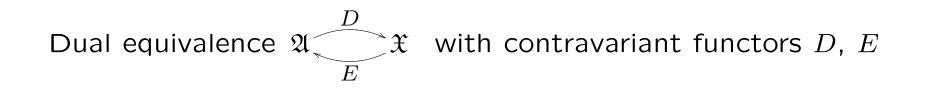
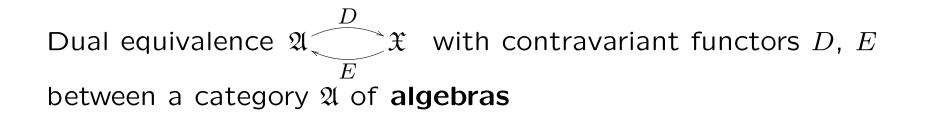
Diagrammatic Duality

Anna B. Romanowska (Warsaw University of Technology) email: aroman@mini.pw.edu.pl and Jonathan D.H. Smith (Iowa State University) email: jdhsmith@iastate.edu http://orion.math.iastate.edu/jdhsmith/homepage.html





Dual equivalence $\mathfrak{A} \underbrace{\longrightarrow}_{E}^{D} \mathfrak{X}$ with contravariant functors D, Ebetween a category \mathfrak{A} of algebras and a category \mathfrak{X} of (representation) spaces.

Dual equivalence $\mathfrak{A} \underbrace{\bigcirc_{E}}^{D} \mathfrak{X}$ with contravariant functors D, Ebetween a category \mathfrak{A} of algebras and a category \mathfrak{X} of (representation) spaces.

Example: Hartonas-Dunn duality $L \longrightarrow LP$ for lattices.

Dual equivalence $\mathfrak{A} \underbrace{\bigcirc}_{E}^{D} \mathfrak{X}$ with contravariant functors D, Ebetween a category \mathfrak{A} of **algebras** and a category \mathfrak{X} of (**representation**) **spaces**.

Example: Hartonas-Dunn duality $L \longrightarrow LP$ for lattices.

L is the category of (homomorphisms of) lattices $(L, +, \times)$.

Dual equivalence $\mathfrak{A} \underbrace{\bigcirc_{E}}^{D} \mathfrak{X}$ with contravariant functors D, Ebetween a category \mathfrak{A} of **algebras** and a category \mathfrak{X} of (**representation**) **spaces**.

Example: Hartonas-Dunn duality $L \longrightarrow LP$ for lattices.

L is the category of (homomorphisms of) lattices $(L, +, \times)$.

LP is the category of lattice frames $(Fi(L, \leq_{\times}), Fi(L, \geq_{+}), \alpha)$ with $(\Theta, \Phi) \in \alpha \iff \Theta \cap \Phi \neq \emptyset$

Dual equivalence $\mathfrak{A} \underbrace{\bigcirc_{E}}^{D} \mathfrak{X}$ with contravariant functors D, Ebetween a category \mathfrak{A} of algebras and a category \mathfrak{X} of (representation) spaces.

Example: Hartonas-Dunn duality $L \longrightarrow LP$ for lattices.

L is the category of (homomorphisms of) lattices $(L, +, \times)$.

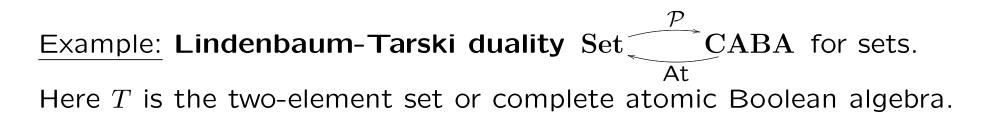
LP is the category of lattice frames $(Fi(L, \leq_{\times}), Fi(L, \geq_{+}), \alpha)$ with $(\Theta, \Phi) \in \alpha \iff \Theta \cap \Phi \neq \emptyset$ or equivalent lattice pairings χ_{α} : $Fi(L, \leq_{\times}) \times Fi(L, \geq_{+}) \rightarrow 2$.

