae of the endsequent $\Rightarrow A$.
- We can use a calculus with the subformula property to give decidability, complexity, proof search, interpolation, standard completeness arguments

An observation: FL_{e} is not distributive

$$
A \wedge(B \vee C) \Rightarrow(A \wedge B) \vee(A \wedge C) \text { is not derivable }
$$

Proof: what rule can be applied to obtain this sequent? (4 possibilities)

$$
\begin{aligned}
& \frac{A \Rightarrow(A \wedge B) \vee(A \wedge C)}{A \wedge(B \vee C) \Rightarrow(A \wedge B) \vee(A \wedge C)} \wedge l \\
& \frac{B \vee C \Rightarrow(A \wedge B) \vee(A \wedge C)}{A \wedge(B \vee C) \Rightarrow(A \wedge B) \vee(A \wedge C)} \wedge \\
& \frac{A \wedge(B \vee C) \Rightarrow A \wedge B}{A \wedge(B \vee C) \Rightarrow(A \wedge B) \vee(A \wedge C)} \vee r
\end{aligned}
$$

$$
\frac{A \wedge(B \vee C) \Rightarrow A \wedge C}{A \wedge(B \vee C) \Rightarrow(A \wedge B) \vee(A \wedge C)} \vee r
$$

By inspection, none of the premises is derivable.

- Proof calculi for distributive substructural logics have been studied e.g. in the context of relevant logics.

A bunched calculus $s \mathrm{DFL}_{e}$ for DFL_{e} (Dunn 1974, Mints 1976)

$$
\begin{aligned}
& p \Rightarrow p \\
& \perp, \Gamma \Rightarrow D \\
& \Rightarrow 1 \quad \Gamma \Rightarrow \mathrm{~T} \\
& \frac{\Gamma\left[A_{1}, A_{2}\right] \Rightarrow D}{\Gamma\left[A_{1} \otimes A_{2}\right] \Rightarrow D} \otimes 1 \\
& \frac{\Gamma \Rightarrow A \quad \Delta \Rightarrow B}{\Gamma, \Delta \Rightarrow A \otimes B} \otimes \mathrm{r} \frac{\Gamma \Rightarrow A \quad \Sigma[B] \Rightarrow D}{\Sigma[\Gamma, A \rightarrow B] \Rightarrow D} \rightarrow 1 \quad \frac{A, \Gamma \Rightarrow B}{\Gamma \Rightarrow A \rightarrow B} \rightarrow r \\
& \frac{\Gamma\left[A_{1} ; A_{2}\right] \Rightarrow D}{\Gamma\left[A_{1} \wedge A_{2}\right] \Rightarrow D} \wedge I \quad \Gamma \Rightarrow A \quad \Gamma \Rightarrow B{ }^{2} \Rightarrow r \\
& \frac{\Sigma[\Gamma, \Delta] \Rightarrow A}{\Sigma[\Delta, \Gamma] \Rightarrow A}(\mathrm{~m}-\mathrm{e}) \\
& \frac{\Gamma[A] \Rightarrow D \quad \Gamma[B] \Rightarrow D}{\Gamma[A \vee B] \Rightarrow D} \vee 1 \quad \frac{\Gamma \Rightarrow A_{i}}{\Gamma \Rightarrow A_{1} \vee A_{2}} \vee r \quad \frac{\Sigma[(X, Y), Z] \Rightarrow A}{\Sigma[X,(Y, Z)] \Rightarrow A}(\mathrm{~m}-\mathrm{as}) \\
& \frac{\Sigma[(X ; Y) ; Z] \Rightarrow A}{\Sigma[X ;(Y ; Z)] \Rightarrow A} \text { (a-as) } \quad \frac{\Sigma[X ; Y] \Rightarrow A}{\Sigma[Y ; X] \Rightarrow A}(\text { a-ex }) \quad \frac{\Sigma[X] \Rightarrow A}{\Sigma[X ; Y] \Rightarrow A}(\text { a-w }) \\
& \frac{\Sigma[X ; X] \Rightarrow A}{\Sigma[X] \Rightarrow A} \text { (a-ctr) }
\end{aligned}
$$

- The antecedent has two structure connectives: comma and semicolon
- Comma \rightsquigarrow multiplicative connectives. Semicolon $\rightsquigarrow \leadsto$ additive connectives

Derivation of $A \wedge(B \vee C) \Rightarrow(A \wedge B) \vee(A \wedge C)$ in $s \mathrm{DFL}_{e}$

