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The Lambek calculus with exchange FLe

p ⇒ p ⊥,Γ⇒ D ⇒ 1 Γ⇒ >
A1,A2,Γ⇒ D

⊗l
A1 ⊗ A2,Γ⇒ D

Γ⇒ A ∆⇒ B
⊗r

Γ,∆⇒ A ⊗ B
Γ⇒ A B,∆⇒ D

→lA→ B,Γ,∆⇒ D
A,Γ⇒ B

→r
Γ⇒ A→ B

Ai ,Γ⇒ D
∧lA1 ∧ A2,Γ⇒ D

Γ⇒ A Γ⇒ B
∧r

Γ⇒ A ∧ B
Γ,A,B,∆⇒ D

e
Γ,B,A,∆⇒ D

A,Γ⇒ D B,Γ⇒ D
∨lA ∨ B,Γ⇒ D

Γ⇒ Ai
∨r

Γ⇒ A1 ∨ A2

I The antecedent is a comma-separated list of formulae

I Cut-elimination holds so we omit the cut rule.

I This calculus has the subformula property: every formula occurring in the
premise of a rule instance is a subformula of some formula in the conclusion.

I The subformula property is the point. It restricts the formulae that can
appear in a sequent/derivation to subformulae of the endsequent⇒ A.

IWe can use a calculus with the subformula property to give decidability,
complexity, proof search, interpolation, standard completeness arguments



An observation: FLe is not distributive

A ∧ (B ∨ C)⇒ (A ∧ B) ∨ (A ∧ C) is not derivable

Proof: what rule can be applied to obtain this sequent? (4 possibilities)

A⇒ (A ∧ B) ∨ (A ∧ C)
∧lA ∧ (B ∨ C)⇒ (A ∧ B) ∨ (A ∧ C)

B ∨ C ⇒ (A ∧ B) ∨ (A ∧ C)
∧lA ∧ (B ∨ C)⇒ (A ∧ B) ∨ (A ∧ C)

A ∧ (B ∨ C)⇒ A ∧ B
∨r

A ∧ (B ∨ C)⇒ (A ∧ B) ∨ (A ∧ C)

A ∧ (B ∨ C)⇒ A ∧ C
∨r

A ∧ (B ∨ C)⇒ (A ∧ B) ∨ (A ∧ C)

By inspection, none of the premises is derivable.
I Proof calculi for distributive substructural logics have been studied e.g. in
the context of relevant logics.



A bunched calculus sDFLe for DFLe (Dunn 1974, Mints 1976)

p ⇒ p ⊥,Γ⇒ D ⇒ 1 Γ⇒ >
Γ[A1,A2]⇒ D

⊗l
Γ[A1 ⊗ A2]⇒ D

Γ⇒ A ∆⇒ B
⊗r

Γ,∆⇒ A ⊗ B
Γ⇒ A Σ[B]⇒ D

→l
Σ[Γ,A→ B]⇒ D

A,Γ⇒ B
→r

Γ⇒ A→ B

Γ[A1; A2]⇒ D
∧l

Γ[A1 ∧ A2]⇒ D
Γ⇒ A Γ⇒ B

∧r
Γ⇒ A ∧ B

Σ[Γ,∆]⇒ A
(m-e)

Σ[∆,Γ]⇒ A

Γ[A]⇒ D Γ[B]⇒ D
∨l

Γ[A ∨ B]⇒ D
Γ⇒ Ai

∨r
Γ⇒ A1 ∨ A2

Σ[(X ,Y ),Z ]⇒ A
(m-as)

Σ[X , (Y ,Z )]⇒ A

Σ[(X ; Y ); Z ]⇒ A
(a-as)

Σ[X ; (Y ; Z )]⇒ A
Σ[X ; Y ]⇒ A

(a-ex)
Σ[Y ; X ]⇒ A

Σ[X ]⇒ A
(a-w)

Σ[X ; Y ]⇒ A

Σ[X ; X ]⇒ A
(a-ctr)

Σ[X ]⇒ A

I The antecedent has two structure connectives: comma and semicolon
I Comma multiplicative connectives. Semicolon additive connectives



Derivation of A ∧ (B ∨ C)⇒ (A ∧ B) ∨ (A ∧ C) in sDFLe

A⇒ A
A; B ⇒ A

B ⇒ B
A; B ⇒ B

A; B ⇒ A ∧ B
A; B ⇒ (A ∧ B) ∨ (A ∧ C)

A⇒ A
A; C ⇒ A

C ⇒ C
A; C ⇒ C

A; C ⇒ A ∧ C
A; C ⇒ (A ∧ B) ∨ (A ∧ C)

A; B ∨ C ⇒ (A ∧ B) ∨ (A ∧ C)

A ∧ (B ∨ C)⇒ (A ∧ B) ∨ (A ∧ C)



Bunched (hyper)sequent calculi for distributive substructural logics

I How can we construct calculi with the subformula property for axiomatic
extensions of DFLe?
I (Ciabattoni, Galatos, Terui 2008) develop a general method for
(hyper)sequent calculi
I To extend these methods to bunched (hyper)sequent calculi we

(i) Interpret the additional structure and prove a cut-elimination theorem on
this extended structure.