Object T (with additional structure putting it) in \mathfrak{A}_0 and \mathfrak{X}_0 ,

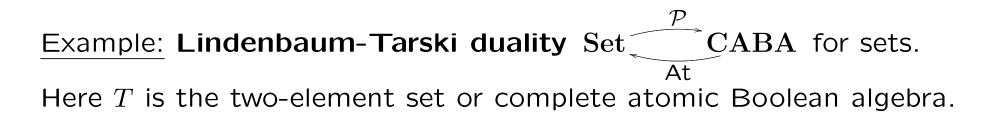
Object T (with additional structure putting it) in \mathfrak{A}_0 and \mathfrak{X}_0 , so $A^D = \mathfrak{A}(A,T)$ and $X^E = \mathfrak{X}(X,T)$ for $A \in \mathfrak{A}_0$ and $X \in \mathfrak{X}_0$.

Object T (with additional structure putting it) in \mathfrak{A}_0 and \mathfrak{X}_0 , so $A^D = \mathfrak{A}(A,T)$ and $X^E = \mathfrak{X}(X,T)$ for $A \in \mathfrak{A}_0$ and $X \in \mathfrak{X}_0$.

Object T (with additional structure putting it) in \mathfrak{A}_0 and \mathfrak{X}_0 , so $A^D = \mathfrak{A}(A,T)$ and $X^E = \mathfrak{X}(X,T)$ for $A \in \mathfrak{A}_0$ and $X \in \mathfrak{X}_0$.



Object T (with additional structure putting it) in \mathfrak{A}_0 and \mathfrak{X}_0 , so $A^D = \mathfrak{A}(A,T)$ and $X^E = \mathfrak{X}(X,T)$ for $A \in \mathfrak{A}_0$ and $X \in \mathfrak{X}_0$.



Example: Esakia duality Heyt Esakia for Heyting algebras.

Object T (with additional structure putting it) in \mathfrak{A}_0 and \mathfrak{X}_0 , so $A^D = \mathfrak{A}(A,T)$ and $X^E = \mathfrak{X}(X,T)$ for $A \in \mathfrak{A}_0$ and $X \in \mathfrak{X}_0$.

<u>Example:</u> Lindenbaum-Tarski duality Set $\underbrace{\overset{\mathcal{P}}{\underset{At}{\frown}}CABA}_{At}$ for sets. Here *T* is the two-element set or complete atomic Boolean algebra.

Example: Esakia duality Heyt Esakia for Heyting algebras.

Esakia spaces are partially ordered Stone spaces where the downset of each clopen subset is clopen.

Object T (with additional structure putting it) in \mathfrak{A}_0 and \mathfrak{X}_0 , so $A^D = \mathfrak{A}(A,T)$ and $X^E = \mathfrak{X}(X,T)$ for $A \in \mathfrak{A}_0$ and $X \in \mathfrak{X}_0$.

<u>Example:</u> Lindenbaum-Tarski duality Set $\underbrace{\overset{\mathcal{P}}{\underset{At}{\frown}}CABA}_{At}$ for sets. Here *T* is the two-element set or complete atomic Boolean algebra.

Example: Esakia duality Heyt Esakia for Heyting algebras.

Esakia spaces are partially ordered Stone spaces where the downset of each clopen subset is clopen. Here T is the two-element Heyting algebra or Esakia space.

Diagram: Graph map $F: D \to \mathbf{C}$ from directed graph D to category C.

Diagram: Graph map $F: D \to \mathbb{C}$ from directed graph D to category \mathbb{C} . **Diagram category** \mathbb{C}^D of natural transformations between diagrams.

Diagram: Graph map $F: D \to \mathbb{C}$ from directed graph D to category \mathbb{C} . **Diagram category** \mathbb{C}^D of natural transformations between diagrams. Consider categories \mathfrak{C} and \mathfrak{A} of algebras and homomorphisms.

Diagram: Graph map $F: D \to \mathbb{C}$ from directed graph D to category C.

Diagram category C^D of natural transformations between diagrams.

Consider categories \mathfrak{C} and \mathfrak{A} of algebras and homomorphisms.

Suppose equivalence $\mathfrak{C} \cong \mathfrak{C}_{\mathfrak{A}}$ with subcategory $\mathfrak{C}_{\mathfrak{A}}$ of a diagram category \mathfrak{A}^{V} for a fixed diagram V.

Diagram: Graph map $F: D \to \mathbf{C}$ from directed graph D to category \mathbf{C} .

Diagram category C^D of natural transformations between diagrams.

Consider categories \mathfrak{C} and \mathfrak{A} of algebras and homomorphisms.