Bunched (hyper)sequent calculi for distributive substructural logics

- How can we construct calculi with the subformula property for axiomatic extensions of DFL_{e} ?
- (Ciabattoni, Galatos, Terui 2008) develop a general method for (hyper)sequent calculi
- To extend these methods to bunched (hyper)sequent calculi we
(i) Interpret the additional structure and prove a cut-elimination theorem on this extended structure.
(ii) (This yields an algorithm for transforming an axiom into a structural rule)
(iii) Characterise those axiom extensions that can be presented
(iv) We also consider the special case of the logic of bunched implication BI ($\mathrm{DFL} \mathrm{L}_{e}$ with two implications defined on \Rightarrow) where the above interpretation does not hold.
- Underlying aim: present logics in a simple extension of the sequent calculus, to permit applications of the calculus
e.g. decidability, complexity, proof search, interpolation, standard completeness arguments

ASIDE: syntactic decidability arguments can be tricky. The (scom) rule.

$$
\begin{array}{cc}
p \Rightarrow p & \frac{A, B, \Gamma \Rightarrow D}{A \otimes B, \Gamma \Rightarrow D}(\otimes \mathrm{l}) \\
\frac{\Gamma, A, B, \Delta \Rightarrow D}{\Gamma, B, A, \Delta \Rightarrow D} \text { (e) } & \frac{\Gamma \Rightarrow A \quad B, \Delta \Rightarrow D}{A \rightarrow B, \Gamma, \Delta \Rightarrow D}(\rightarrow \mathrm{l}) \\
\frac{A_{1}^{r_{1}}, A_{2}^{r_{2}}, \ldots, A_{n}^{r_{n}} \Rightarrow D}{} A_{1}^{2 \alpha_{1}-r_{1}}, A_{2}^{2 \alpha_{2}-r_{2}}, \ldots, A_{n}^{2 \alpha_{n}-r_{n}} \Rightarrow D \\
A_{1}^{\alpha_{1}}, A_{2}^{\alpha_{2}}, \ldots, A_{n}^{\alpha_{n}} \Rightarrow D & \frac{\Gamma \Rightarrow A, \Gamma \Rightarrow B}{\Gamma, \Delta \Rightarrow A \otimes B}(\otimes \mathrm{r}) \\
& \text { (scom) }
\end{array}
$$

- Is sMILL+(scom)+(weak) decidable? Is sMILL+(scom) decidable?
- The (scom) rule increases sequent size. To ensure termination of backward proof search, we nts that only finitely many (scom) rules are required.
- In sMILL+(scom)+(weak), we can bound the number of (scom) rules applied to $A_{1}^{\alpha_{1}} A_{2}^{\alpha_{2}} \Rightarrow D$ by omitting redundant derivations i.e. it is safe to omit derivations with repeated nodes along a branch upto \leq etc. Def: $(X \Rightarrow D) \leq(Y \Rightarrow D)$ if latter can be derived from former by weakening
- However. . . bounding $A_{1}^{\alpha_{1}} A_{2}^{\alpha_{2}} A_{3}^{\alpha_{3}} \Rightarrow D$ is problematic...

Example due to Nick Galatos.

Back to main topic: computing a rule from an axiom: A calculus for $\mathrm{DFL}_{e}+(1 \wedge(p \otimes q)) \rightarrow p$ (the axiom of restricted weakening)

- Use invertible rules backwards on axiom:

$$
\frac{1,(1 ;(p, q)) \Rightarrow p}{\overline{1,(1 \wedge(p \otimes q)) \Rightarrow p}}
$$

- So it suffices to derive $1,(1 ;(p, q)) \Rightarrow p$. In the presence of cut the following equivalences hold ('Ackermann's lemma')

$$
\begin{array}{ll}
\text { 1) } 1,(1 ;(p, q)) \Rightarrow p & \text { 2) } \frac{X \Rightarrow p}{\varnothing_{a},\left(\varnothing_{a} ;(X, q)\right) \Rightarrow p} \\
\text { 3) } \frac{X \Rightarrow p \quad Y \Rightarrow q}{\varnothing_{a},\left(\varnothing_{a} ;(X, Y)\right) \Rightarrow p} & \text { 4) } \frac{X \Rightarrow p \quad Y \Rightarrow q \Gamma[p] \Rightarrow B}{\varnothing_{a},\left(\varnothing_{a} ;(X, Y)\right) \Rightarrow B}
\end{array}
$$

- Apply all cuts to the premises (assuming termination) to get equivalent rules

$$
\frac{\Gamma[X] \Rightarrow B \quad Y \Rightarrow q}{\varnothing_{\mathrm{a}},\left(\varnothing_{\mathrm{a}} ;(X, Y)\right) \Rightarrow B} \quad \frac{\Gamma[X] \Rightarrow B}{\varnothing_{\mathrm{a}},\left(\varnothing_{\mathrm{a}} ;(X, Y)\right) \Rightarrow B} r
$$

$-s \mathrm{DFL}_{e}+r+$ cut is sound and complete for $\mathrm{DFL}_{e}+(1 \wedge(p \otimes q)) \rightarrow p$. By our cut-elimination theorem: so is $s \mathrm{DFL}_{e}+r$ and it has the subformula property.