(ii) (This yields an algorithm for transforming an axiom into a structural rule)
(iii) Characterise those axiom extensions that can be presented
(iv) We also consider the special case of the logic of bunched implication BI

(DFLe with two implications defined on⇒) where the above interpretation
does not hold.

I Underlying aim: present logics in a simple extension of the sequent
calculus, to permit applications of the calculus
e.g. decidability, complexity, proof search, interpolation, standard
completeness arguments



ASIDE: syntactic decidability arguments can be tricky. The (scom) rule.

p ⇒ p
A,B,Γ⇒ D

(⊗l)
A ⊗ B,Γ⇒ D

Γ⇒ A ∆⇒ B (⊗r)
Γ,∆⇒ A ⊗ B

Γ,A,B,∆⇒ D
(e)

Γ,B,A,∆⇒ D
Γ⇒ A B,∆⇒ D

(→l)
A→ B,Γ,∆⇒ D

A,Γ⇒ B
(→r )

Γ⇒ A→ B

Ar1
1 ,A

r2
2 , . . . ,A

rn
n ⇒ D A2α1−r1

1 ,A2α2−r2
2 , . . . ,A2αn−rn

n ⇒ D
(scom)

Aα1
1 ,Aα2

2 , . . . ,Aαn
n ⇒ D

Γ⇒ D (weak)
Γ,∆⇒ D

I Is sMILL+(scom)+(weak) decidable? Is sMILL+(scom) decidable?

I The (scom) rule increases sequent size. To ensure termination of backward
proof search, we nts that only finitely many (scom) rules are required.

I In sMILL+(scom)+(weak), we can bound the number of (scom) rules applied
to Aα1

1 Aα2
2 ⇒ D by omitting redundant derivations i.e. it is safe to omit

derivations with repeated nodes along a branch upto ≤ etc.
Def: (X ⇒ D) ≤ (Y ⇒ D) if latter can be derived from former by weakening

I However. . . bounding Aα1
1 Aα2

2 Aα3
3 ⇒ D is problematic. . .



(2,3,3)

(4,2,4)

(5,1,5) (3,3,3)

(5,2,4)

(6,1,5) (4,3,3)

(6,2,4)

(7,1,5) (5,3,3)

(7,2,4) (3,4,2)

(2,4,2)

(1,4,2)

(0,4,2)

Example due to Nick Galatos.



Back to main topic: computing a rule from an axiom:
A calculus for DFLe + (1 ∧ (p ⊗ q))→ p (the axiom of restricted
weakening)
I Use invertible rules backwards on axiom:

1, (1; (p,q))⇒ p

1, (1 ∧ (p ⊗ q))⇒ p

1⇒ (1 ∧ (p ⊗ q))→ p

I So it suffices to derive 1, (1; (p,q))⇒ p. In the presence of cut the following
equivalences hold (‘Ackermann’s lemma’)

1) 1, (1; (p,q))⇒ p 2)
X ⇒ p

∅a, (∅a; (X ,q))⇒ p

3)
X ⇒ p Y ⇒ q
∅a, (∅a; (X ,Y ))⇒ p

4)
X ⇒ p Y ⇒ q Γ[p]⇒ B
∅a, (∅a; (X ,Y ))⇒ B

I Apply all cuts to the premises (assuming termination) to get equivalent rules

Γ[X ]⇒ B Y ⇒ q
∅a, (∅a; (X ,Y ))⇒ B

Γ[X ]⇒ B
r

∅a, (∅a; (X ,Y ))⇒ B

I sDFLe + r + cut is sound and complete for DFLe + (1 ∧ (p ⊗ q))→ p. By our
cut-elimination theorem: so is sDFLe + r and it has the subformula property.



An example where the argument fails

DFLe + (p → 0) ∨ ((p → 0)→ 0)

I Applying invertible rules to 1⇒ (p → 0) ∨ ((p → 0)→ 0) we get

∅m ⇒ (p → 0) ∨ ((p → 0)→ 0)

I Applying Ackermann lemma (below left), then invertible rule (∨l):

(p → 0) ∨ ((p → 0)→ 0)⇒ X
∅m ⇒ X

(p → 0)⇒ X ((p → 0)→ 0)⇒ X
∅m ⇒ X

I The rule above right violates the subformula property. . .
I . . . and yet there is no way to proceed. There are no invertible rules to apply.
I And Ackermann’s lemma does not simplify premises
I It seems that structural rules extensions of sDFLe are not expressive
enough to present DFLe + (p → 0) ∨ ((p → 0)→ 0)

IWe need to extend the sequent formalism further. . .