Suppose equivalence $\mathfrak{C} \cong \mathfrak{C}_{\mathfrak{A}}$ with subcategory $\mathfrak{C}_{\mathfrak{A}}$ of a diagram category \mathfrak{A}^{V} for a fixed diagram V.

Then \mathfrak{C} -algebras are **diagrammatic** relative to \mathfrak{A} .

Diagram: Graph map $F: D \to \mathbf{C}$ from directed graph D to category \mathbf{C} .

Diagram category C^D of natural transformations between diagrams.

Consider categories \mathfrak{C} and \mathfrak{A} of algebras and homomorphisms.

Suppose equivalence $\mathfrak{C} \cong \mathfrak{C}_{\mathfrak{A}}$ with subcategory $\mathfrak{C}_{\mathfrak{A}}$ of a diagram category \mathfrak{A}^{V} for a fixed diagram V.

Then \mathfrak{C} -algebras are **diagrammatic** relative to \mathfrak{A} .

Loosely: Each \mathfrak{C} -algebra C is **equivalent** to a diagram $\gamma \colon V \to \mathfrak{A}$.

Bilattice: $(B, \lor, \land, +, \cdot)$ with lattices (B, \lor, \land) and $(B, +, \cdot)$.

Bilattice: $(B, \lor, \land, +, \cdot)$ with lattices (B, \lor, \land) and $(B, +, \cdot)$.

Interlaced if (for $\times_1, \times_2 \in \{\lor, \land, +, \cdot\}$) the hyperidentity $((x \times_2 y) \times_1 z) \times_2 (y \times_1 z) = (x \times_2 y) \times_1 z$ is satisfied.

Bilattice: $(B, \lor, \land, +, \cdot)$ with lattices (B, \lor, \land) and $(B, +, \cdot)$.

Interlaced if (for $\times_1, \times_2 \in \{\lor, \land, +, \cdot\}$) the hyperidentity $((x \times_2 y) \times_1 z) \times_2 (y \times_1 z) = (x \times_2 y) \times_1 z$ is satisfied.

Superproduct $L_1 \bowtie L_2$ of lattices (L_i, \lor_i, \land_i) is the product $L_1 \times L_2$ with $\land = (\land_1, \lor_2), \lor = (\lor_1, \land_2), \cdot = (\land_1, \land_2), + = (\lor_1, \lor_2).$

Bilattice: $(B, \lor, \land, +, \cdot)$ with lattices (B, \lor, \land) and $(B, +, \cdot)$.

Interlaced if (for $\times_1, \times_2 \in \{\lor, \land, +, \cdot\}$) the hyperidentity $((x \times_2 y) \times_1 z) \times_2 (y \times_1 z) = (x \times_2 y) \times_1 z$ is satisfied.

Superproduct $L_1 \bowtie L_2$ of lattices (L_i, \lor_i, \land_i) is the product $L_1 \times L_2$ with $\land = (\land_1, \lor_2), \lor = (\lor_1, \land_2), \cdot = (\land_1, \land_2), + = (\lor_1, \lor_2).$

Th: bilattice interlaced \Leftrightarrow superproduct of lattices.

Bilattice: $(B, \lor, \land, +, \cdot)$ with lattices (B, \lor, \land) and $(B, +, \cdot)$.

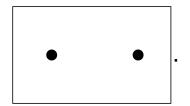
Interlaced if (for $\times_1, \times_2 \in \{\lor, \land, +, \cdot\}$) the hyperidentity $((x \times_2 y) \times_1 z) \times_2 (y \times_1 z) = (x \times_2 y) \times_1 z$ is satisfied.

Superproduct $L_1 \bowtie L_2$ of lattices (L_i, \lor_i, \land_i) is the product $L_1 \times L_2$ with $\land = (\land_1, \lor_2), \lor = (\lor_1, \land_2), \cdot = (\land_1, \land_2), + = (\lor_1, \lor_2).$

Th: bilattice interlaced \Leftrightarrow superproduct of lattices.

So interlaced bilattices are diagrammatic relative to lattices,

with discrete diagram V =



Algebraic semantics for Nelson's constructive logic with strong negation.

Algebraic semantics for Nelson's constructive logic with strong negation.

Congruence α on Heyting algebra H is **Boolean** if H^{α} is Boolean.

Algebraic semantics for Nelson's constructive logic with strong negation.

