Yes/No Formulae as a Description of Theories of Intuitionistic Kripke Models Małgorzata Kruszelnicka Institute of Mathematics University of Opole Opole, Poland TACL, 29.06.2017, Prague # Classical Model Theory #### Problem Find a description for the notion of elementary equivalence of two classical first-order structures by means of a single formula. # Classical Model Theory #### Problem Find a description for the notion of elementary equivalence of two classical first-order structures by means of a single formula. Ehrenfeucht-Fraissé Games # Classical Model Theory #### Problem Find a description for the notion of elementary equivalence of two classical first-order structures by means of a single formula. - Ehrenfeucht–Fraissé Games - Fraïssé-Hintikka theorem # Kripke Model Theory #### Problem Find a description for the notion of logical equivalence of two Kripke models by means of a single formula. # Model Description for IPC A. Visser in *Bisimulations, Model Descriptions and Propositional Quantifiers* considered the following formulas ## Model Description for IPC A. Visser in *Bisimulations, Model Descriptions and Propositional Quantifiers* considered the following formulas $$Y_{\alpha,n}(\vec{p}) = \bigwedge \{ \varphi \in I_n(\vec{p}) : \alpha \Vdash \varphi \},$$ ## Model Description for IPC A. Visser in *Bisimulations, Model Descriptions and Propositional Quantifiers* considered the following formulas $$Y_{\alpha,n}(\vec{p}) = \bigwedge \{ \varphi \in I_n(\vec{p}) : \alpha \Vdash \varphi \},$$ $$N_{\alpha,n}(\vec{p}) = \bigvee \{ \varphi \in I_n(\vec{p}) \colon \alpha \not \Vdash \varphi \}.$$ #### Kripke model By a Kripke model for a first-order language L we mean a structure $\mathcal{K} = (K, \leq, \{K_\alpha \colon \alpha \in K\}, \Vdash)$. To any node $\alpha \in K$ there is assigned a classical first-order structure K_α for L. For any two nodes $\alpha, \alpha' \in K$ we require that $$\alpha \leq \alpha' \Rightarrow \mathsf{K}_{\alpha} \subseteq \mathsf{K}_{\alpha'}.$$ ## Forcing relation $\Vdash_{\mathcal{K}}$ Consider a node $\alpha \in K$ and a sequence $\overline{a} := a_1, \dots, a_n$ of elements of the structure K_{α} , we put - $\bullet \ \alpha \not\Vdash_{\mathcal{K}} \bot \ \mathsf{and} \ \alpha \Vdash_{\mathcal{K}} \top$ - $\alpha \Vdash_{\mathcal{K}} \varphi[\overline{\mathbf{a}}] \iff \mathcal{K}_{\alpha} \models \varphi[\overline{\mathbf{a}}] \text{ for all atomic formulas } \varphi(\overline{\mathbf{x}})$ - $\bullet \ \alpha \Vdash_{\mathcal{K}} (\varphi \land \psi)[\overline{\mathbf{a}}] \iff \alpha \Vdash_{\mathcal{K}} \varphi[\overline{\mathbf{a}}] \text{ and } \alpha \Vdash_{\mathcal{K}} \psi[\overline{\mathbf{a}}]$ - $\bullet \ \alpha \Vdash_{\mathcal{K}} (\varphi \lor \psi)[\overline{\mathbf{a}}] \iff \alpha \Vdash_{\mathcal{K}} \varphi[\overline{\mathbf{a}}] \text{ or } \alpha \Vdash_{\mathcal{K}} \psi[\overline{\mathbf{a}}]$ - $\alpha \Vdash_{\mathcal{K}} (\varphi \to \psi)[\overline{a}] \iff \forall_{\alpha' \geq \alpha} (\alpha' \Vdash_{\mathcal{K}} \varphi[\overline{a}] \Rightarrow \alpha' \Vdash_{\mathcal{K}} \psi[\overline{a}])$ - $\alpha \Vdash_{\mathcal{K}} \exists_{y} \varphi[\overline{a}, y] \iff \alpha \Vdash_{\mathcal{K}} \varphi[\overline{a}, b]$ for some element $b \in \mathcal{K}_{\alpha}$ - $\alpha \Vdash_{\mathcal{K}} \forall_{y} \varphi[\overline{a}, y] \iff \forall_{\alpha' \geq \alpha} \alpha' \Vdash_{\mathcal{K}} \varphi[\overline{a}, b]$ for all elements $b \in \mathcal{K}_{\alpha'}$ #### Formula's characteristic As a measure of formula's complexity, we define the *characteristic* of a formula $\varphi(\overline{x})$, $char(\varphi)$. We put $char(\varphi) := ({}^{\rightarrow}p, {}^{\forall}q, {}^{\exists}r)$ if and only if there are - p nested implications in φ , - q nested universal quantifiers in φ , - r nested existential quantifiers in φ . • We put $({}^{\rightarrow}p,{}^{\forall}q,{}^{\exists}r) \leq ({}^{\rightarrow}p',{}^{\forall}q',{}^{\exists}r')$ whenever (p,q,r) precedes (p',q',r') with respect to the product order. ### Logical equivalence Given two Kripke models $\mathcal{K}=(\mathcal{K},\leq,\{\mathcal{K}_\alpha\colon\alpha\in\mathcal{K}\},\Vdash)$ and $\mathcal{M}=(\mathcal{M},\leq,\{\mathcal{M}_\beta\colon\beta\in\mathcal{M}\},\Vdash)$, for nodes $\alpha\in\mathcal{K},\ \beta\in\mathcal{M}$ and any sequences \overline{a} and \overline{b} of elements of structures \mathcal{K}_α and \mathcal{M}_β respectively, we define a relation $\equiv_{p,q,r}$ as follows $$(\alpha, \overline{a}) \equiv_{\rho,q,r} (\beta, \overline{b}) : \iff (\alpha \Vdash_{\mathcal{K}} \varphi[\overline{a}] \Leftrightarrow \beta \Vdash_{\mathcal{M}} \varphi[\overline{b}])$$ for all formulae $\varphi(\overline{x})$ with $char(\varphi) \leq ({}^{\rightarrow}p, {}^{\forall}q, {}^{\exists}r)$. ## Strongly finite Kripke model We say that model K is *strongly finite* if and only if both the frame (K, \leq) and first-order structures assigned to the nodes of K are finite. Consider a strongly finite Kripke model $\mathcal{K} = (\mathcal{K}, \leq, \{\mathcal{K}_{\alpha} \colon \alpha \in \mathcal{K}\}, \Vdash)$ and its node $\alpha \in \mathcal{K}$. Let \overline{a} be a sequence of elements of the structure \mathcal{K}_{α} . With a symbol $$Y_{p,q,r}^{\alpha,\overline{a}}$$ we will denote a formula of characteristic at most $({}^{\rightarrow}p, {}^{\forall}q, {}^{\exists}r)$ that is forced at α by the tuple \overline{a} . Similarly, a formula of characteristic at most $({}^{\rightarrow}p, {}^{\forall}q, {}^{\exists}r)$ that is refuted at α by the tuple \overline{a} will be denoted by $$N_{p,q,r}^{\alpha,\overline{a}}$$. Formulas $Y_{p,q,r}^{\alpha,\overline{a}}$ and $N_{p,q,r}^{\alpha,\overline{a}}$ are defined inductively over $p,q,r\geq 0$ in the following way: $$Y_{0,0,0}^{\alpha,\overline{a}}(\overline{x}) = \big(\bigwedge\{\varphi \colon char(\varphi) = ({}^{\rightarrow}0,{}^{\forall}0,{}^{\exists}0), \alpha \Vdash \varphi(\overline{a})\}\big)(\overline{x})$$ $$\textit{N}^{\alpha,\overline{a}}_{0,0,0}(\overline{x}) = \big(\bigvee\{\varphi\colon \textit{char}(\varphi) = ({}^{\rightarrow}0,^{\forall}\,0,^{\exists}\,0), \alpha\not \Vdash \varphi(\overline{a})\}\big)(\overline{x})$$ $$Y_{p+1,q,r}^{\alpha,\overline{a}}(\overline{x}) = \bigvee_{\alpha' \geq \alpha} (N_{p,q,r}^{\alpha',\overline{a}} \to Y_{p,q,r}^{\alpha',\overline{a}})(\overline{x})$$ $$N_{p+1,q,r}^{\alpha,\overline{a}}(\overline{x}) = \bigvee_{\alpha' \geq \alpha} (Y_{p,q,r}^{\alpha',\overline{a}} \to N_{p,q,r}^{\alpha',\overline{a}})(\overline{x})$$ $$\begin{split} Y_{p,q+1,r}^{\alpha,\overline{a}}(\overline{x}) &= \forall_{y} \bigvee_{\alpha' \geq \alpha} \bigvee_{a \in K_{\alpha'}} Y_{p,q,r}^{\alpha',\overline{a}a}(\overline{x},y) \\ N_{p,q+1,r}^{\alpha,\overline{a}}(\overline{x}) &= \bigvee_{\alpha' \geq \alpha} \bigvee_{a \in K_{\alpha'}} \forall_{y} \ N_{p,q,r}^{\alpha',\overline{a}a}(\overline{x},y) \end{split}$$ $$Y_{p,q,r+1}^{\alpha,\overline{a}}(\overline{x}) = \bigwedge_{a \in K_{\alpha}} \exists_{y} Y_{p,q,r}^{\alpha,\overline{a}a}(\overline{x},y)$$ $$N_{p,q,r+1}^{\alpha,\overline{a}}(\overline{x}) = \exists_{y} \bigwedge_{\substack{a \in K \\ p,q,r}} N_{p,q,r}^{\alpha,\overline{a}a}(\overline{x},y)$$ #### **Theorem** Consider a strongly finite Kripke model K and a node $\alpha \in K$. Let \overline{a} be a sequence of elements of the structure K_{α} . Then $$Y_{p,q,r}^{\alpha,\overline{a}} \vdash Th_{p,q,r}(\alpha,\overline{a})$$ and $N_{p,q,r}^{\alpha,\overline{a}} \vdash \widetilde{Th}_{p,q,r}(\alpha,\overline{a})$. #### $\mathsf{Theorem}$ Consider strongly finite Kripke models K and M, and nodes $\alpha \in K$, $\beta \in M$. Let \overline{a} and \overline{b} be sequences of elements of worlds K_{α} and M_{β} respectively. For $p,q,r\geq 0$, $$(\alpha, \overline{a}) \equiv_{p,q,r} (\beta, \overline{b})$$ if and only if $$\beta \Vdash_{\mathcal{M}} Y_{p,q,r}^{\alpha,\overline{a}}(\overline{b})$$ and $\beta \not\Vdash_{\mathcal{M}} N_{p,q,r}^{\alpha,\overline{a}}(\overline{b})$. #### Theorem Let (K, α) and (M, β) be strongly finite rooted Kripke models. Then, for $p, q, r \ge 0$ $$(\mathcal{K}, \alpha) \equiv_{p,q,r} (\mathcal{M}, \beta)$$ if and only if $$\beta \Vdash_{\mathcal{M}} Y_{p,q,r}^{\alpha,\overline{a}}(\overline{b}) \quad \text{and} \quad \beta \not\Vdash_{\mathcal{M}} N_{p,q,r}^{\alpha,\overline{a}}(\overline{b})$$ for all sequences \overline{a} of K_{α} and \overline{b} of M_{β} . Thank you for your attention. - K. Doets: Basic Model Theory, CSLI Publications, Stanford, 1996 - D.M. Gabbay, D. Skvortsov, V. Shehtman: *Quantification in Nonclassical Logic*, Studies in Logic and the Foundations of Mathematics, Elsevier Science, 2009 - W. Hodges: A Shorter Model Theory, Cambridge University Press, 1997 - A. Visser: Bisimulations, Model Descriptions and Propositional Quantifiers, Technical Report 161, Department of Philosophy, Utrecht University, 1996 ## Theorem (Ehrenfeucht-Fraissé) Two classical structures \mathcal{A} and \mathcal{B} are elementarily equivalent with respect to all sentences with quantifier complexity not grater than n, $\mathcal{A} \equiv_n \mathcal{B}$, whenever there exists a winning strategy for Duplicator in Ehrenfeucht–Fraïssé game of length n on \mathcal{A} and \mathcal{B} . ## Theorem (Fraïssé-Hintikka, [3]) Let L be a first-order language with finite signature. Then we can effectively find for each $k, n < \omega$ a finite set $\Theta_{n,k}$ of unnested formulas $\theta(x_1, \ldots, x_n)$ of quantifier rank at most k, such that - (a) for every first-order structure \mathcal{A} of L and each n-tuple $\overline{a} = (a_1, \ldots, a_n)$ of elements of \mathcal{A} , there is exactly one formula $\theta \in \Theta_{n,k}$ such that $\mathcal{A} \models \theta(\overline{a})$, - (b) for every pair of first-order structures \mathcal{A}, \mathcal{B} of L, if $\overline{a}, \overline{b}$ are respectively n-tuples of elements of \mathcal{A} and \mathcal{B} , then $(\mathcal{A}, \overline{a}) \equiv_k (\mathcal{B}, \overline{b})$ if and only if there is $\theta \in \Theta_{n,k}$ such that $\mathcal{A} \models \theta(\overline{a})$ and $\mathcal{B} \models \theta(\overline{b})$, - (c) for every unnested formula $\varphi(\overline{x})$ with n free variables \overline{x} and quantifier rank at most k, we can effectively find a disjunction $\theta_1 \vee \ldots \vee \theta_m$ of formulas $\theta_i(\overline{x}) \in \Theta_{n,k}$ which is logically equivalent to φ .