Bunched hypersequent calculus for DFLe + (p → 0) ∨ ((p → 0)→ 0) (I)

I A natural extension of a sequent Γ⇒ A is to a non-empty set of sequents
(Avron 1996, Pottingern 1983)

Γ1 ⇒ A1 | Γ2 ⇒ A2 | . . . | Γn+1 ⇒ An+1

I Here we take the analogous extension of sDFLe with hypersquent structure
I The hypersequent calculus hDFLe is obtained from sDFLe as follows:

Add a hypersequent context “g | " to each rule. Also add rules manipulating
the components

g | Γ,A⇒ B
→r

g | Γ⇒ A→ B
h |h |g

ECh |g
g

ECh |g



Bunched hypersequent calculus for DFLe + (p → 0) ∨ ((p → 0)→ 0) (II)

I Prove soundness of hDFLe wrt DFLe interpreting | as disjunction
I Contrast with hypersequent calculi for extensions of FLe where
Γ1 ⇒ A1 | Γ2 ⇒ A2  ((ΓI

1 → A1)∧1) ∨ ((ΓI
2 → A2)∧1))

I Therefore the following is an equivalent calculus.

hDFLe + g |1⇒ p → 0 |1⇒ (p → 0)→ 0

I Applying invertible rules:

g |1⇒ p → 0 |1⇒ (p → 0)→ 0 g |∅m,p ⇒ Om |∅m,p → 0⇒ Om

I Now repeatedly apply Ackermann’s lemma to above right to get:

g |X ⇒ p g |Y ⇒ p → 0
g |∅m,X ⇒ Om |∅m,Y ⇒ Om

I Applying invertible rules and all possible cuts we obtain a structural rule

g |X ⇒ p g |p,Y ⇒ Om

g |∅m,X ⇒ Om |∅m,Y ⇒ Om

g |X ,Y ⇒ Om r
g |∅m,X ⇒ Om |∅m,Y ⇒ Om

I hDFLe + r (via cut-elimination) calculus for DFLe + (p → 0) ∨ ((p → 0)→ 0)



The substructural hierarchy over DFLe

IWe can characterise the extensions of DFLe that can be presented
I Following (Ciabattoni, Galatos, Terui 2008), set Nd

0 and Pd
0 as the set of

propositional variables. Then define:

Pd
n+1 ::= 1 | Nd

n | P
d
n+1 ⊗ P

d
n+1 | P

d
n+1 ∧ P

d
n+1 | P

d
n+1 ∨ P

d
n+1

Nd
n+1 ::= Om | P

d
n | N

d
n+1 ∧ N

d
n+1 | P

d
n+1 → N

d
n+1

I The positive classes Pi contain formulae whose most external connective is
invertible on the left
I The negative classes Ni ) contain formulae whose most external connective
is invertible on the right

Theorem

Every extension of DFLe by a disjunction of Nd
2 axioms computes a structural

rule extension of hDFLe when the cuts on the premises terminate.



The logic of bunched implications BI (O’Hearn and Pym, 1999)

I BI can be used for resource composition and systems modelling and as a
propositional fragment of separation logic
I The calculus has a multiplicative implication −∗ and an intuitionistic
implication→:

Γ⇒ A Σ[B]⇒ D
→l

Σ[Γ; A→ B]⇒ D
A; Γ⇒ B

→r
Γ⇒ A→ B

Γ⇒ A Σ[B]⇒ D
−∗l

Σ[Γ,A−∗B]⇒ D
A, Γ⇒ B

−∗r
Γ⇒ A−∗B

I Algebraic semantics: Heyting (intuitionistic) algebras with a commutative
monoidal operation ⊗ and residuated implication −∗

i.e. x ⊗ y ≤ z iff x ≤ y−∗z where ≤ is the Heyting partial order

I In other words: commutative bounded GBI-algebras (Galatos and Jipsen)



A calculus for BI + 1⇒ p ∨ (p → ⊥) (BBI): an attempt (I)

I Boolean BI: BI with intuitionistic logic replaced by classical logic
I BBI is the propositional basis of separation logic (more widely used than BI)
I BBI is undecidable
IWe cannot extend BI by permitting multiple formulae in the succedent
(analogous of LJ LK) because cut-elimination fails due to the two types of
structural connectives in the antecedent
I Idea: add hypersequent structure to sBI to interpret as before:

1⇒ p ∨ (p → ⊥) 1⇒ p |1⇒ (p → ⊥)

I However: because we now have two right implication rules, the (logical)
interpretation of⇒ in not clear
I If we cannot interpret⇒ then we cannot interpret |
I This means that we cannot obtain a calculus as we did before



A calculus for BI + 1⇒ p ∨ (p → ⊥) (BBI): an attempt (II)

I Nevertheless we can consider the sequent consequences of the
hypersequent calculus hBI + r for some structural rule r

{Γ⇒ A | Γ⇒ A derivable in hDFLe + r }

I Our proof of cut-elimination extends to structural rule extensions of hBI
I Idea: add a structural rule which derives desired sequent, use the
subformula property to check the consistency of structural rule extensions
I It remains to | interpret wrt the semantics of BI (future work)
I Aside. Recent work (Ciabattoni, Galatos, Terui 2016) interprets | for
(non-commutative) FL as a special disjunction built from ‘interated conjugates’

I Can we find interesting resource interpretations for such logics? Can we
regain decidability for BBI-like logics?