Congruence α on Heyting algebra H is **Boolean** if H^{α} is Boolean.

Th. (Sendlewski 1990): Nelson algebras are equivalent to pairs (H, α) , with α a Boolean congruence on a Heyting algebra H.

Algebraic semantics for Nelson's constructive logic with strong negation.

Congruence α on Heyting algebra H is **Boolean** if H^{α} is Boolean.

Th. (Sendlewski 1990): Nelson algebras are equivalent to pairs (H, α) , with α a Boolean congruence on a Heyting algebra H.

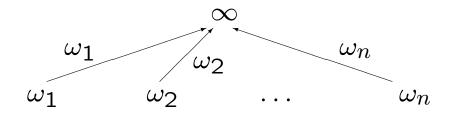
So Nelson algebras are diagrammatic relative to Heyting algebras,

with
$$V = | \bullet \longrightarrow \bullet |$$
 and image $H \to H^{\alpha}$ in Heyt.

Algebra (A, Ω) of type $\tau \colon \Omega \to \mathbb{N}$ has an operation $\omega \colon A^{\omega \tau} \to A$ for each operator $\omega \in \Omega$.

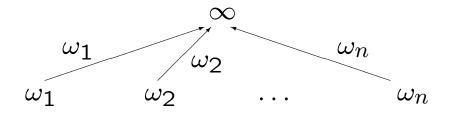
Algebra (A, Ω) of type $\tau \colon \Omega \to \mathbb{N}$ has an operation $\omega \colon A^{\omega \tau} \to A$ for each operator $\omega \in \Omega$.

Have the Ω -cospan Ω_{∞} , e.g. for $\Omega = \{\omega_1, \ldots, \omega_n\}$:



Algebra (A, Ω) of type $\tau \colon \Omega \to \mathbb{N}$ has an operation $\omega \colon A^{\omega \tau} \to A$ for each operator $\omega \in \Omega$.

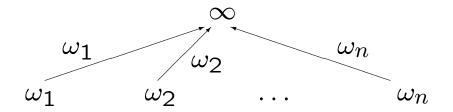
Have the Ω -cospan Ω_{∞} , e.g. for $\Omega = \{\omega_1, \ldots, \omega_n\}$:



Then each τ -algebra A is equivalent to a diagram $\alpha \colon \Omega_{\infty} \to \mathbf{Set}$ with edge maps $\alpha_1 \colon \omega \mapsto (\omega \colon A^{\omega \tau} \to A)$ (operator maps to operation).

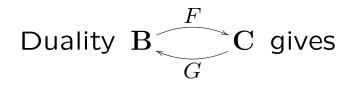
Algebra (A, Ω) of type $\tau \colon \Omega \to \mathbb{N}$ has an operation $\omega \colon A^{\omega \tau} \to A$ for each operator $\omega \in \Omega$.

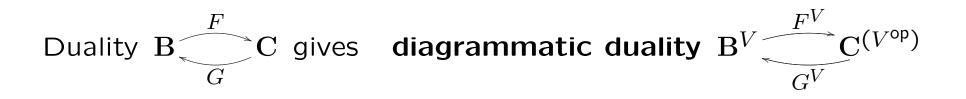
Have the Ω -cospan Ω_{∞} , e.g. for $\Omega = \{\omega_1, \ldots, \omega_n\}$:

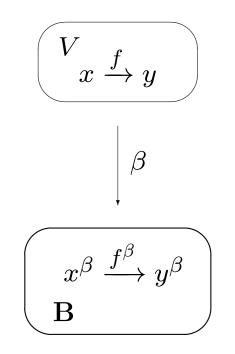


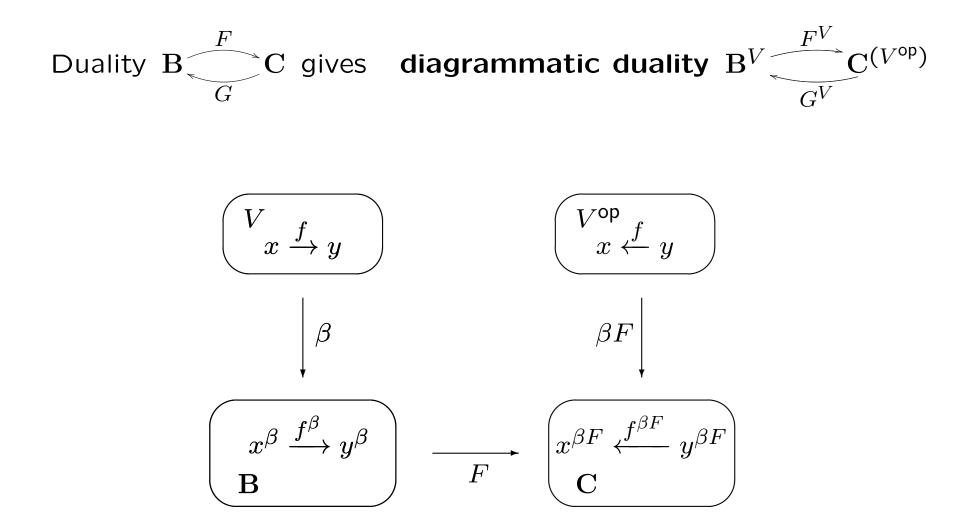
Then each τ -algebra A is equivalent to a diagram $\alpha \colon \Omega_{\infty} \to \mathbf{Set}$ with edge maps $\alpha_1 \colon \omega \mapsto (\omega \colon A^{\omega \tau} \to A)$ (operator maps to operation).

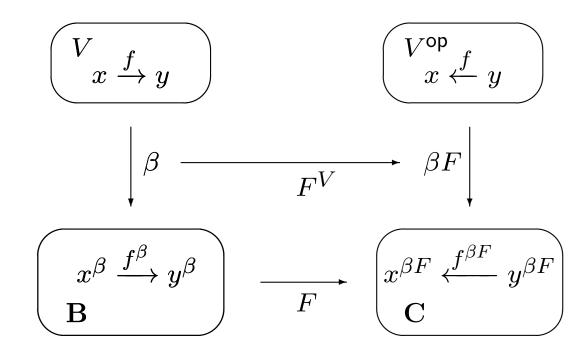
Th: Algebras of any given type are diagrammatic relative to Set.







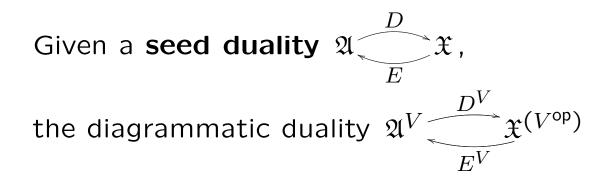




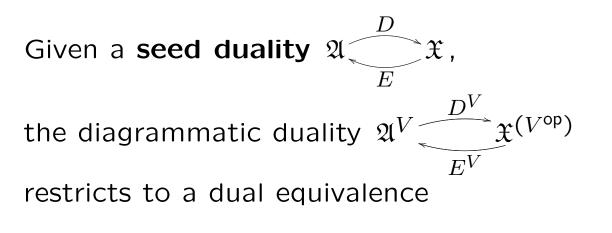
Consider a category \mathfrak{C} of diagrammatic algebras relative to \mathfrak{A} , with equivalence $\mathfrak{C} \cong \mathfrak{C}_{\mathfrak{A}}$.

Consider a category \mathfrak{C} of diagrammatic algebras relative to \mathfrak{A} , with equivalence $\mathfrak{C} \cong \mathfrak{C}_{\mathfrak{A}}$.

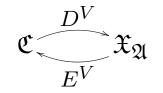
Consider a category \mathfrak{C} of diagrammatic algebras relative to \mathfrak{A} , with equivalence $\mathfrak{C} \cong \mathfrak{C}_{\mathfrak{A}}$.



Consider a category \mathfrak{C} of diagrammatic algebras relative to \mathfrak{A} , with equivalence $\mathfrak{C} \cong \mathfrak{C}_{\mathfrak{A}}$.



$$\mathfrak{C}_{\mathfrak{A}} \underbrace{\overbrace{E^{V}}^{D^{V}}}_{E^{V}} \mathfrak{X}_{\mathfrak{A}}$$
 or



of \mathfrak{C} with a subcategory $\mathfrak{X}_{\mathfrak{A}}$ of $\mathfrak{X}^{(V^{\mathsf{op}})}$.

1. Interlaced bilattices with Hartonas-Dunn seed duality.

1. Interlaced bilattices with Hartonas-Dunn seed duality.

New, but for distributive bilattices with Priestley seed duality, cf. e.g. Mombasher/... (1999), Jung/Rivieccio (2012), Cabrer/Priestley (2015).

