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Example: Hartonas-Dunn duality L. "LP for lattices.

L is the category of (homomorphisms of) lattices (L, +, x).

LP is the category of lattice frames (FI(L, <), Fi(L,2_|_),a)

with (9, ®)ca & NP EYP
or equivalent lattice pairings x.: Fi(L,<x) x Fi(L,>4) — 2.
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Dualizing objects

Object T (with additional structure putting it) in g and X,
so AP =A(A,T) and X¥ = x(X,T) for A €y and X € Xp.

P
Example: Lindenbaum-Tarski duality Set_  CABA for sets.

At
Here T' is the two-element set or complete atomic Boolean algebra.

Example: Esakia duality Heyt_  Esakia for Heyting algebras.

Esakia spaces are partially ordered Stone spaces
where the downset of each clopen subset is clopen.
Here T' is the two-element Heyting algebra or Esakia space.
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Diagram: Graph map F': D — C from directed graph D to category C.
Diagram category CP of natural transformations between diagrams.
Consider categories ¢ and 2 of algebras and homomorphisms.
Suppose equivalence € = €y

with subcategory €y of a diagram category AV

for a fixed diagram V.

Then ¢€-algebras are diagrammatic relative to L.

Loosely: Each ¢€-algebra C' is equivalent to a diagram ~: V — .
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Bilattice: (B,V, A, +,-) with lattices (B,V,A) and (B, +,-).

Interlaced if (for x1,xo € {V,A,+,-}) the hyperidentity
((x xoy) X12) Xo(yx12) = (x xXoy) X1 2z is satisfied.

Superproduct Lq < Lo of lattices (L;,V;, ;) is the product
Ll X L2 with A = (/\17\/2)7 V = (\/17/\2)7 "= (/\17/\2>7 + = (\/17\/2)'

Th: bilattice interlaced < superproduct of lattices.

So interlaced bilattices are diagrammatic relative to lattices,

with discrete diagram V = ° °
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Algebraic semantics for Nelson’'s constructive logic with strong negation.
Congruence o on Heyting algebra H is Boolean if H? is Boolean.

Th. (Sendlewski 1990): Nelson algebras are equivalent to pairs (H, «),
with a« a Boolean congruence on a Heyting algebra H.

So Nelson algebras are diagrammatic relative to Heyting algebras,

with V. =| ¢ —— e |and image H — H® in Heyt.
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Algebra (A,Q2) of type 7: 2 - N
has an operation w: AY" — A for each operator w € (2.

Have the Q2-cospan 2, €.9. for Q2 ={wq,...,wn}:
o
w1 w9 Wn

Then each t-algebra A is equivalent to a diagram «: 200 — Set
with edge maps ai1: w+— (w: AYT — A) (operator maps to operation).

Th: Algebras of any given type are diagrammatic relative to Set.
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Diagrammatic duality for diagrammatic algebras

Consider a category € of diagrammatic algebras relative to ¥,
with equivalence € = &y.

D
Given a seed duality 207 X%,
E
DV
the diagrammatic duality QLVQ(VOP)
EV
restricts to a dual equivalence
DV DV
Cy Xy or ¢ Xy
EV EV

of ¢ with a subcategory Xy of x(V),
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CABAIlistic duality for quasigroups

Quasigroup:
ry=z << y=x\z < zT=2z/y
Equivalently, (@Q,-) with (z,y) — (z,z-y) and (z,y) — (z -y,y) invertible.

Consider as universal algebras (Q,<,>,:) with x <y =2 and x>y =y,
so the invertible operations on @ x @ are

(z,y) = (z<y,z-y) and (z,y)— (z-y,x>y).

Then CABAIlistic duality gives labeled 3-nets as the dual spaces.



Thank you for your attention!