An example where the argument fails

$$
\mathrm{DFL}_{e}+(p \rightarrow 0) \vee((p \rightarrow 0) \rightarrow 0)
$$

- Applying invertible rules to $1 \Rightarrow(p \rightarrow 0) \vee((p \rightarrow 0) \rightarrow 0)$ we get

$$
\varnothing_{m} \Rightarrow(p \rightarrow 0) \vee((p \rightarrow 0) \rightarrow 0)
$$

- Applying Ackermann lemma (below left), then invertible rule (VI):

$$
\frac{(p \rightarrow 0) \vee((p \rightarrow 0) \rightarrow 0) \Rightarrow X}{\varnothing_{m} \Rightarrow X} \quad \frac{(p \rightarrow 0) \Rightarrow X \quad((p \rightarrow 0) \rightarrow 0) \Rightarrow X}{\varnothing_{m} \Rightarrow X}
$$

- The rule above right violates the subformula property...
- ... and yet there is no way to proceed. There are no invertible rules to apply.
- And Ackermann's lemma does not simplify premises
- It seems that structural rules extensions of $s D F L_{e}$ are not expressive enough to present $\mathrm{DFL}_{e}+(p \rightarrow 0) \vee((p \rightarrow 0) \rightarrow 0)$
- We need to extend the sequent formalism further...

Bunched hypersequent calculus for $\mathrm{DFL}_{e}+(p \rightarrow 0) \vee((p \rightarrow 0) \rightarrow 0)$

- A natural extension of a sequent $\Gamma \Rightarrow A$ is to a non-empty set of sequents (Avron 1996, Pottingern 1983)

$$
\Gamma_{1} \Rightarrow A_{1}\left|\Gamma_{2} \Rightarrow A_{2}\right| \ldots \mid \Gamma_{n+1} \Rightarrow A_{n+1}
$$

- Here we take the analogous extension of $s D_{F L}$ with hypersquent structure
- The hypersequent calculus $h D F L_{e}$ is obtained from $s D F L_{e}$ as follows:

Add a hypersequent context " $g \mid$ " to each rule. Also add rules manipulating the components

$$
\frac{g \mid \Gamma, A \Rightarrow B}{g \mid \Gamma \Rightarrow A \rightarrow B} \rightarrow r \quad \frac{h|h| g}{h \mid g} \text { EC } \quad \frac{g}{h \mid g} \text { EC }
$$

Bunched hypersequent calculus for $\mathrm{DFL}_{e}+(p \rightarrow 0) \vee((p \rightarrow 0) \rightarrow 0)$

- Prove soundness of $h \mathrm{DFL}_{e}$ wrt DFL_{e} interpreting | as disjunction
- Contrast with hypersequent calculi for extensions of FL_{e} where
$\left.\Gamma_{1} \Rightarrow A_{1} \mid \Gamma_{2} \Rightarrow A_{2} \leadsto\left(\left(\Gamma_{1}^{\prime} \rightarrow A_{1}\right) \wedge 1\right) \vee\left(\left(\Gamma_{2}^{\prime} \rightarrow A_{2}\right) \wedge 1\right)\right)$
- Therefore the following is an equivalent calculus.

$$
h \mathrm{DFL}_{e}+g|1 \Rightarrow p \rightarrow 0| 1 \Rightarrow(p \rightarrow 0) \rightarrow 0
$$

- Applying invertible rules:

$$
g|1 \Rightarrow p \rightarrow 0| 1 \Rightarrow(p \rightarrow 0) \rightarrow 0 \quad g\left|\varnothing_{m}, p \Rightarrow O_{m}\right| \varnothing_{m}, p \rightarrow 0 \Rightarrow O_{m}
$$

- Now repeatedly apply Ackermann's lemma to above right to get:

$$
\begin{aligned}
& g|X \Rightarrow p \quad g| Y \Rightarrow p \rightarrow 0 \\
& g\left|\varnothing_{m}, X \Rightarrow O_{m}\right| \varnothing_{m}, Y \Rightarrow O_{m}
\end{aligned}
$$

- Applying invertible rules and all possible cuts we obtain a structural rule

$$
\frac{g \mid X \Rightarrow p}{g\left|\varnothing_{m}, X \Rightarrow O_{m}\right| \varnothing_{m}, Y \Rightarrow O_{m}} \quad \frac{g \mid X, Y \Rightarrow O_{m}}{g\left|\varnothing_{m}, X \Rightarrow O_{m}\right| \varnothing_{m}, Y \Rightarrow O_{m}} r
$$

