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**
LPhh for lattices. .

.
L is the category of (homomorphisms of) lattices (L,+,×). .

.

LP is the category of lattice frames
(
Fi(L,≤×),Fi(L,≥+), α

)
.

with (Θ,Φ) ∈ α ⇔ Θ ∩Φ ̸= Ø .
or equivalent lattice pairings χα : Fi(L,≤×)× Fi(L,≥+)→ 2.
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Object T (with additional structure putting it) in A0 and X0, .
so AD = A(A, T ) and XE = X(X,T ) for A ∈ A0 and X ∈ X0. .

.

Example: Lindenbaum-Tarski duality Set
P --

CABA
At

kk for sets. .

Here T is the two-element set or complete atomic Boolean algebra. .
.
.

Example: Esakia duality Heyt
,,

Esakiall for Heyting algebras. .

Esakia spaces are partially ordered Stone spaces .
where the downset of each clopen subset is clopen. .
Here T is the two-element Heyting algebra or Esakia space.
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Diagrams and diagrammatic algebras

Diagram: Graph map F : D → C from directed graph D to category C. .
.

Diagram category CD of natural transformations between diagrams. .
.

Consider categories C and A of algebras and homomorphisms. .
.

Suppose equivalence C ∼= CA .
with subcategory CA of a diagram category AV .
for a fixed diagram V . .

.
Then C-algebras are diagrammatic relative to A. .

.
Loosely: Each C-algebra C is equivalent to a diagram γ : V → A.
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Algebraic semantics for Nelson’s constructive logic with strong negation. .
.

Congruence α on Heyting algebra H is Boolean if Hα is Boolean. .
.

Th. (Sendlewski 1990): Nelson algebras are equivalent to pairs (H,α), .
with α a Boolean congruence on a Heyting algebra H. .

.
So Nelson algebras are diagrammatic relative to Heyting algebras, .

.

with V = • −−−→ • and image H → Hα in Heyt.
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.
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Consider a category C of diagrammatic algebras relative to A, .
with equivalence C ∼= CA. .

.

Given a seed duality A
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X
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the diagrammatic duality AV
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of C with a subcategory XA of X(V op).
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Then CABAlistic duality gives labeled 3-nets as the dual spaces.
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