1. Interlaced bilattices with Hartonas-Dunn seed duality.

New, but for distributive bilattices with Priestley seed duality, cf. e.g. Mombasher/... (1999), Jung/Rivieccio (2012), Cabrer/Priestley (2015).

2. Nelson algebras with Esakia seed duality.

1. Interlaced bilattices with Hartonas-Dunn seed duality.

New, but for distributive bilattices with Priestley seed duality, cf. e.g. Mombasher/...(1999), Jung/Rivieccio (2012), Cabrer/Priestley (2015).

2. Nelson algebras with Esakia seed duality.

Compare Odintsov (2010).

1. Interlaced bilattices with Hartonas-Dunn seed duality.

New, but for distributive bilattices with Priestley seed duality, cf. e.g. Mombasher/... (1999), Jung/Rivieccio (2012), Cabrer/Priestley (2015).

2. Nelson algebras with Esakia seed duality.

Compare Odintsov (2010).

3. Any class of universal algebras, with Lindenbaum-Tarski seed duality

1. Interlaced bilattices with Hartonas-Dunn seed duality.

New, but for distributive bilattices with Priestley seed duality, cf. e.g. Mombasher/... (1999), Jung/Rivieccio (2012), Cabrer/Priestley (2015).

2. Nelson algebras with Esakia seed duality.

Compare Odintsov (2010).

3. Any class of universal algebras, with Lindenbaum-Tarski seed duality

. . . CABAlistic duality.

Heyting algebra:

 $x \cdot y \leq z \quad \Leftrightarrow \quad y \leq x \backslash z$

Residuated magma:

 $x \cdot y \leq z \quad \Leftrightarrow \quad y \leq x \backslash z \quad \Leftrightarrow \quad x \leq z/y$

Quasigroup:

 $x \cdot y = z \quad \Leftrightarrow \quad y = x \backslash z \quad \Leftrightarrow \quad x = z/y$

Quasigroup:

 $x \cdot y = z \quad \Leftrightarrow \quad y = x \backslash z \quad \Leftrightarrow \quad x = z/y$

Equivalently, (Q, \cdot) with $(x, y) \mapsto (x, x \cdot y)$ and $(x, y) \mapsto (x \cdot y, y)$ invertible.

Quasigroup:

 $x \cdot y = z \quad \Leftrightarrow \quad y = x \setminus z \quad \Leftrightarrow \quad x = z/y$

Equivalently, (Q, \cdot) with $(x, y) \mapsto (x, x \cdot y)$ and $(x, y) \mapsto (x \cdot y, y)$ invertible.

Consider as universal algebras $(Q, \triangleleft, \triangleright, \cdot)$ with $x \triangleleft y = x$ and $x \triangleright y = y$,

Quasigroup:

 $x \cdot y = z \quad \Leftrightarrow \quad y = x \setminus z \quad \Leftrightarrow \quad x = z/y$

Equivalently, (Q, \cdot) with $(x, y) \mapsto (x, x \cdot y)$ and $(x, y) \mapsto (x \cdot y, y)$ invertible.

Consider as universal algebras $(Q, \triangleleft, \triangleright, \cdot)$ with $x \triangleleft y = x$ and $x \triangleright y = y$, so the invertible operations on $Q \times Q$ are

$$(x,y)\mapsto (x\lhd y,x\cdot y)$$
 and $(x,y)\mapsto (x\cdot y,x\rhd y).$

Quasigroup:

 $x \cdot y = z \quad \Leftrightarrow \quad y = x \backslash z \quad \Leftrightarrow \quad x = z/y$

Equivalently, (Q, \cdot) with $(x, y) \mapsto (x, x \cdot y)$ and $(x, y) \mapsto (x \cdot y, y)$ invertible.

Consider as universal algebras $(Q, \triangleleft, \triangleright, \cdot)$ with $x \triangleleft y = x$ and $x \triangleright y = y$, so the invertible operations on $Q \times Q$ are

$$(x,y)\mapsto (x\lhd y,x\cdot y)$$
 and $(x,y)\mapsto (x\cdot y,x\rhd y).$

Then CABAlistic duality gives labeled 3-nets as the dual spaces.

Thank you for your attention!