- $h \mathrm{DFL}_{e}+r$ (via cut-elimination) calculus for $\mathrm{DFL}_{e}+(p \rightarrow 0) \vee((p \rightarrow 0) \rightarrow 0)$

The substructural hierarchy over DFL_{e}

- We can characterise the extensions of DFL_{e} that can be presented
- Following (Ciabattoni, Galatos, Terui 2008), set \mathcal{N}_{0}^{d} and \mathcal{P}_{0}^{d} as the set of propositional variables. Then define:

$$
\begin{aligned}
& \mathcal{P}_{n+1}^{d}::=1\left|\mathcal{N}_{n}^{d}\right| \mathcal{P}_{n+1}^{d} \otimes \mathcal{P}_{n+1}^{d}\left|\mathcal{P}_{n+1}^{d} \wedge \mathcal{P}_{n+1}^{d}\right| \mathcal{P}_{n+1}^{d} \vee \mathcal{P}_{n+1}^{d} \\
& \mathcal{N}_{n+1}^{d}::=O_{m}\left|\mathcal{P}_{n}^{d}\right| \mathcal{N}_{n+1}^{d} \wedge \mathcal{N}_{n+1}^{d} \mid \mathcal{P}_{n+1}^{d} \rightarrow \mathcal{N}_{n+1}^{d}
\end{aligned}
$$

- The positive classes \mathcal{P}_{i} contain formulae whose most external connective is invertible on the left
- The negative classes \mathcal{N}_{i}) contain formulae whose most external connective is invertible on the right

Theorem

Every extension of $D F L_{e}$ by a disjunction of \mathcal{N}_{2}^{d} axioms computes a structural rule extension of $h D F L_{e}$ when the cuts on the premises terminate.

The logic of bunched implications BI (O'Hearn and Pym, 1999)

- BI can be used for resource composition and systems modelling and as a propositional fragment of separation logic
- The calculus has a multiplicative implication $\rightarrow *$ and an intuitionistic implication \rightarrow :

$$
\begin{aligned}
& \frac{\Gamma \Rightarrow A \quad \Sigma[B] \Rightarrow D}{\Sigma[\Gamma ; A \rightarrow B] \Rightarrow D} \rightarrow 1 \quad \frac{A ; \Gamma \Rightarrow B}{\Gamma \Rightarrow A \rightarrow B} \rightarrow r \\
& \frac{\Gamma \Rightarrow A \quad \Sigma[B] \Rightarrow D}{\Sigma[\Gamma, A-* B] \Rightarrow D} \rightarrow * \quad \frac{A, \Gamma \Rightarrow B}{\Gamma \Rightarrow A-* B} \rightarrow r
\end{aligned}
$$

- Algebraic semantics: Heyting (intuitionistic) algebras with a commutative monoidal operation \otimes and residuated implication $-*$
i.e. $x \otimes y \leq z$ iff $x \leq y \rightarrow z$ where \leq is the Heyting partial order
- In other words: commutative bounded GBI-algebras (Galatos and Jipsen)

A calculus for $B I+1 \Rightarrow p \vee(p \rightarrow \perp)$ ($\mathbf{B B I}$): an attempt

- Boolean BI : BI with intuitionistic logic replaced by classical logic
- BBI is the propositional basis of separation logic (more widely used than BI)
- BBI is undecidable
- We cannot extend BI by permitting multiple formulae in the succedent (analogous of LJ \leadsto LK) because cut-elimination fails due to the two types of structural connectives in the antecedent
- Idea: add hypersequent structure to $s \mathrm{BI}$ to interpret as before:

$$
1 \Rightarrow p \vee(p \rightarrow \perp) \quad 1 \Rightarrow p \mid 1 \Rightarrow(p \rightarrow \perp)
$$

- However: because we now have two right implication rules, the (logical) interpretation of \Rightarrow in not clear
- If we cannot interpret \Rightarrow then we cannot interpret |
- This means that we cannot obtain a calculus as we did before

A calculus for $B I+1 \Rightarrow p \vee(p \rightarrow \perp)$ (BBI): an attempt

- Nevertheless we can consider the sequent consequences of the hypersequent calculus $h \mathrm{BI}+r$ for some structural rule r

$$
\left\{\Gamma \Rightarrow A \quad \mid \quad \Gamma \Rightarrow A \text { derivable in } h \mathrm{DFL}_{e}+r\right\}
$$

- Our proof of cut-elimination extends to structural rule extensions of $h \mathrm{BI}$
- Idea: add a structural rule which derives desired sequent, use the subformula property to check the consistency of structural rule extensions
- It remains to | interpret wrt the semantics of BI (future work)
- Aside. Recent work (Ciabattoni, Galatos, Terui 2016) interprets | for (non-commutative) FL as a special disjunction built from 'interated conjugates'
- Can we find interesting resource interpretations for such logics? Can we regain decidability for BBI-like logics?

